kafka-jira mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Andreas Schroeder (JIRA)" <j...@apache.org>
Subject [jira] [Commented] (KAFKA-6269) KTable state restore fails after rebalance
Date Thu, 30 Nov 2017 17:17:00 GMT

    [ https://issues.apache.org/jira/browse/KAFKA-6269?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16272972#comment-16272972
] 

Andreas Schroeder commented on KAFKA-6269:
------------------------------------------

[~guozhang] it's okay for my team to wait or the 1.0.1 release. Until then, we'll stick to
the 0.11.0.1 version we are currently using. The reason to migrate to 1.0.0 was that we are
experiencing some unfair task assignment across our stream processor nodes, which leads to
some nodes crashing (and immediately being recreated). So our current system runs and we can
wait for 1.0.1 Thanks however for giving suggestions on how to proceed! I'll try [~mjsax]'s
suggestion on hiding the null value :) 

> KTable state restore fails after rebalance
> ------------------------------------------
>
>                 Key: KAFKA-6269
>                 URL: https://issues.apache.org/jira/browse/KAFKA-6269
>             Project: Kafka
>          Issue Type: Bug
>          Components: streams
>    Affects Versions: 1.0.0
>            Reporter: Andreas Schroeder
>            Priority: Blocker
>             Fix For: 1.1.0, 1.0.1
>
>
> I have the following kafka streams topology:
> entity-B -> map step -> entity-B-exists (with state store)
> entity-A   -> map step -> entity-A-exists (with state store)
> (entity-B-exists, entity-A-exists) -> outer join with state store.
> The topology building code looks like this (some data type, serde, valuemapper, and joiner
code omitted):
> {code}
> def buildTable[V](builder: StreamsBuilder,
>                           sourceTopic: String,
>                           existsTopic: String,
>                           valueSerde: Serde[V],
>                           valueMapper: ValueMapper[String, V]): KTable[String, V] = {
>   val stream: KStream[String, String] = builder.stream[String, String](sourceTopic)
>   val transformed: KStream[String, V] = stream.mapValues(valueMapper)
>   transformed.to(existsTopic, Produced.`with`(Serdes.String(), valueSerde))
>   val inMemoryStoreName = s"$existsTopic-persisted"
>   val materialized = Materialized.as(Stores.inMemoryKeyValueStore(inMemoryStoreName))
>       .withKeySerde(Serdes.String())
>       .withValueSerde(valueSerde)
>       .withLoggingDisabled()
>   builder.table(existsTopic, materialized)
> }
> val builder = new StreamsBuilder
> val mapToEmptyString: ValueMapper[String, String] = (value: String) => if (value !=
null) "" else null
> val entitiesB: KTable[String, EntityBInfo] =
>   buildTable(builder,
>              "entity-B",
>              "entity-B-exists",
>              EntityBInfoSerde,
>              ListingImagesToEntityBInfo)
> val entitiesA: KTable[String, String] =
>   buildTable(builder, "entity-A", "entity-A-exists", Serdes.String(), mapToEmptyString)
> val joiner: ValueJoiner[String, EntityBInfo, EntityDiff] = (a, b) => EntityDiff.fromJoin(a,
b)
> val materialized = Materialized.as(Stores.inMemoryKeyValueStore("entity-A-joined-with-entity-B"))
>   .withKeySerde(Serdes.String())
>   .withValueSerde(EntityDiffSerde)
>   .withLoggingEnabled(new java.util.HashMap[String, String]())
> val joined: KTable[String, EntityDiff] = entitiesA.outerJoin(entitiesB, joiner, materialized)
> {code}
> We run 4 processor machines with 30 stream threads each; each topic has 30 partitions
so that there is a total of 4 x 30 = 120 partitions to consume. The initial launch of the
processor works fine, but when killing one processor and letting him re-join the stream threads
leads to some faulty behaviour.
> Fist, the total number of assigned partitions over all processor machines is larger than
120 (sometimes 157, sometimes just 132), so the partition / task assignment seems to assign
the same job to different stream threads.
> The processor machines trying to re-join the consumer group fail constantly with the
error message of 'Detected a task that got migrated to another thread.' We gave the processor
half an hour to recover; usually, rebuilding the KTable states take around 20 seconds (with
Kafka 0.11.0.1).
> Here are the details of the errors we see:
> stream-thread [kafka-processor-6-StreamThread-9] Detected a task that got migrated to
another thread. This implies that this thread missed a rebalance and dropped out of the consumer
group. Trying to rejoin the consumer group now.
> {code}
> org.apache.kafka.streams.errors.TaskMigratedException: Log end offset of entity-B-exists-0
should not change while restoring: old end offset 4750539, current offset 4751388
> > StreamsTask taskId: 1_0
> > > 	ProcessorTopology:
> > 		KSTREAM-SOURCE-0000000008:
> > 			topics:		[entity-A-exists]
> > 			children:	[KTABLE-SOURCE-0000000009]
> > 		KTABLE-SOURCE-0000000009:
> > 			states:		[entity-A-exists-persisted]
> > 			children:	[KTABLE-JOINTHIS-0000000011]
> > 		KTABLE-JOINTHIS-0000000011:
> > 			states:		[entity-B-exists-persisted]
> > 			children:	[KTABLE-MERGE-0000000010]
> > 		KTABLE-MERGE-0000000010:
> > 			states:		[entity-A-joined-with-entity-B]
> > 		KSTREAM-SOURCE-0000000003:
> > 			topics:		[entity-B-exists]
> > 			children:	[KTABLE-SOURCE-0000000004]
> > 		KTABLE-SOURCE-0000000004:
> > 			states:		[entity-B-exists-persisted]
> > 			children:	[KTABLE-JOINOTHER-0000000012]
> > 		KTABLE-JOINOTHER-0000000012:
> > 			states:		[entity-A-exists-persisted]
> > 			children:	[KTABLE-MERGE-0000000010]
> > 		KTABLE-MERGE-0000000010:
> > 			states:		[entity-A-joined-with-entity-B]
> > Partitions [entity-A-exists-0, entity-B-exists-0]
> 	at org.apache.kafka.streams.processor.internals.StoreChangelogReader.restorePartition(StoreChangelogReader.java:242)
> 	at org.apache.kafka.streams.processor.internals.StoreChangelogReader.restore(StoreChangelogReader.java:83)
> 	at org.apache.kafka.streams.processor.internals.TaskManager.updateNewAndRestoringTasks(TaskManager.java:263)
> 	at org.apache.kafka.streams.processor.internals.StreamThread.runOnce(StreamThread.java:803)
> 	at org.apache.kafka.streams.processor.internals.StreamThread.runLoop(StreamThread.java:774)
> 	at org.apache.kafka.streams.processor.internals.StreamThread.run(StreamThread.java:744)
> {code}
> That one surprises me: the KTable state store entity-B-exists-persisted is rebuilt from
entity-B-exists that of course can change while the rebuild is happening, since it the topic
entity-B-exists is fed by another stream thread.
> Another one, very similar:
> {code}
> org.apache.kafka.streams.errors.TaskMigratedException: Log end offset of entity-A-exists-24
should not change while restoring: old end offset 6483978, current offset 6485108
> > StreamsTask taskId: 1_24
> > > 	ProcessorTopology:
> > 		KSTREAM-SOURCE-0000000008:
> > 			topics:		[entity-A-exists]
> > 			children:	[KTABLE-SOURCE-0000000009]
> > 		KTABLE-SOURCE-0000000009:
> > 			states:		[entity-A-exists-persisted]
> > 			children:	[KTABLE-JOINTHIS-0000000011]
> > 		KTABLE-JOINTHIS-0000000011:
> > 			states:		[entity-B-exists-persisted]
> > 			children:	[KTABLE-MERGE-0000000010]
> > 		KTABLE-MERGE-0000000010:
> > 			states:		[entity-A-joined-with-entity-B]
> > 		KSTREAM-SOURCE-0000000003:
> > 			topics:		[entity-B-exists]
> > 			children:	[KTABLE-SOURCE-0000000004]
> > 		KTABLE-SOURCE-0000000004:
> > 			states:		[entity-B-exists-persisted]
> > 			children:	[KTABLE-JOINOTHER-0000000012]
> > 		KTABLE-JOINOTHER-0000000012:
> > 			states:		[entity-A-exists-persisted]
> > 			children:	[KTABLE-MERGE-0000000010]
> > 		KTABLE-MERGE-0000000010:
> > 			states:		[entity-A-joined-with-entity-B]
> > Partitions [entity-A-exists-24, entity-B-exists-24]
> 	at org.apache.kafka.streams.processor.internals.StoreChangelogReader.restorePartition(StoreChangelogReader.java:242)
> 	at org.apache.kafka.streams.processor.internals.StoreChangelogReader.restore(StoreChangelogReader.java:83)
> 	at org.apache.kafka.streams.processor.internals.TaskManager.updateNewAndRestoringTasks(TaskManager.java:263)
> 	at org.apache.kafka.streams.processor.internals.StreamThread.runOnce(StreamThread.java:803)
> 	at org.apache.kafka.streams.processor.internals.StreamThread.runLoop(StreamThread.java:774)
> 	at org.apache.kafka.streams.processor.internals.StreamThread.run(StreamThread.java:744)
> {code}
> Again, the topic entity-A-exists is fed by another stream thread.
> We saw around 60000 such errors per minute, as the stream threads continuously try to
recover and fail.



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

Mime
View raw message