mahout-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From gsing...@apache.org
Subject svn commit: r1197964 - /mahout/trunk/src/conf/driver.classes.props
Date Sat, 05 Nov 2011 14:17:52 GMT
Author: gsingers
Date: Sat Nov  5 14:17:52 2011
New Revision: 1197964

URL: http://svn.apache.org/viewvc?rev=1197964&view=rev
Log:
organize driver.classes.props

Modified:
    mahout/trunk/src/conf/driver.classes.props

Modified: mahout/trunk/src/conf/driver.classes.props
URL: http://svn.apache.org/viewvc/mahout/trunk/src/conf/driver.classes.props?rev=1197964&r1=1197963&r2=1197964&view=diff
==============================================================================
--- mahout/trunk/src/conf/driver.classes.props (original)
+++ mahout/trunk/src/conf/driver.classes.props Sat Nov  5 14:17:52 2011
@@ -1,53 +1,62 @@
+#Utils
 org.apache.mahout.utils.vectors.VectorDumper = vectordump : Dump vectors from a sequence
file to text
 org.apache.mahout.utils.clustering.ClusterDumper = clusterdump : Dump cluster output to text
 org.apache.mahout.utils.SequenceFileDumper = seqdumper : Generic Sequence File dumper
-org.apache.mahout.cf.taste.hadoop.als.DatasetSplitter = splitDataset : split a rating dataset
into training and probe parts
-org.apache.mahout.cf.taste.hadoop.als.FactorizationEvaluator = evaluateFactorization : compute
RMSE and MAE of a rating matrix factorization against probes
+org.apache.mahout.utils.vectors.lucene.Driver = lucene.vector : Generate Vectors from a Lucene
index
+org.apache.mahout.utils.vectors.arff.Driver = arff.vector : Generate Vectors from an ARFF
file or directory
+org.apache.mahout.utils.vectors.RowIdJob = rowid : Map SequenceFile<Text,VectorWritable>
to {SequenceFile<IntWritable,VectorWritable>, SequenceFile<IntWritable,Text>}
+org.apache.mahout.utils.SplitInput = split : Split Input data into test and train sets
+org.apache.mahout.utils.MatrixDumper = matrixdump : Dump matrix in CSV format
+org.apache.mahout.text.SequenceFilesFromDirectory = seqdirectory : Generate sequence files
(of Text) from a directory
+org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles = seq2sparse: Sparse Vector generation
from Text sequence files
+org.apache.mahout.vectorizer.EncodedVectorsFromSequenceFiles = seq2encoded: Encoded Sparse
Vector generation from Text sequence files
+org.apache.mahout.text.WikipediaToSequenceFile = seqwiki : Wikipedia xml dump to sequence
file
+
+#Math
+org.apache.mahout.math.hadoop.TransposeJob = transpose : Take the transpose of a matrix
+org.apache.mahout.math.hadoop.MatrixMultiplicationJob = matrixmult : Take the product of
two matrices
+org.apache.mahout.math.hadoop.decomposer.DistributedLanczosSolver = svd : Lanczos Singular
Value Decomposition
+org.apache.mahout.math.hadoop.decomposer.EigenVerificationJob = cleansvd : Cleanup and verification
of SVD output
+org.apache.mahout.math.hadoop.similarity.cooccurrence.RowSimilarityJob = rowsimilarity :
Compute the pairwise similarities of the rows of a matrix
+org.apache.mahout.math.hadoop.similarity.VectorDistanceSimilarityJob =  vecdist : Compute
the distances between a set of Vectors (or Cluster or Canopy, they must fit in memory) and
a list of Vectors
+org.apache.mahout.math.hadoop.stochasticsvd.SSVDCli = ssvd : Stochastic SVD
+#Clustering
 org.apache.mahout.clustering.kmeans.KMeansDriver = kmeans : K-means clustering
 org.apache.mahout.clustering.fuzzykmeans.FuzzyKMeansDriver = fkmeans : Fuzzy K-means clustering
 org.apache.mahout.clustering.minhash.MinHashDriver = minhash : Run Minhash clustering
 org.apache.mahout.clustering.lda.LDADriver = lda : Latent Dirchlet Allocation
 org.apache.mahout.clustering.lda.LDAPrintTopics = ldatopics : LDA Print Topics
-org.apache.mahout.fpm.pfpgrowth.FPGrowthDriver = fpg : Frequent Pattern Growth
 org.apache.mahout.clustering.dirichlet.DirichletDriver = dirichlet : Dirichlet Clustering
 org.apache.mahout.clustering.meanshift.MeanShiftCanopyDriver = meanshift : Mean Shift clustering
 org.apache.mahout.clustering.canopy.CanopyDriver = canopy : Canopy clustering
-org.apache.mahout.math.hadoop.TransposeJob = transpose : Take the transpose of a matrix
-org.apache.mahout.math.hadoop.MatrixMultiplicationJob = matrixmult : Take the product of
two matrices
-org.apache.mahout.utils.vectors.lucene.Driver = lucene.vector : Generate Vectors from a Lucene
index
-org.apache.mahout.utils.vectors.arff.Driver = arff.vector : Generate Vectors from an ARFF
file or directory 
-org.apache.mahout.text.SequenceFilesFromDirectory = seqdirectory : Generate sequence files
(of Text) from a directory
-org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles = seq2sparse: Sparse Vector generation
from Text sequence files
-org.apache.mahout.vectorizer.EncodedVectorsFromSequenceFiles = seq2encoded: Encoded Sparse
Vector generation from Text sequence files
-org.apache.mahout.utils.vectors.RowIdJob = rowid : Map SequenceFile<Text,VectorWritable>
to {SequenceFile<IntWritable,VectorWritable>, SequenceFile<IntWritable,Text>}
-org.apache.mahout.text.WikipediaToSequenceFile = seqwiki : Wikipedia xml dump to sequence
file
+org.apache.mahout.clustering.spectral.eigencuts.EigencutsDriver = eigencuts : Eigencuts spectral
clustering
+org.apache.mahout.clustering.spectral.kmeans.SpectralKMeansDriver = spectralkmeans : Spectral
k-means clustering
+#Freq. Itemset Mining
+org.apache.mahout.fpm.pfpgrowth.FPGrowthDriver = fpg : Frequent Pattern Growth
+#Classification
 org.apache.mahout.classifier.bayes.TestClassifier = testclassifier : Test the text based
Bayes Classifier
 org.apache.mahout.classifier.bayes.TrainClassifier = trainclassifier : Train the text based
Bayes Classifier
 org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups = prepare20newsgroups : Reformat
20 newsgroups data
-org.apache.mahout.math.hadoop.decomposer.DistributedLanczosSolver = svd : Lanczos Singular
Value Decomposition
-org.apache.mahout.math.hadoop.decomposer.EigenVerificationJob = cleansvd : Cleanup and verification
of SVD output
-org.apache.mahout.math.hadoop.similarity.cooccurrence.RowSimilarityJob = rowsimilarity :
Compute the pairwise similarities of the rows of a matrix
-org.apache.mahout.math.hadoop.similarity.VectorDistanceSimilarityJob =  vecdist : Compute
the distances between a set of Vectors (or Cluster or Canopy, they must fit in memory) and
a list of Vectors
-org.apache.mahout.cf.taste.hadoop.similarity.item.ItemSimilarityJob = itemsimilarity : Compute
the item-item-similarities for item-based collaborative filtering
-org.apache.mahout.cf.taste.hadoop.item.RecommenderJob = recommenditembased : Compute recommendations
using item-based collaborative filtering
 org.apache.mahout.classifier.sgd.TrainLogistic = trainlogistic : Train a logistic regression
using stochastic gradient descent
 org.apache.mahout.classifier.sgd.RunLogistic = runlogistic : Run a logistic regression model
against CSV data
 org.apache.mahout.classifier.sgd.PrintResourceOrFile = cat : Print a file or resource as
the logistic regression models would see it
 org.apache.mahout.classifier.sgd.TrainAdaptiveLogistic = trainAdaptiveLogistic : Train an
AdaptivelogisticRegression model
 org.apache.mahout.classifier.sgd.ValidateAdaptiveLogistic = validateAdaptiveLogistic : Validate
an AdaptivelogisticRegression model against hold-out data set
 org.apache.mahout.classifier.sgd.RunAdaptiveLogistic = runAdaptiveLogistic : Score new production
data using a probably trained and validated AdaptivelogisticRegression model
-org.apache.mahout.classifier.bayes.WikipediaXmlSplitter = wikipediaXMLSplitter : Reads wikipedia
data and creates ch  
+org.apache.mahout.classifier.bayes.WikipediaXmlSplitter = wikipediaXMLSplitter : Reads wikipedia
data and creates ch
 org.apache.mahout.classifier.bayes.WikipediaDatasetCreatorDriver = wikipediaDataSetCreator
: Splits data set of wikipedia wrt feature like country
-org.apache.mahout.math.hadoop.stochasticsvd.SSVDCli = ssvd : Stochastic SVD
-org.apache.mahout.clustering.spectral.eigencuts.EigencutsDriver = eigencuts : Eigencuts spectral
clustering
-org.apache.mahout.clustering.spectral.kmeans.SpectralKMeansDriver = spectralkmeans : Spectral
k-means clustering 
-org.apache.mahout.cf.taste.hadoop.als.ParallelALSFactorizationJob = parallelALS : ALS-WR
factorization of a rating matrix
-org.apache.mahout.cf.taste.hadoop.als.RecommenderJob = recommendfactorized : Compute recommendations
using the factorization of a rating matrix
 org.apache.mahout.classifier.sequencelearning.hmm.BaumWelchTrainer = baumwelch : Baum-Welch
algorithm for unsupervised HMM training
 org.apache.mahout.classifier.sequencelearning.hmm.ViterbiEvaluator = viterbi : Viterbi decoding
of hidden states from given output states sequence
 org.apache.mahout.classifier.sequencelearning.hmm.RandomSequenceGenerator = hmmpredict :
Generate random sequence of observations by given HMM
-org.apache.mahout.utils.SplitInput = split : Split Input data into test and train sets
 org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob = trainnb : Train the
Vector-based Bayes classifier
 org.apache.mahout.classifier.naivebayes.test.TestNaiveBayesDriver = testnb : Test the Vector-based
Bayes classifier
 org.apache.mahout.classifier.ConfusionMatrixDumper = cmdump : Dump confusion matrix in HTML
or text formats
-org.apache.mahout.utils.MatrixDumper = matrixdump : Dump matrix in CSV format
+
+
+org.apache.mahout.cf.taste.hadoop.als.DatasetSplitter = splitDataset : split a rating dataset
into training and probe parts
+org.apache.mahout.cf.taste.hadoop.als.FactorizationEvaluator = evaluateFactorization : compute
RMSE and MAE of a rating matrix factorization against probes
+org.apache.mahout.cf.taste.hadoop.similarity.item.ItemSimilarityJob = itemsimilarity : Compute
the item-item-similarities for item-based collaborative filtering
+org.apache.mahout.cf.taste.hadoop.item.RecommenderJob = recommenditembased : Compute recommendations
using item-based collaborative filtering
+org.apache.mahout.cf.taste.hadoop.als.ParallelALSFactorizationJob = parallelALS : ALS-WR
factorization of a rating matrix
+org.apache.mahout.cf.taste.hadoop.als.RecommenderJob = recommendfactorized : Compute recommendations
using the factorization of a rating matrix
+



Mime
View raw message