kudu-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Todd Lipcon <t...@cloudera.com>
Subject Re: Performance Question
Date Wed, 15 Jun 2016 16:11:18 GMT
Awesome use case. One thing to keep in mind is that spark parallelism will
be limited by the number of tablets. So, you might want to split into 10 or
so buckets per node to get the best query throughput.

Usually if you run top on some machines while running the query you can see
if it is fully utilizing the cores.

Another known issue right now is that spark locality isn't working properly
on replicated tables so you will use a lot of network traffic. For a perf
test you might want to try a table with replication count 1
On Jun 15, 2016 5:26 PM, "Benjamin Kim" <bbuild11@gmail.com> wrote:

Hi Todd,

I did a simple test of our ad events. We stream using Spark Streaming
directly into HBase, and the Data Analysts/Scientists do some
insight/discovery work plus some reports generation. For the reports, we
use SQL, and the more deeper stuff, we use Spark. In Spark, our main data
currency store of choice is DataFrames.

The schema is around 83 columns wide where most are of the string data type.

"event_type", "timestamp", "event_valid", "event_subtype", "user_ip",
"user_id", "mappable_id",
"cookie_status", "profile_status", "user_status", "previous_timestamp",
"user_agent", "referer",
"host_domain", "uri", "request_elapsed", "browser_languages", "acamp_id",
"location_id", “pcamp_id",
"pdomain_id", "continent_code", "country", "region", "dma", "city", "zip",
"isp", "line_speed",
"gender", "year_of_birth", "behaviors_read", "behaviors_written",
"key_value_pairs", "acamp_candidates",
"tag_format", "optimizer_name", "optimizer_version", "optimizer_ip",
"pixel_id", “video_id",
"video_network_id", "video_time_watched", "video_percentage_watched",
"video_player_iframed", "video_player_in_view", "video_player_width",
"conversion_valid_sale", "conversion_sale_amount",
"conversion_commission_amount", "conversion_step",
"conversion_currency", "conversion_attribution", "conversion_offer_id",
"custom_info", "frequency",
"recency_seconds", "cost", "revenue", “optimizer_acamp_id",
"optimizer_creative_id", "optimizer_ecpm", "impression_id",
"user_profile_mapping_source", "latitude", "longitude", "area_code",
"gmt_offset", "in_dst",
"proxy_type", "mobile_carrier", "pop", "hostname", "profile_expires",
"timestamp_iso", "reference_id",
"identity_organization", "identity_method"

Most queries are like counts of how many users use what browser, how many
are unique users, etc. The part that scares most users is when it comes to
joining this data with other dimension/3rd party events tables because of
shear size of it.

We do what most companies do, similar to what I saw in earlier
presentations of Kudu. We dump data out of HBase into partitioned Parquet
tables to make query performance manageable.

I will coordinate with a data scientist today to do some tests. He is
working on identity matching/record linking of users from 2 domains: US and
Singapore, using probabilistic deduping algorithms. I will load the data
from ad events from both countries, and let him run his process against
this data in Kudu. I hope this will “wow” the team.


On Jun 15, 2016, at 12:47 AM, Todd Lipcon <todd@cloudera.com> wrote:

Hi Benjamin,

What workload are you using for benchmarks? Using spark or something more
custom? rdd or data frame or SQL, etc? Maybe you can share the schema and
some queries


On Jun 15, 2016 8:10 AM, "Benjamin Kim" <bbuild11@gmail.com> wrote:

> Hi Todd,
> Now that Kudu 0.9.0 is out. I have done some tests. Already, I am
> impressed. Compared to HBase, read and write performance are better. Write
> performance has the greatest improvement (> 4x), while read is > 1.5x.
> Albeit, these are only preliminary tests. Do you know of a way to really do
> some conclusive tests? I want to see if I can match your results on my 50
> node cluster.
> Thanks,
> Ben
> On May 30, 2016, at 10:33 AM, Todd Lipcon <todd@cloudera.com> wrote:
> On Sat, May 28, 2016 at 7:12 AM, Benjamin Kim <bbuild11@gmail.com> wrote:
>> Todd,
>> It sounds like Kudu can possibly top or match those numbers put out by
>> Aerospike. Do you have any performance statistics published or any
>> instructions as to measure them myself as good way to test? In addition,
>> this will be a test using Spark, so should I wait for Kudu version 0.9.0
>> where support will be built in?
> We don't have a lot of benchmarks published yet, especially on the write
> side. I've found that thorough cross-system benchmarks are very difficult
> to do fairly and accurately, and often times users end up misguided if they
> pay too much attention to them :) So, given a finite number of developers
> working on Kudu, I think we've tended to spend more time on the project
> itself and less time focusing on "competition". I'm sure there are use
> cases where Kudu will beat out Aerospike, and probably use cases where
> Aerospike will beat Kudu as well.
> From my perspective, it would be great if you can share some details of
> your workload, especially if there are some areas you're finding Kudu
> lacking. Maybe we can spot some easy code changes we could make to improve
> performance, or suggest a tuning variable you could change.
> -Todd
>> On May 27, 2016, at 9:19 PM, Todd Lipcon <todd@cloudera.com> wrote:
>> On Fri, May 27, 2016 at 8:20 PM, Benjamin Kim <bbuild11@gmail.com> wrote:
>>> Hi Mike,
>>> First of all, thanks for the link. It looks like an interesting read. I
>>> checked that Aerospike is currently at version, and in the article,
>>> they are evaluating version 3.5.4. The main thing that impressed me was
>>> their claim that they can beat Cassandra and HBase by 8x for writing and
>>> 25x for reading. Their big claim to fame is that Aerospike can write 1M
>>> records per second with only 50 nodes. I wanted to see if this is real.
>> 1M records per second on 50 nodes is pretty doable by Kudu as well,
>> depending on the size of your records and the insertion order. I've been
>> playing with a ~70 node cluster recently and seen 1M+ writes/second
>> sustained, and bursting above 4M. These are 1KB rows with 11 columns, and
>> with pretty old HDD-only nodes. I think newer flash-based nodes could do
>> better.
>>> To answer your questions, we have a DMP with user profiles with many
>>> attributes. We create segmentation information off of these attributes to
>>> classify them. Then, we can target advertising appropriately for our sales
>>> department. Much of the data processing is for applying models on all or if
>>> not most of every profile’s attributes to find similarities (nearest
>>> neighbor/clustering) over a large number of rows when batch processing or a
>>> small subset of rows for quick online scoring. So, our use case is a
>>> typical advanced analytics scenario. We have tried HBase, but it doesn’t
>>> work well for these types of analytics.
>>> I read, that Aerospike in the release notes, they did do many
>>> improvements for batch and scan operations.
>>> I wonder what your thoughts are for using Kudu for this.
>> Sounds like a good Kudu use case to me. I've heard great things about
>> Aerospike for the low latency random access portion, but I've also heard
>> that it's _very_ expensive, and not particularly suited to the columnar
>> scan workload. Lastly, I think the Apache license of Kudu is much more
>> appealing than the AGPL3 used by Aerospike. But, that's not really a direct
>> answer to the performance question :)
>>> Thanks,
>>> Ben
>>> On May 27, 2016, at 6:21 PM, Mike Percy <mpercy@cloudera.com> wrote:
>>> Have you considered whether you have a scan heavy or a random access
>>> heavy workload? Have you considered whether you always access / update a
>>> whole row vs only a partial row? Kudu is a column store so has some
>>> awesome performance characteristics when you are doing a lot of scanning of
>>> just a couple of columns.
>>> I don't know the answer to your question but if your concern is
>>> performance then I would be interested in seeing comparisons from a perf
>>> perspective on certain workloads.
>>> Finally, a year ago Aerospike did quite poorly in a Jepsen test:
>>> https://aphyr.com/posts/324-jepsen-aerospike
>>> I wonder if they have addressed any of those issues.
>>> Mike
>>> On Friday, May 27, 2016, Benjamin Kim <bbuild11@gmail.com> wrote:
>>>> I am just curious. How will Kudu compare with Aerospike (
>>>> http://www.aerospike.com)? I went to a Spark Roadshow and found out
>>>> about this piece of software. It appears to fit our use case perfectly
>>>> since we are an ad-tech company trying to leverage our user profiles data.
>>>> Plus, it already has a Spark connector and has a SQL-like client. The
>>>> tables can be accessed using Spark SQL DataFrames and, also, made into SQL
>>>> tables for direct use with Spark SQL ODBC/JDBC Thriftserver. I see from the
>>>> work done here http://gerrit.cloudera.org:8080/#/c/2992/ that the
>>>> Spark integration is well underway and, from the looks of it lately, almost
>>>> complete. I would prefer to use Kudu since we are already a Cloudera shop,
>>>> and Kudu is easy to deploy and configure using Cloudera Manager. I also
>>>> hope that some of Aerospike’s speed optimization techniques can make it
>>>> into Kudu in the future, if they have not been already thought of or
>>>> included.
>>>> Just some thoughts…
>>>> Cheers,
>>>> Ben
>>> --
>>> --
>>> Mike Percy
>>> Software Engineer, Cloudera
>> --
>> Todd Lipcon
>> Software Engineer, Cloudera
> --
> Todd Lipcon
> Software Engineer, Cloudera

View raw message