incubator-heraldry-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From ket...@apache.org
Subject svn commit: r463009 [3/4] - in /incubator/heraldry/libraries/csharp: ./ openid/ openid/trunk/ openid/trunk/Janrain.OpenId/ openid/trunk/Janrain.OpenId/Examples/ openid/trunk/Janrain.OpenId/Examples/Consumer/ openid/trunk/Janrain.OpenId/Examples/Consume...
Date Wed, 11 Oct 2006 22:24:54 GMT
Added: incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Math.Prime/ConfidenceFactor.cs
URL: http://svn.apache.org/viewvc/incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Math.Prime/ConfidenceFactor.cs?view=auto&rev=463009
==============================================================================
--- incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Math.Prime/ConfidenceFactor.cs (added)
+++ incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Math.Prime/ConfidenceFactor.cs Wed Oct 11 15:24:51 2006
@@ -0,0 +1,68 @@
+//
+// Mono.Math.Prime.ConfidenceFactor.cs - Confidence factor for prime generation
+//
+// Authors:
+//	Ben Maurer
+//
+// Copyright (c) 2003 Ben Maurer. All rights reserved
+//
+
+//
+// Permission is hereby granted, free of charge, to any person obtaining
+// a copy of this software and associated documentation files (the
+// "Software"), to deal in the Software without restriction, including
+// without limitation the rights to use, copy, modify, merge, publish,
+// distribute, sublicense, and/or sell copies of the Software, and to
+// permit persons to whom the Software is furnished to do so, subject to
+// the following conditions:
+// 
+// The above copyright notice and this permission notice shall be
+// included in all copies or substantial portions of the Software.
+// 
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+//
+
+using System;
+
+namespace Mono.Math.Prime {
+	/// <summary>
+	/// A factor of confidence.
+	/// </summary>
+#if INSIDE_CORLIB
+	internal
+#else
+	public
+#endif
+	enum ConfidenceFactor {
+		/// <summary>
+		/// Only suitable for development use, probability of failure may be greater than 1/2^20.
+		/// </summary>
+		ExtraLow,
+		/// <summary>
+		/// Suitable only for transactions which do not require forward secrecy.  Probability of failure about 1/2^40
+		/// </summary>
+		Low,
+		/// <summary>
+		/// Designed for production use. Probability of failure about 1/2^80.
+		/// </summary>
+		Medium,
+		/// <summary>
+		/// Suitable for sensitive data. Probability of failure about 1/2^160.
+		/// </summary>
+		High,
+		/// <summary>
+		/// Use only if you have lots of time! Probability of failure about 1/2^320.
+		/// </summary>
+		ExtraHigh,
+		/// <summary>
+		/// Only use methods which generate provable primes. Not yet implemented.
+		/// </summary>
+		Provable
+	}
+}

Added: incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Math.Prime/PrimalityTests.cs
URL: http://svn.apache.org/viewvc/incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Math.Prime/PrimalityTests.cs?view=auto&rev=463009
==============================================================================
--- incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Math.Prime/PrimalityTests.cs (added)
+++ incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Math.Prime/PrimalityTests.cs Wed Oct 11 15:24:51 2006
@@ -0,0 +1,225 @@
+//
+// Mono.Math.Prime.PrimalityTests.cs - Test for primality
+//
+// Authors:
+//	Ben Maurer
+//
+// Copyright (c) 2003 Ben Maurer. All rights reserved
+//
+
+//
+// Permission is hereby granted, free of charge, to any person obtaining
+// a copy of this software and associated documentation files (the
+// "Software"), to deal in the Software without restriction, including
+// without limitation the rights to use, copy, modify, merge, publish,
+// distribute, sublicense, and/or sell copies of the Software, and to
+// permit persons to whom the Software is furnished to do so, subject to
+// the following conditions:
+// 
+// The above copyright notice and this permission notice shall be
+// included in all copies or substantial portions of the Software.
+// 
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+//
+
+using System;
+
+namespace Mono.Math.Prime {
+
+#if INSIDE_CORLIB
+	internal
+#else
+	public
+#endif
+	delegate bool PrimalityTest (BigInteger bi, ConfidenceFactor confidence);
+
+#if INSIDE_CORLIB
+	internal
+#else
+	public
+#endif
+	sealed class PrimalityTests {
+
+		private PrimalityTests ()
+		{
+		}
+
+		#region SPP Test
+		
+		private static int GetSPPRounds (BigInteger bi, ConfidenceFactor confidence)
+		{
+			int bc = bi.BitCount();
+
+			int Rounds;
+
+			// Data from HAC, 4.49
+			if      (bc <= 100 ) Rounds = 27;
+			else if (bc <= 150 ) Rounds = 18;
+			else if (bc <= 200 ) Rounds = 15;
+			else if (bc <= 250 ) Rounds = 12;
+			else if (bc <= 300 ) Rounds =  9;
+			else if (bc <= 350 ) Rounds =  8;
+			else if (bc <= 400 ) Rounds =  7;
+			else if (bc <= 500 ) Rounds =  6;
+			else if (bc <= 600 ) Rounds =  5;
+			else if (bc <= 800 ) Rounds =  4;
+			else if (bc <= 1250) Rounds =  3;
+			else		     Rounds =  2;
+
+			switch (confidence) {
+				case ConfidenceFactor.ExtraLow:
+					Rounds >>= 2;
+					return Rounds != 0 ? Rounds : 1;
+				case ConfidenceFactor.Low:
+					Rounds >>= 1;
+					return Rounds != 0 ? Rounds : 1;
+				case ConfidenceFactor.Medium:
+					return Rounds;
+				case ConfidenceFactor.High:
+					return Rounds << 1;
+				case ConfidenceFactor.ExtraHigh:
+					return Rounds << 2;
+				case ConfidenceFactor.Provable:
+					throw new Exception ("The Rabin-Miller test can not be executed in a way such that its results are provable");
+				default:
+					throw new ArgumentOutOfRangeException ("confidence");
+			}
+		}
+
+		/// <summary>
+		///     Probabilistic prime test based on Rabin-Miller's test
+		/// </summary>
+		/// <param name="bi" type="BigInteger.BigInteger">
+		///     <para>
+		///         The number to test.
+		///     </para>
+		/// </param>
+		/// <param name="confidence" type="int">
+		///     <para>
+		///	The number of chosen bases. The test has at least a
+		///	1/4^confidence chance of falsely returning True.
+		///     </para>
+		/// </param>
+		/// <returns>
+		///	<para>
+		///		True if "this" is a strong pseudoprime to randomly chosen bases.
+		///	</para>
+		///	<para>
+		///		False if "this" is definitely NOT prime.
+		///	</para>
+		/// </returns>
+		public static bool RabinMillerTest (BigInteger bi, ConfidenceFactor confidence)
+		{
+			int Rounds = GetSPPRounds (bi, confidence);
+
+			// calculate values of s and t
+			BigInteger p_sub1 = bi - 1;
+			int s = p_sub1.LowestSetBit ();
+
+			BigInteger t = p_sub1 >> s;
+
+			int bits = bi.BitCount ();
+			BigInteger a = null;
+			BigInteger.ModulusRing mr = new BigInteger.ModulusRing (bi);
+			
+			// Applying optimization from HAC section 4.50 (base == 2)
+			// not a really random base but an interesting (and speedy) one
+			BigInteger b = mr.Pow (2, t);
+			if (b != 1) {
+				bool result = false;
+				for (int j=0; j < s; j++) {
+					if (b == p_sub1) {         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
+						result = true;
+						break;
+					}
+
+					b = (b * b) % bi;
+				}
+				if (!result)
+					return false;
+			}
+
+			// still here ? start at round 1 (round 0 was a == 2)
+			for (int round = 1; round < Rounds; round++) {
+				while (true) {		           // generate a < n
+					a = BigInteger.GenerateRandom (bits);
+
+					// make sure "a" is not 0 (and not 2 as we have already tested that)
+					if (a > 2 && a < bi)
+						break;
+				}
+
+				if (a.GCD (bi) != 1)
+					return false;
+
+				b = mr.Pow (a, t);
+
+				if (b == 1)
+					continue;              // a^t mod p = 1
+
+				bool result = false;
+				for (int j = 0; j < s; j++) {
+
+					if (b == p_sub1) {         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
+						result = true;
+						break;
+					}
+
+					b = (b * b) % bi;
+				}
+
+				if (!result)
+					return false;
+			}
+			return true;
+		}
+
+		public static bool SmallPrimeSppTest (BigInteger bi, ConfidenceFactor confidence)
+		{
+			int Rounds = GetSPPRounds (bi, confidence);
+
+			// calculate values of s and t
+			BigInteger p_sub1 = bi - 1;
+			int s = p_sub1.LowestSetBit ();
+
+			BigInteger t = p_sub1 >> s;
+
+
+			BigInteger.ModulusRing mr = new BigInteger.ModulusRing (bi);
+
+			for (int round = 0; round < Rounds; round++) {
+
+				BigInteger b = mr.Pow (BigInteger.smallPrimes [round], t);
+
+				if (b == 1) continue;              // a^t mod p = 1
+
+				bool result = false;
+				for (int j = 0; j < s; j++) {
+
+					if (b == p_sub1) {         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
+						result = true;
+						break;
+					}
+
+					b = (b * b) % bi;
+				}
+
+				if (result == false)
+					return false;
+			}
+			return true;
+		}
+
+		#endregion
+
+		// TODO: Implement the Lucus test
+		// TODO: Implement other new primality tests
+		// TODO: Implement primality proving
+	}
+}

Added: incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Math/BigInteger.cs
URL: http://svn.apache.org/viewvc/incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Math/BigInteger.cs?view=auto&rev=463009
==============================================================================
--- incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Math/BigInteger.cs (added)
+++ incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Math/BigInteger.cs Wed Oct 11 15:24:51 2006
@@ -0,0 +1,2421 @@
+//
+// BigInteger.cs - Big Integer implementation
+//
+// Authors:
+//	Ben Maurer
+//	Chew Keong TAN
+//	Sebastien Pouliot <sebastien@ximian.com>
+//	Pieter Philippaerts <Pieter@mentalis.org>
+//
+// Copyright (c) 2003 Ben Maurer
+// All rights reserved
+//
+// Copyright (c) 2002 Chew Keong TAN
+// All rights reserved.
+//
+// Copyright (C) 2004 Novell, Inc (http://www.novell.com)
+//
+// Permission is hereby granted, free of charge, to any person obtaining
+// a copy of this software and associated documentation files (the
+// "Software"), to deal in the Software without restriction, including
+// without limitation the rights to use, copy, modify, merge, publish,
+// distribute, sublicense, and/or sell copies of the Software, and to
+// permit persons to whom the Software is furnished to do so, subject to
+// the following conditions:
+// 
+// The above copyright notice and this permission notice shall be
+// included in all copies or substantial portions of the Software.
+// 
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+//
+
+using System;
+using System.Security.Cryptography;
+using Mono.Math.Prime.Generator;
+using Mono.Math.Prime;
+
+namespace Mono.Math {
+
+#if INSIDE_CORLIB
+	internal
+#else
+	public
+#endif
+	class BigInteger {
+
+		#region Data Storage
+
+		/// <summary>
+		/// The Length of this BigInteger
+		/// </summary>
+		uint length = 1;
+
+		/// <summary>
+		/// The data for this BigInteger
+		/// </summary>
+		uint [] data;
+
+		#endregion
+
+		#region Constants
+
+		/// <summary>
+		/// Default length of a BigInteger in bytes
+		/// </summary>
+		const uint DEFAULT_LEN = 20;
+
+		/// <summary>
+		///		Table of primes below 2000.
+		/// </summary>
+		/// <remarks>
+		///		<para>
+		///		This table was generated using Mathematica 4.1 using the following function:
+		///		</para>
+		///		<para>
+		///			<code>
+		///			PrimeTable [x_] := Prime [Range [1, PrimePi [x]]]
+		///			PrimeTable [6000]
+		///			</code>
+		///		</para>
+		/// </remarks>
+		internal static readonly uint [] smallPrimes = {
+			2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
+			73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
+			157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233,
+			239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
+			331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419,
+			421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503,
+			509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607,
+			613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701,
+			709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811,
+			821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
+			919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,
+
+			1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087,
+			1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181,
+			1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279,
+			1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373,
+			1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471,
+			1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559,
+			1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637,
+			1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747,
+			1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867,
+			1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973,
+			1979, 1987, 1993, 1997, 1999, 
+		
+			2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089,
+			2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207,
+			2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297,
+			2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389,
+			2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503,
+			2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621,
+			2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707,
+			2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797,
+			2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903,
+			2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999,
+			
+			3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109,
+			3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221,
+			3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329,
+			3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449,
+			3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539,
+			3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631,
+			3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733,
+			3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851,
+			3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943,
+			3947, 3967, 3989,
+			
+			4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091,
+			4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211,
+			4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289,
+			4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423,
+			4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523,
+			4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649,
+			4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759,
+			4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889,
+			4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987,
+			4993, 4999,
+			
+			5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101,
+			5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 
+			5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351,
+			5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449,
+			5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563,
+			5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669,
+			5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791,
+			5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869,
+			5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987
+		};
+
+		public enum Sign : int {
+			Negative = -1,
+			Zero = 0,
+			Positive = 1
+		};
+
+		#region Exception Messages
+		const string WouldReturnNegVal = "Operation would return a negative value";
+		#endregion
+
+		#endregion
+
+		#region Constructors
+
+		public BigInteger ()
+		{
+			data = new uint [DEFAULT_LEN];
+			this.length = DEFAULT_LEN;
+		}
+
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif          
+		public BigInteger (Sign sign, uint len) 
+		{
+			this.data = new uint [len];
+			this.length = len;
+		}
+
+		public BigInteger (BigInteger bi)
+		{
+			this.data = (uint [])bi.data.Clone ();
+			this.length = bi.length;
+		}
+
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif       
+		public BigInteger (BigInteger bi, uint len)
+		{
+
+			this.data = new uint [len];
+
+			for (uint i = 0; i < bi.length; i++)
+				this.data [i] = bi.data [i];
+
+			this.length = bi.length;
+		}
+
+		#endregion
+
+		#region Conversions
+		
+		public BigInteger (byte [] inData)
+		{
+			length = (uint)inData.Length >> 2;
+			int leftOver = inData.Length & 0x3;
+
+			// length not multiples of 4
+			if (leftOver != 0) length++;
+
+			data = new uint [length];
+
+			for (int i = inData.Length - 1, j = 0; i >= 3; i -= 4, j++) {
+				data [j] = (uint)(
+					(inData [i-3] << (3*8)) |
+					(inData [i-2] << (2*8)) |
+					(inData [i-1] << (1*8)) |
+					(inData [i])
+					);
+			}
+
+			switch (leftOver) {
+			case 1: data [length-1] = (uint)inData [0]; break;
+			case 2: data [length-1] = (uint)((inData [0] << 8) | inData [1]); break;
+			case 3: data [length-1] = (uint)((inData [0] << 16) | (inData [1] << 8) | inData [2]); break;
+			}
+
+			this.Normalize ();
+		}
+
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif 
+		public BigInteger (uint [] inData)
+		{
+			length = (uint)inData.Length;
+
+			data = new uint [length];
+
+			for (int i = (int)length - 1, j = 0; i >= 0; i--, j++)
+				data [j] = inData [i];
+
+			this.Normalize ();
+		}
+
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif 
+		public BigInteger (uint ui)
+		{
+			data = new uint [] {ui};
+		}
+
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif 
+		public BigInteger (ulong ul)
+		{
+			data = new uint [2] { (uint)ul, (uint)(ul >> 32)};
+			length = 2;
+
+			this.Normalize ();
+		}
+
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif 
+		public static implicit operator BigInteger (uint value)
+		{
+			return (new BigInteger (value));
+		}
+
+		public static implicit operator BigInteger (int value)
+		{
+			if (value < 0) throw new ArgumentOutOfRangeException ("value");
+			return (new BigInteger ((uint)value));
+		}
+
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif 
+		public static implicit operator BigInteger (ulong value)
+		{
+			return (new BigInteger (value));
+		}
+
+		/* This is the BigInteger.Parse method I use. This method works
+		because BigInteger.ToString returns the input I gave to Parse. */
+		public static BigInteger Parse (string number) 
+		{
+			if (number == null)
+				throw new ArgumentNullException ("number");
+
+			int i = 0, len = number.Length;
+			char c;
+			bool digits_seen = false;
+			BigInteger val = new BigInteger (0);
+			if (number [i] == '+') {
+				i++;
+			} 
+			else if (number [i] == '-') {
+				throw new FormatException (WouldReturnNegVal);
+			}
+
+			for (; i < len; i++) {
+				c = number [i];
+				if (c == '\0') {
+					i = len;
+					continue;
+				}
+				if (c >= '0' && c <= '9') {
+					val = val * 10 + (c - '0');
+					digits_seen = true;
+				} 
+				else {
+					if (Char.IsWhiteSpace (c)) {
+						for (i++; i < len; i++) {
+							if (!Char.IsWhiteSpace (number [i]))
+								throw new FormatException ();
+						}
+						break;
+					} 
+					else
+						throw new FormatException ();
+				}
+			}
+			if (!digits_seen)
+				throw new FormatException ();
+			return val;
+		}
+
+		#endregion
+
+		#region Operators
+
+		public static BigInteger operator + (BigInteger bi1, BigInteger bi2)
+		{
+			if (bi1 == 0)
+				return new BigInteger (bi2);
+			else if (bi2 == 0)
+				return new BigInteger (bi1);
+			else
+				return Kernel.AddSameSign (bi1, bi2);
+		}
+
+		public static BigInteger operator - (BigInteger bi1, BigInteger bi2)
+		{
+			if (bi2 == 0)
+				return new BigInteger (bi1);
+
+			if (bi1 == 0)
+				throw new ArithmeticException (WouldReturnNegVal);
+
+			switch (Kernel.Compare (bi1, bi2)) {
+
+				case Sign.Zero:
+					return 0;
+
+				case Sign.Positive:
+					return Kernel.Subtract (bi1, bi2);
+
+				case Sign.Negative:
+					throw new ArithmeticException (WouldReturnNegVal);
+				default:
+					throw new Exception ();
+			}
+		}
+
+		public static int operator % (BigInteger bi, int i)
+		{
+			if (i > 0)
+				return (int)Kernel.DwordMod (bi, (uint)i);
+			else
+				return -(int)Kernel.DwordMod (bi, (uint)-i);
+		}
+
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif 
+		public static uint operator % (BigInteger bi, uint ui)
+		{
+			return Kernel.DwordMod (bi, (uint)ui);
+		}
+
+		public static BigInteger operator % (BigInteger bi1, BigInteger bi2)
+		{
+			return Kernel.multiByteDivide (bi1, bi2)[1];
+		}
+
+		public static BigInteger operator / (BigInteger bi, int i)
+		{
+			if (i > 0)
+				return Kernel.DwordDiv (bi, (uint)i);
+
+			throw new ArithmeticException (WouldReturnNegVal);
+		}
+
+		public static BigInteger operator / (BigInteger bi1, BigInteger bi2)
+		{
+			return Kernel.multiByteDivide (bi1, bi2)[0];
+		}
+
+		public static BigInteger operator * (BigInteger bi1, BigInteger bi2)
+		{
+			if (bi1 == 0 || bi2 == 0) return 0;
+
+			//
+			// Validate pointers
+			//
+			if (bi1.data.Length < bi1.length) throw new IndexOutOfRangeException ("bi1 out of range");
+			if (bi2.data.Length < bi2.length) throw new IndexOutOfRangeException ("bi2 out of range");
+
+			BigInteger ret = new BigInteger (Sign.Positive, bi1.length + bi2.length);
+
+			Kernel.Multiply (bi1.data, 0, bi1.length, bi2.data, 0, bi2.length, ret.data, 0);
+
+			ret.Normalize ();
+			return ret;
+		}
+
+		public static BigInteger operator * (BigInteger bi, int i)
+		{
+			if (i < 0) throw new ArithmeticException (WouldReturnNegVal);
+			if (i == 0) return 0;
+			if (i == 1) return new BigInteger (bi);
+
+			return Kernel.MultiplyByDword (bi, (uint)i);
+		}
+
+		public static BigInteger operator << (BigInteger bi1, int shiftVal)
+		{
+			return Kernel.LeftShift (bi1, shiftVal);
+		}
+
+		public static BigInteger operator >> (BigInteger bi1, int shiftVal)
+		{
+			return Kernel.RightShift (bi1, shiftVal);
+		}
+
+		#endregion
+
+		#region Friendly names for operators
+
+		// with names suggested by FxCop 1.30
+
+		public static BigInteger Add (BigInteger bi1, BigInteger bi2) 
+		{
+			return (bi1 + bi2);
+		}
+
+		public static BigInteger Subtract (BigInteger bi1, BigInteger bi2) 
+		{
+			return (bi1 - bi2);
+		}
+
+		public static int Modulus (BigInteger bi, int i) 
+		{
+			return (bi % i);
+		}
+
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif 
+		public static uint Modulus (BigInteger bi, uint ui) 
+		{
+			return (bi % ui);
+		}
+
+		public static BigInteger Modulus (BigInteger bi1, BigInteger bi2) 
+		{
+			return (bi1 % bi2);
+		}
+
+		public static BigInteger Divid (BigInteger bi, int i) 
+		{
+			return (bi / i);
+		}
+
+		public static BigInteger Divid (BigInteger bi1, BigInteger bi2) 
+		{
+			return (bi1 / bi2);
+		}
+
+		public static BigInteger Multiply (BigInteger bi1, BigInteger bi2) 
+		{
+			return (bi1 * bi2);
+		}
+
+		public static BigInteger Multiply (BigInteger bi, int i) 
+		{
+			return (bi * i);
+		}
+
+		#endregion
+
+		#region Random
+		private static RandomNumberGenerator rng;
+		private static RandomNumberGenerator Rng {
+			get {
+				if (rng == null)
+					rng = RandomNumberGenerator.Create ();
+				return rng;
+			}
+		}
+
+		/// <summary>
+		/// Generates a new, random BigInteger of the specified length.
+		/// </summary>
+		/// <param name="bits">The number of bits for the new number.</param>
+		/// <param name="rng">A random number generator to use to obtain the bits.</param>
+		/// <returns>A random number of the specified length.</returns>
+		public static BigInteger GenerateRandom (int bits, RandomNumberGenerator rng)
+		{
+			int dwords = bits >> 5;
+			int remBits = bits & 0x1F;
+
+			if (remBits != 0)
+				dwords++;
+
+			BigInteger ret = new BigInteger (Sign.Positive, (uint)dwords + 1);
+			byte [] random = new byte [dwords << 2];
+
+			rng.GetBytes (random);
+			Buffer.BlockCopy (random, 0, ret.data, 0, (int)dwords << 2);
+
+			if (remBits != 0) {
+				uint mask = (uint)(0x01 << (remBits-1));
+				ret.data [dwords-1] |= mask;
+
+				mask = (uint)(0xFFFFFFFF >> (32 - remBits));
+				ret.data [dwords-1] &= mask;
+			}
+			else
+				ret.data [dwords-1] |= 0x80000000;
+
+			ret.Normalize ();
+			return ret;
+		}
+
+		/// <summary>
+		/// Generates a new, random BigInteger of the specified length using the default RNG crypto service provider.
+		/// </summary>
+		/// <param name="bits">The number of bits for the new number.</param>
+		/// <returns>A random number of the specified length.</returns>
+		public static BigInteger GenerateRandom (int bits)
+		{
+			return GenerateRandom (bits, Rng);
+		}
+
+		/// <summary>
+		/// Randomizes the bits in "this" from the specified RNG.
+		/// </summary>
+		/// <param name="rng">A RNG.</param>
+		public void Randomize (RandomNumberGenerator rng)
+		{
+			if (this == 0)
+				return;
+
+			int bits = this.BitCount ();
+			int dwords = bits >> 5;
+			int remBits = bits & 0x1F;
+
+			if (remBits != 0)
+				dwords++;
+
+			byte [] random = new byte [dwords << 2];
+
+			rng.GetBytes (random);
+			Buffer.BlockCopy (random, 0, data, 0, (int)dwords << 2);
+
+			if (remBits != 0) {
+				uint mask = (uint)(0x01 << (remBits-1));
+				data [dwords-1] |= mask;
+
+				mask = (uint)(0xFFFFFFFF >> (32 - remBits));
+				data [dwords-1] &= mask;
+			}
+
+			else
+				data [dwords-1] |= 0x80000000;
+
+			Normalize ();
+		}
+
+		/// <summary>
+		/// Randomizes the bits in "this" from the default RNG.
+		/// </summary>
+		public void Randomize ()
+		{
+			Randomize (Rng);
+		}
+
+		#endregion
+
+		#region Bitwise
+
+		public int BitCount ()
+		{
+			this.Normalize ();
+
+			uint value = data [length - 1];
+			uint mask = 0x80000000;
+			uint bits = 32;
+
+			while (bits > 0 && (value & mask) == 0) {
+				bits--;
+				mask >>= 1;
+			}
+			bits += ((length - 1) << 5);
+
+			return (int)bits;
+		}
+
+		/// <summary>
+		/// Tests if the specified bit is 1.
+		/// </summary>
+		/// <param name="bitNum">The bit to test. The least significant bit is 0.</param>
+		/// <returns>True if bitNum is set to 1, else false.</returns>
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif 
+		public bool TestBit (uint bitNum)
+		{
+			uint bytePos = bitNum >> 5;             // divide by 32
+			byte bitPos = (byte)(bitNum & 0x1F);    // get the lowest 5 bits
+
+			uint mask = (uint)1 << bitPos;
+			return ((this.data [bytePos] & mask) != 0);
+		}
+
+		public bool TestBit (int bitNum)
+		{
+			if (bitNum < 0) throw new IndexOutOfRangeException ("bitNum out of range");
+
+			uint bytePos = (uint)bitNum >> 5;             // divide by 32
+			byte bitPos = (byte)(bitNum & 0x1F);    // get the lowest 5 bits
+
+			uint mask = (uint)1 << bitPos;
+			return ((this.data [bytePos] | mask) == this.data [bytePos]);
+		}
+
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif 
+		public void SetBit (uint bitNum)
+		{
+			SetBit (bitNum, true);
+		}
+
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif 
+		public void ClearBit (uint bitNum)
+		{
+			SetBit (bitNum, false);
+		}
+
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif 
+		public void SetBit (uint bitNum, bool value)
+		{
+			uint bytePos = bitNum >> 5;             // divide by 32
+
+			if (bytePos < this.length) {
+				uint mask = (uint)1 << (int)(bitNum & 0x1F);
+				if (value)
+					this.data [bytePos] |= mask;
+				else
+					this.data [bytePos] &= ~mask;
+			}
+		}
+
+		public int LowestSetBit ()
+		{
+			if (this == 0) return -1;
+			int i = 0;
+			while (!TestBit (i)) i++;
+			return i;
+		}
+
+		public byte[] GetBytes ()
+		{
+			if (this == 0) return new byte [1];
+
+			int numBits = BitCount ();
+			int numBytes = numBits >> 3;
+			if ((numBits & 0x7) != 0)
+				numBytes++;
+
+			byte [] result = new byte [numBytes];
+
+			int numBytesInWord = numBytes & 0x3;
+			if (numBytesInWord == 0) numBytesInWord = 4;
+
+			int pos = 0;
+			for (int i = (int)length - 1; i >= 0; i--) {
+				uint val = data [i];
+				for (int j = numBytesInWord - 1; j >= 0; j--) {
+					result [pos+j] = (byte)(val & 0xFF);
+					val >>= 8;
+				}
+				pos += numBytesInWord;
+				numBytesInWord = 4;
+			}
+			return result;
+		}
+
+		#endregion
+
+		#region Compare
+
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif 
+		public static bool operator == (BigInteger bi1, uint ui)
+		{
+			if (bi1.length != 1) bi1.Normalize ();
+			return bi1.length == 1 && bi1.data [0] == ui;
+		}
+
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif 
+		public static bool operator != (BigInteger bi1, uint ui)
+		{
+			if (bi1.length != 1) bi1.Normalize ();
+			return !(bi1.length == 1 && bi1.data [0] == ui);
+		}
+
+		public static bool operator == (BigInteger bi1, BigInteger bi2)
+		{
+			// we need to compare with null
+			if ((bi1 as object) == (bi2 as object))
+				return true;
+			if (null == bi1 || null == bi2)
+				return false;
+			return Kernel.Compare (bi1, bi2) == 0;
+		}
+
+		public static bool operator != (BigInteger bi1, BigInteger bi2)
+		{
+			// we need to compare with null
+			if ((bi1 as object) == (bi2 as object))
+				return false;
+			if (null == bi1 || null == bi2)
+				return true;
+			return Kernel.Compare (bi1, bi2) != 0;
+		}
+
+		public static bool operator > (BigInteger bi1, BigInteger bi2)
+		{
+			return Kernel.Compare (bi1, bi2) > 0;
+		}
+
+		public static bool operator < (BigInteger bi1, BigInteger bi2)
+		{
+			return Kernel.Compare (bi1, bi2) < 0;
+		}
+
+		public static bool operator >= (BigInteger bi1, BigInteger bi2)
+		{
+			return Kernel.Compare (bi1, bi2) >= 0;
+		}
+
+		public static bool operator <= (BigInteger bi1, BigInteger bi2)
+		{
+			return Kernel.Compare (bi1, bi2) <= 0;
+		}
+
+		public Sign Compare (BigInteger bi)
+		{
+			return Kernel.Compare (this, bi);
+		}
+
+		#endregion
+
+		#region Formatting
+
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif 
+		public string ToString (uint radix)
+		{
+			return ToString (radix, "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ");
+		}
+
+#if !INSIDE_CORLIB
+		[CLSCompliant (false)]
+#endif 
+		public string ToString (uint radix, string characterSet)
+		{
+			if (characterSet.Length < radix)
+				throw new ArgumentException ("charSet length less than radix", "characterSet");
+			if (radix == 1)
+				throw new ArgumentException ("There is no such thing as radix one notation", "radix");
+
+			if (this == 0) return "0";
+			if (this == 1) return "1";
+
+			string result = "";
+
+			BigInteger a = new BigInteger (this);
+
+			while (a != 0) {
+				uint rem = Kernel.SingleByteDivideInPlace (a, radix);
+				result = characterSet [(int) rem] + result;
+			}
+
+			return result;
+		}
+
+		#endregion
+
+		#region Misc
+
+		/// <summary>
+		///     Normalizes this by setting the length to the actual number of
+		///     uints used in data and by setting the sign to Sign.Zero if the
+		///     value of this is 0.
+		/// </summary>
+		private void Normalize ()
+		{
+			// Normalize length
+			while (length > 0 && data [length-1] == 0) length--;
+
+			// Check for zero
+			if (length == 0)
+				length++;
+		}
+
+		public void Clear () 
+		{
+			for (int i=0; i < length; i++)
+				data [i] = 0x00;
+		}
+
+		#endregion
+
+		#region Object Impl
+
+		public override int GetHashCode ()
+		{
+			uint val = 0;
+
+			for (uint i = 0; i < this.length; i++)
+				val ^= this.data [i];
+
+			return (int)val;
+		}
+
+		public override string ToString ()
+		{
+			return ToString (10);
+		}
+
+		public override bool Equals (object o)
+		{
+			if (o == null) return false;
+			if (o is int) return (int)o >= 0 && this == (uint)o;
+
+			return Kernel.Compare (this, (BigInteger)o) == 0;
+		}
+
+		#endregion
+
+		#region Number Theory
+
+		public BigInteger GCD (BigInteger bi)
+		{
+			return Kernel.gcd (this, bi);
+		}
+
+		public BigInteger ModInverse (BigInteger modulus)
+		{
+			return Kernel.modInverse (this, modulus);
+		}
+
+		public BigInteger ModPow (BigInteger exp, BigInteger n)
+		{
+			ModulusRing mr = new ModulusRing (n);
+			return mr.Pow (this, exp);
+		}
+		
+		#endregion
+
+		#region Prime Testing
+
+		public bool IsProbablePrime ()
+		{
+			if (this < smallPrimes [smallPrimes.Length - 1]) {
+				for (int p = 0; p < smallPrimes.Length; p++) {
+					if (this == smallPrimes [p])
+						return true;
+				}
+			}
+			else {
+				for (int p = 0; p < smallPrimes.Length; p++) {
+					if (this % smallPrimes [p] == 0)
+						return false;
+				}
+			}
+			return PrimalityTests.RabinMillerTest (this, Prime.ConfidenceFactor.Medium);
+		}
+
+		#endregion
+
+		#region Prime Number Generation
+
+		/// <summary>
+		/// Generates the smallest prime >= bi
+		/// </summary>
+		/// <param name="bi">A BigInteger</param>
+		/// <returns>The smallest prime >= bi. More mathematically, if bi is prime: bi, else Prime [PrimePi [bi] + 1].</returns>
+		public static BigInteger NextHighestPrime (BigInteger bi)
+		{
+			NextPrimeFinder npf = new NextPrimeFinder ();
+			return npf.GenerateNewPrime (0, bi);
+		}
+
+		public static BigInteger GeneratePseudoPrime (int bits)
+		{
+			SequentialSearchPrimeGeneratorBase sspg = new SequentialSearchPrimeGeneratorBase ();
+			return sspg.GenerateNewPrime (bits);
+		}
+
+		/// <summary>
+		/// Increments this by two
+		/// </summary>
+		public void Incr2 ()
+		{
+			int i = 0;
+
+			data [0] += 2;
+
+			// If there was no carry, nothing to do
+			if (data [0] < 2) {
+
+				// Account for the first carry
+				data [++i]++;
+
+				// Keep adding until no carry
+				while (data [i++] == 0x0)
+					data [i]++;
+
+				// See if we increased the data length
+				if (length == (uint)i)
+					length++;
+			}
+		}
+
+		#endregion
+
+#if INSIDE_CORLIB
+		internal
+#else
+		public
+#endif
+		sealed class ModulusRing {
+
+			BigInteger mod, constant;
+
+			public ModulusRing (BigInteger modulus)
+			{
+				this.mod = modulus;
+
+				// calculate constant = b^ (2k) / m
+				uint i = mod.length << 1;
+
+				constant = new BigInteger (Sign.Positive, i + 1);
+				constant.data [i] = 0x00000001;
+
+				constant = constant / mod;
+			}
+
+			public void BarrettReduction (BigInteger x)
+			{
+				BigInteger n = mod;
+				uint k = n.length,
+					kPlusOne = k+1,
+					kMinusOne = k-1;
+
+				// x < mod, so nothing to do.
+				if (x.length < k) return;
+
+				BigInteger q3;
+
+				//
+				// Validate pointers
+				//
+				if (x.data.Length < x.length) throw new IndexOutOfRangeException ("x out of range");
+
+				// q1 = x / b^ (k-1)
+				// q2 = q1 * constant
+				// q3 = q2 / b^ (k+1), Needs to be accessed with an offset of kPlusOne
+
+				// TODO: We should the method in HAC p 604 to do this (14.45)
+				q3 = new BigInteger (Sign.Positive, x.length - kMinusOne + constant.length);
+				Kernel.Multiply (x.data, kMinusOne, x.length - kMinusOne, constant.data, 0, constant.length, q3.data, 0);
+
+				// r1 = x mod b^ (k+1)
+				// i.e. keep the lowest (k+1) words
+
+				uint lengthToCopy = (x.length > kPlusOne) ? kPlusOne : x.length;
+
+				x.length = lengthToCopy;
+				x.Normalize ();
+
+				// r2 = (q3 * n) mod b^ (k+1)
+				// partial multiplication of q3 and n
+
+				BigInteger r2 = new BigInteger (Sign.Positive, kPlusOne);
+				Kernel.MultiplyMod2p32pmod (q3.data, (int)kPlusOne, (int)q3.length - (int)kPlusOne, n.data, 0, (int)n.length, r2.data, 0, (int)kPlusOne);
+
+				r2.Normalize ();
+
+				if (r2 <= x) {
+					Kernel.MinusEq (x, r2);
+				} else {
+					BigInteger val = new BigInteger (Sign.Positive, kPlusOne + 1);
+					val.data [kPlusOne] = 0x00000001;
+
+					Kernel.MinusEq (val, r2);
+					Kernel.PlusEq (x, val);
+				}
+
+				while (x >= n)
+					Kernel.MinusEq (x, n);
+			}
+
+			public BigInteger Multiply (BigInteger a, BigInteger b)
+			{
+				if (a == 0 || b == 0) return 0;
+
+				if (a.length >= mod.length << 1)
+					a %= mod;
+
+				if (b.length >= mod.length << 1)
+					b %= mod;
+
+				if (a.length >= mod.length)
+					BarrettReduction (a);
+
+				if (b.length >= mod.length)
+					BarrettReduction (b);
+
+				BigInteger ret = new BigInteger (a * b);
+				BarrettReduction (ret);
+
+				return ret;
+			}
+
+			public BigInteger Difference (BigInteger a, BigInteger b)
+			{
+				Sign cmp = Kernel.Compare (a, b);
+				BigInteger diff;
+
+				switch (cmp) {
+					case Sign.Zero:
+						return 0;
+					case Sign.Positive:
+						diff = a - b; break;
+					case Sign.Negative:
+						diff = b - a; break;
+					default:
+						throw new Exception ();
+				}
+
+				if (diff >= mod) {
+					if (diff.length >= mod.length << 1)
+						diff %= mod;
+					else
+						BarrettReduction (diff);
+				}
+				if (cmp == Sign.Negative)
+					diff = mod - diff;
+				return diff;
+			}
+
+			public BigInteger Pow (BigInteger b, BigInteger exp)
+			{
+				if ((mod.data [0] & 1) == 1) return OddPow (b, exp);
+				else return EvenPow (b, exp);
+			}
+			
+			public BigInteger EvenPow (BigInteger b, BigInteger exp)
+			{
+				BigInteger resultNum = new BigInteger ((BigInteger)1, mod.length << 1);
+				BigInteger tempNum = new BigInteger (b % mod, mod.length << 1);  // ensures (tempNum * tempNum) < b^ (2k)
+
+				uint totalBits = (uint)exp.BitCount ();
+
+				uint [] wkspace = new uint [mod.length << 1];
+
+				// perform squaring and multiply exponentiation
+				for (uint pos = 0; pos < totalBits; pos++) {
+					if (exp.TestBit (pos)) {
+
+						Array.Clear (wkspace, 0, wkspace.Length);
+						Kernel.Multiply (resultNum.data, 0, resultNum.length, tempNum.data, 0, tempNum.length, wkspace, 0);
+						resultNum.length += tempNum.length;
+						uint [] t = wkspace;
+						wkspace = resultNum.data;
+						resultNum.data = t;
+
+						BarrettReduction (resultNum);
+					}
+
+					Kernel.SquarePositive (tempNum, ref wkspace);
+					BarrettReduction (tempNum);
+
+					if (tempNum == 1) {
+						return resultNum;
+					}
+				}
+
+				return resultNum;
+			}
+
+			private BigInteger OddPow (BigInteger b, BigInteger exp)
+			{
+				BigInteger resultNum = new BigInteger (Montgomery.ToMont (1, mod), mod.length << 1);
+				BigInteger tempNum = new BigInteger (Montgomery.ToMont (b, mod), mod.length << 1);  // ensures (tempNum * tempNum) < b^ (2k)
+				uint mPrime = Montgomery.Inverse (mod.data [0]);
+				uint totalBits = (uint)exp.BitCount ();
+
+				uint [] wkspace = new uint [mod.length << 1];
+
+				// perform squaring and multiply exponentiation
+				for (uint pos = 0; pos < totalBits; pos++) {
+					if (exp.TestBit (pos)) {
+
+						Array.Clear (wkspace, 0, wkspace.Length);
+						Kernel.Multiply (resultNum.data, 0, resultNum.length, tempNum.data, 0, tempNum.length, wkspace, 0);
+						resultNum.length += tempNum.length;
+						uint [] t = wkspace;
+						wkspace = resultNum.data;
+						resultNum.data = t;
+
+						Montgomery.Reduce (resultNum, mod, mPrime);
+					}
+
+					Kernel.SquarePositive (tempNum, ref wkspace);
+					Montgomery.Reduce (tempNum, mod, mPrime);
+				}
+
+				Montgomery.Reduce (resultNum, mod, mPrime);
+				return resultNum;
+			}
+
+			#region Pow Small Base
+
+			// TODO: Make tests for this, not really needed b/c prime stuff
+			// checks it, but still would be nice
+#if !INSIDE_CORLIB
+                        [CLSCompliant (false)]
+#endif 
+			public BigInteger Pow (uint b, BigInteger exp)
+			{
+//				if (b != 2) {
+					if ((mod.data [0] & 1) == 1)
+						return OddPow (b, exp);
+					else
+						return EvenPow (b, exp);
+/* buggy in some cases (like the well tested primes)
+				} else {
+					if ((mod.data [0] & 1) == 1)
+						return OddModTwoPow (exp);
+					else 
+						return EvenModTwoPow (exp);
+				}*/
+			}
+
+			private unsafe BigInteger OddPow (uint b, BigInteger exp)
+			{
+				exp.Normalize ();
+				uint [] wkspace = new uint [mod.length << 1 + 1];
+
+				BigInteger resultNum = Montgomery.ToMont ((BigInteger)b, this.mod);
+				resultNum = new BigInteger (resultNum, mod.length << 1 +1);
+
+				uint mPrime = Montgomery.Inverse (mod.data [0]);
+
+				uint pos = (uint)exp.BitCount () - 2;
+
+				//
+				// We know that the first itr will make the val b
+				//
+
+				do {
+					//
+					// r = r ^ 2 % m
+					//
+					Kernel.SquarePositive (resultNum, ref wkspace);
+					resultNum = Montgomery.Reduce (resultNum, mod, mPrime);
+
+					if (exp.TestBit (pos)) {
+
+						//
+						// r = r * b % m
+						//
+
+						// TODO: Is Unsafe really speeding things up?
+						fixed (uint* u = resultNum.data) {
+
+							uint i = 0;
+							ulong mc = 0;
+
+							do {
+								mc += (ulong)u [i] * (ulong)b;
+								u [i] = (uint)mc;
+								mc >>= 32;
+							} while (++i < resultNum.length);
+
+							if (resultNum.length < mod.length) {
+								if (mc != 0) {
+									u [i] = (uint)mc;
+									resultNum.length++;
+									while (resultNum >= mod)
+										Kernel.MinusEq (resultNum, mod);
+								}
+							} else if (mc != 0) {
+
+								//
+								// First, we estimate the quotient by dividing
+								// the first part of each of the numbers. Then
+								// we correct this, if necessary, with a subtraction.
+								//
+
+								uint cc = (uint)mc;
+
+								// We would rather have this estimate overshoot,
+								// so we add one to the divisor
+								uint divEstimate;
+								if (mod.data [mod.length - 1] < UInt32.MaxValue) {
+									divEstimate = (uint) ((((ulong)cc << 32) | (ulong) u [i -1]) /
+										(mod.data [mod.length-1] + 1));
+								}
+								else {
+									// guess but don't divide by 0
+									divEstimate = (uint) ((((ulong)cc << 32) | (ulong) u [i -1]) /
+										(mod.data [mod.length-1]));
+								}
+
+								uint t;
+
+								i = 0;
+								mc = 0;
+								do {
+									mc += (ulong)mod.data [i] * (ulong)divEstimate;
+									t = u [i];
+									u [i] -= (uint)mc;
+									mc >>= 32;
+									if (u [i] > t) mc++;
+									i++;
+								} while (i < resultNum.length);
+								cc -= (uint)mc;
+
+								if (cc != 0) {
+
+									uint sc = 0, j = 0;
+									uint [] s = mod.data;
+									do {
+										uint a = s [j];
+										if (((a += sc) < sc) | ((u [j] -= a) > ~a)) sc = 1;
+										else sc = 0;
+										j++;
+									} while (j < resultNum.length);
+									cc -= sc;
+								}
+								while (resultNum >= mod)
+									Kernel.MinusEq (resultNum, mod);
+							} else {
+								while (resultNum >= mod)
+									Kernel.MinusEq (resultNum, mod);
+							}
+						}
+					}
+				} while (pos-- > 0);
+
+				resultNum = Montgomery.Reduce (resultNum, mod, mPrime);
+				return resultNum;
+
+			}
+			
+			private unsafe BigInteger EvenPow (uint b, BigInteger exp)
+			{
+				exp.Normalize ();
+				uint [] wkspace = new uint [mod.length << 1 + 1];
+				BigInteger resultNum = new BigInteger ((BigInteger)b, mod.length << 1 + 1);
+
+				uint pos = (uint)exp.BitCount () - 2;
+
+				//
+				// We know that the first itr will make the val b
+				//
+
+				do {
+					//
+					// r = r ^ 2 % m
+					//
+					Kernel.SquarePositive (resultNum, ref wkspace);
+					if (!(resultNum.length < mod.length))
+						BarrettReduction (resultNum);
+
+					if (exp.TestBit (pos)) {
+
+						//
+						// r = r * b % m
+						//
+
+						// TODO: Is Unsafe really speeding things up?
+						fixed (uint* u = resultNum.data) {
+
+							uint i = 0;
+							ulong mc = 0;
+
+							do {
+								mc += (ulong)u [i] * (ulong)b;
+								u [i] = (uint)mc;
+								mc >>= 32;
+							} while (++i < resultNum.length);
+
+							if (resultNum.length < mod.length) {
+								if (mc != 0) {
+									u [i] = (uint)mc;
+									resultNum.length++;
+									while (resultNum >= mod)
+										Kernel.MinusEq (resultNum, mod);
+								}
+							} else if (mc != 0) {
+
+								//
+								// First, we estimate the quotient by dividing
+								// the first part of each of the numbers. Then
+								// we correct this, if necessary, with a subtraction.
+								//
+
+								uint cc = (uint)mc;
+
+								// We would rather have this estimate overshoot,
+								// so we add one to the divisor
+								uint divEstimate = (uint) ((((ulong)cc << 32) | (ulong) u [i -1]) /
+									(mod.data [mod.length-1] + 1));
+
+								uint t;
+
+								i = 0;
+								mc = 0;
+								do {
+									mc += (ulong)mod.data [i] * (ulong)divEstimate;
+									t = u [i];
+									u [i] -= (uint)mc;
+									mc >>= 32;
+									if (u [i] > t) mc++;
+									i++;
+								} while (i < resultNum.length);
+								cc -= (uint)mc;
+
+								if (cc != 0) {
+
+									uint sc = 0, j = 0;
+									uint [] s = mod.data;
+									do {
+										uint a = s [j];
+										if (((a += sc) < sc) | ((u [j] -= a) > ~a)) sc = 1;
+										else sc = 0;
+										j++;
+									} while (j < resultNum.length);
+									cc -= sc;
+								}
+								while (resultNum >= mod)
+									Kernel.MinusEq (resultNum, mod);
+							} else {
+								while (resultNum >= mod)
+									Kernel.MinusEq (resultNum, mod);
+							}
+						}
+					}
+				} while (pos-- > 0);
+
+				return resultNum;
+			}
+
+/* known to be buggy in some cases
+			private unsafe BigInteger EvenModTwoPow (BigInteger exp)
+			{
+				exp.Normalize ();
+				uint [] wkspace = new uint [mod.length << 1 + 1];
+
+				BigInteger resultNum = new BigInteger (2, mod.length << 1 +1);
+
+				uint value = exp.data [exp.length - 1];
+				uint mask = 0x80000000;
+
+				// Find the first bit of the exponent
+				while ((value & mask) == 0)
+					mask >>= 1;
+
+				//
+				// We know that the first itr will make the val 2,
+				// so eat one bit of the exponent
+				//
+				mask >>= 1;
+
+				uint wPos = exp.length - 1;
+
+				do {
+					value = exp.data [wPos];
+					do {
+						Kernel.SquarePositive (resultNum, ref wkspace);
+						if (resultNum.length >= mod.length)
+							BarrettReduction (resultNum);
+
+						if ((value & mask) != 0) {
+							//
+							// resultNum = (resultNum * 2) % mod
+							//
+
+							fixed (uint* u = resultNum.data) {
+								//
+								// Double
+								//
+								uint* uu = u;
+								uint* uuE = u + resultNum.length;
+								uint x, carry = 0;
+								while (uu < uuE) {
+									x = *uu;
+									*uu = (x << 1) | carry;
+									carry = x >> (32 - 1);
+									uu++;
+								}
+
+								// subtraction inlined because we know it is square
+								if (carry != 0 || resultNum >= mod) {
+									uu = u;
+									uint c = 0;
+									uint [] s = mod.data;
+									uint i = 0;
+									do {
+										uint a = s [i];
+										if (((a += c) < c) | ((* (uu++) -= a) > ~a))
+											c = 1;
+										else
+											c = 0;
+										i++;
+									} while (uu < uuE);
+								}
+							}
+						}
+					} while ((mask >>= 1) > 0);
+					mask = 0x80000000;
+				} while (wPos-- > 0);
+
+				return resultNum;
+			}
+
+			private unsafe BigInteger OddModTwoPow (BigInteger exp)
+			{
+
+				uint [] wkspace = new uint [mod.length << 1 + 1];
+
+				BigInteger resultNum = Montgomery.ToMont ((BigInteger)2, this.mod);
+				resultNum = new BigInteger (resultNum, mod.length << 1 +1);
+
+				uint mPrime = Montgomery.Inverse (mod.data [0]);
+
+				//
+				// TODO: eat small bits, the ones we can do with no modular reduction
+				//
+				uint pos = (uint)exp.BitCount () - 2;
+
+				do {
+					Kernel.SquarePositive (resultNum, ref wkspace);
+					resultNum = Montgomery.Reduce (resultNum, mod, mPrime);
+
+					if (exp.TestBit (pos)) {
+						//
+						// resultNum = (resultNum * 2) % mod
+						//
+
+						fixed (uint* u = resultNum.data) {
+							//
+							// Double
+							//
+							uint* uu = u;
+							uint* uuE = u + resultNum.length;
+							uint x, carry = 0;
+							while (uu < uuE) {
+								x = *uu;
+								*uu = (x << 1) | carry;
+								carry = x >> (32 - 1);
+								uu++;
+							}
+
+							// subtraction inlined because we know it is square
+							if (carry != 0 || resultNum >= mod) {
+								fixed (uint* s = mod.data) {
+									uu = u;
+									uint c = 0;
+									uint* ss = s;
+									do {
+										uint a = *ss++;
+										if (((a += c) < c) | ((* (uu++) -= a) > ~a))
+											c = 1;
+										else
+											c = 0;
+									} while (uu < uuE);
+								}
+							}
+						}
+					}
+				} while (pos-- > 0);
+
+				resultNum = Montgomery.Reduce (resultNum, mod, mPrime);
+				return resultNum;
+			}
+*/			
+			#endregion
+		}
+
+		internal sealed class Montgomery {
+
+			private Montgomery () 
+			{
+			}
+
+			public static uint Inverse (uint n)
+			{
+				uint y = n, z;
+
+				while ((z = n * y) != 1)
+					y *= 2 - z;
+
+				return (uint)-y;
+			}
+
+			public static BigInteger ToMont (BigInteger n, BigInteger m)
+			{
+				n.Normalize (); m.Normalize ();
+
+				n <<= (int)m.length * 32;
+				n %= m;
+				return n;
+			}
+
+			public static unsafe BigInteger Reduce (BigInteger n, BigInteger m, uint mPrime)
+			{
+				BigInteger A = n;
+				fixed (uint* a = A.data, mm = m.data) {
+					for (uint i = 0; i < m.length; i++) {
+						// The mod here is taken care of by the CPU,
+						// since the multiply will overflow.
+						uint u_i = a [0] * mPrime /* % 2^32 */;
+
+						//
+						// A += u_i * m;
+						// A >>= 32
+						//
+
+						// mP = Position in mod
+						// aSP = the source of bits from a
+						// aDP = destination for bits
+						uint* mP = mm, aSP = a, aDP = a;
+
+						ulong c = (ulong)u_i * ((ulong)*(mP++)) + *(aSP++);
+						c >>= 32;
+						uint j = 1;
+
+						// Multiply and add
+						for (; j < m.length; j++) {
+							c += (ulong)u_i * (ulong)*(mP++) + *(aSP++);
+							*(aDP++) = (uint)c;
+							c >>= 32;
+						}
+
+						// Account for carry
+						// TODO: use a better loop here, we dont need the ulong stuff
+						for (; j < A.length; j++) {
+							c += *(aSP++);
+							*(aDP++) = (uint)c;
+							c >>= 32;
+							if (c == 0) {j++; break;}
+						}
+						// Copy the rest
+						for (; j < A.length; j++) {
+							*(aDP++) = *(aSP++);
+						}
+
+						*(aDP++) = (uint)c;
+					}
+
+					while (A.length > 1 && a [A.length-1] == 0) A.length--;
+
+				}
+				if (A >= m) Kernel.MinusEq (A, m);
+
+				return A;
+			}
+#if _NOT_USED_
+			public static BigInteger Reduce (BigInteger n, BigInteger m)
+			{
+				return Reduce (n, m, Inverse (m.data [0]));
+			}
+#endif
+		}
+
+		/// <summary>
+		/// Low level functions for the BigInteger
+		/// </summary>
+		private sealed class Kernel {
+
+			#region Addition/Subtraction
+
+			/// <summary>
+			/// Adds two numbers with the same sign.
+			/// </summary>
+			/// <param name="bi1">A BigInteger</param>
+			/// <param name="bi2">A BigInteger</param>
+			/// <returns>bi1 + bi2</returns>
+			public static BigInteger AddSameSign (BigInteger bi1, BigInteger bi2)
+			{
+				uint [] x, y;
+				uint yMax, xMax, i = 0;
+
+				// x should be bigger
+				if (bi1.length < bi2.length) {
+					x = bi2.data;
+					xMax = bi2.length;
+					y = bi1.data;
+					yMax = bi1.length;
+				} else {
+					x = bi1.data;
+					xMax = bi1.length;
+					y = bi2.data;
+					yMax = bi2.length;
+				}
+				
+				BigInteger result = new BigInteger (Sign.Positive, xMax + 1);
+
+				uint [] r = result.data;
+
+				ulong sum = 0;
+
+				// Add common parts of both numbers
+				do {
+					sum = ((ulong)x [i]) + ((ulong)y [i]) + sum;
+					r [i] = (uint)sum;
+					sum >>= 32;
+				} while (++i < yMax);
+
+				// Copy remainder of longer number while carry propagation is required
+				bool carry = (sum != 0);
+
+				if (carry) {
+
+					if (i < xMax) {
+						do
+							carry = ((r [i] = x [i] + 1) == 0);
+						while (++i < xMax && carry);
+					}
+
+					if (carry) {
+						r [i] = 1;
+						result.length = ++i;
+						return result;
+					}
+				}
+
+				// Copy the rest
+				if (i < xMax) {
+					do
+						r [i] = x [i];
+					while (++i < xMax);
+				}
+
+				result.Normalize ();
+				return result;
+			}
+
+			public static BigInteger Subtract (BigInteger big, BigInteger small)
+			{
+				BigInteger result = new BigInteger (Sign.Positive, big.length);
+
+				uint [] r = result.data, b = big.data, s = small.data;
+				uint i = 0, c = 0;
+
+				do {
+
+					uint x = s [i];
+					if (((x += c) < c) | ((r [i] = b [i] - x) > ~x))
+						c = 1;
+					else
+						c = 0;
+
+				} while (++i < small.length);
+
+				if (i == big.length) goto fixup;
+
+				if (c == 1) {
+					do
+						r [i] = b [i] - 1;
+					while (b [i++] == 0 && i < big.length);
+
+					if (i == big.length) goto fixup;
+				}
+
+				do
+					r [i] = b [i];
+				while (++i < big.length);
+
+				fixup:
+
+					result.Normalize ();
+				return result;
+			}
+
+			public static void MinusEq (BigInteger big, BigInteger small)
+			{
+				uint [] b = big.data, s = small.data;
+				uint i = 0, c = 0;
+
+				do {
+					uint x = s [i];
+					if (((x += c) < c) | ((b [i] -= x) > ~x))
+						c = 1;
+					else
+						c = 0;
+				} while (++i < small.length);
+
+				if (i == big.length) goto fixup;
+
+				if (c == 1) {
+					do
+						b [i]--;
+					while (b [i++] == 0 && i < big.length);
+				}
+
+				fixup:
+
+					// Normalize length
+					while (big.length > 0 && big.data [big.length-1] == 0) big.length--;
+
+				// Check for zero
+				if (big.length == 0)
+					big.length++;
+
+			}
+
+			public static void PlusEq (BigInteger bi1, BigInteger bi2)
+			{
+				uint [] x, y;
+				uint yMax, xMax, i = 0;
+				bool flag = false;
+
+				// x should be bigger
+				if (bi1.length < bi2.length){
+					flag = true;
+					x = bi2.data;
+					xMax = bi2.length;
+					y = bi1.data;
+					yMax = bi1.length;
+				} else {
+					x = bi1.data;
+					xMax = bi1.length;
+					y = bi2.data;
+					yMax = bi2.length;
+				}
+
+				uint [] r = bi1.data;
+
+				ulong sum = 0;
+
+				// Add common parts of both numbers
+				do {
+					sum += ((ulong)x [i]) + ((ulong)y [i]);
+					r [i] = (uint)sum;
+					sum >>= 32;
+				} while (++i < yMax);
+
+				// Copy remainder of longer number while carry propagation is required
+				bool carry = (sum != 0);
+
+				if (carry){
+
+					if (i < xMax) {
+						do
+							carry = ((r [i] = x [i] + 1) == 0);
+						while (++i < xMax && carry);
+					}
+
+					if (carry) {
+						r [i] = 1;
+						bi1.length = ++i;
+						return;
+					}
+				}
+
+				// Copy the rest
+				if (flag && i < xMax - 1) {
+					do
+						r [i] = x [i];
+					while (++i < xMax);
+				}
+
+				bi1.length = xMax + 1;
+				bi1.Normalize ();
+			}
+
+			#endregion
+
+			#region Compare
+
+			/// <summary>
+			/// Compares two BigInteger
+			/// </summary>
+			/// <param name="bi1">A BigInteger</param>
+			/// <param name="bi2">A BigInteger</param>
+			/// <returns>The sign of bi1 - bi2</returns>
+			public static Sign Compare (BigInteger bi1, BigInteger bi2)
+			{
+				//
+				// Step 1. Compare the lengths
+				//
+				uint l1 = bi1.length, l2 = bi2.length;
+
+				while (l1 > 0 && bi1.data [l1-1] == 0) l1--;
+				while (l2 > 0 && bi2.data [l2-1] == 0) l2--;
+
+				if (l1 == 0 && l2 == 0) return Sign.Zero;
+
+				// bi1 len < bi2 len
+				if (l1 < l2) return Sign.Negative;
+				// bi1 len > bi2 len
+				else if (l1 > l2) return Sign.Positive;
+
+				//
+				// Step 2. Compare the bits
+				//
+
+				uint pos = l1 - 1;
+
+				while (pos != 0 && bi1.data [pos] == bi2.data [pos]) pos--;
+				
+				if (bi1.data [pos] < bi2.data [pos])
+					return Sign.Negative;
+				else if (bi1.data [pos] > bi2.data [pos])
+					return Sign.Positive;
+				else
+					return Sign.Zero;
+			}
+
+			#endregion
+
+			#region Division
+
+			#region Dword
+
+			/// <summary>
+			/// Performs n / d and n % d in one operation.
+			/// </summary>
+			/// <param name="n">A BigInteger, upon exit this will hold n / d</param>
+			/// <param name="d">The divisor</param>
+			/// <returns>n % d</returns>
+			public static uint SingleByteDivideInPlace (BigInteger n, uint d)
+			{
+				ulong r = 0;
+				uint i = n.length;
+
+				while (i-- > 0) {
+					r <<= 32;
+					r |= n.data [i];
+					n.data [i] = (uint)(r / d);
+					r %= d;
+				}
+				n.Normalize ();
+
+				return (uint)r;
+			}
+
+			public static uint DwordMod (BigInteger n, uint d)
+			{
+				ulong r = 0;
+				uint i = n.length;
+
+				while (i-- > 0) {
+					r <<= 32;
+					r |= n.data [i];
+					r %= d;
+				}
+
+				return (uint)r;
+			}
+
+			public static BigInteger DwordDiv (BigInteger n, uint d)
+			{
+				BigInteger ret = new BigInteger (Sign.Positive, n.length);
+
+				ulong r = 0;
+				uint i = n.length;
+
+				while (i-- > 0) {
+					r <<= 32;
+					r |= n.data [i];
+					ret.data [i] = (uint)(r / d);
+					r %= d;
+				}
+				ret.Normalize ();
+
+				return ret;
+			}
+
+			public static BigInteger [] DwordDivMod (BigInteger n, uint d)
+			{
+				BigInteger ret = new BigInteger (Sign.Positive , n.length);
+
+				ulong r = 0;
+				uint i = n.length;
+
+				while (i-- > 0) {
+					r <<= 32;
+					r |= n.data [i];
+					ret.data [i] = (uint)(r / d);
+					r %= d;
+				}
+				ret.Normalize ();
+
+				BigInteger rem = (uint)r;
+
+				return new BigInteger [] {ret, rem};
+			}
+
+				#endregion
+
+			#region BigNum
+
+			public static BigInteger [] multiByteDivide (BigInteger bi1, BigInteger bi2)
+			{
+				if (Kernel.Compare (bi1, bi2) == Sign.Negative)
+					return new BigInteger [2] { 0, new BigInteger (bi1) };
+
+				bi1.Normalize (); bi2.Normalize ();
+
+				if (bi2.length == 1)
+					return DwordDivMod (bi1, bi2.data [0]);
+
+				uint remainderLen = bi1.length + 1;
+				int divisorLen = (int)bi2.length + 1;
+
+				uint mask = 0x80000000;
+				uint val = bi2.data [bi2.length - 1];
+				int shift = 0;
+				int resultPos = (int)bi1.length - (int)bi2.length;
+
+				while (mask != 0 && (val & mask) == 0) {
+					shift++; mask >>= 1;
+				}
+
+				BigInteger quot = new BigInteger (Sign.Positive, bi1.length - bi2.length + 1);
+				BigInteger rem = (bi1 << shift);
+
+				uint [] remainder = rem.data;
+
+				bi2 = bi2 << shift;
+
+				int j = (int)(remainderLen - bi2.length);
+				int pos = (int)remainderLen - 1;
+
+				uint firstDivisorByte = bi2.data [bi2.length-1];
+				ulong secondDivisorByte = bi2.data [bi2.length-2];
+
+				while (j > 0) {
+					ulong dividend = ((ulong)remainder [pos] << 32) + (ulong)remainder [pos-1];
+
+					ulong q_hat = dividend / (ulong)firstDivisorByte;
+					ulong r_hat = dividend % (ulong)firstDivisorByte;
+
+					do {
+
+						if (q_hat == 0x100000000 ||
+							(q_hat * secondDivisorByte) > ((r_hat << 32) + remainder [pos-2])) {
+							q_hat--;
+							r_hat += (ulong)firstDivisorByte;
+
+							if (r_hat < 0x100000000)
+								continue;
+						}
+						break;
+					} while (true);
+
+					//
+					// At this point, q_hat is either exact, or one too large
+					// (more likely to be exact) so, we attempt to multiply the
+					// divisor by q_hat, if we get a borrow, we just subtract
+					// one from q_hat and add the divisor back.
+					//
+
+					uint t;
+					uint dPos = 0;
+					int nPos = pos - divisorLen + 1;
+					ulong mc = 0;
+					uint uint_q_hat = (uint)q_hat;
+					do {
+						mc += (ulong)bi2.data [dPos] * (ulong)uint_q_hat;
+						t = remainder [nPos];
+						remainder [nPos] -= (uint)mc;
+						mc >>= 32;
+						if (remainder [nPos] > t) mc++;
+						dPos++; nPos++;
+					} while (dPos < divisorLen);
+
+					nPos = pos - divisorLen + 1;
+					dPos = 0;
+
+					// Overestimate
+					if (mc != 0) {
+						uint_q_hat--;
+						ulong sum = 0;
+
+						do {
+							sum = ((ulong)remainder [nPos]) + ((ulong)bi2.data [dPos]) + sum;
+							remainder [nPos] = (uint)sum;
+							sum >>= 32;
+							dPos++; nPos++;
+						} while (dPos < divisorLen);
+
+					}
+
+					quot.data [resultPos--] = (uint)uint_q_hat;
+
+					pos--;
+					j--;
+				}
+
+				quot.Normalize ();
+				rem.Normalize ();
+				BigInteger [] ret = new BigInteger [2] { quot, rem };
+
+				if (shift != 0)
+					ret [1] >>= shift;
+
+				return ret;
+			}
+
+			#endregion
+
+			#endregion
+
+			#region Shift
+			public static BigInteger LeftShift (BigInteger bi, int n)
+			{
+				if (n == 0) return new BigInteger (bi, bi.length + 1);
+
+				int w = n >> 5;
+				n &= ((1 << 5) - 1);
+
+				BigInteger ret = new BigInteger (Sign.Positive, bi.length + 1 + (uint)w);
+
+				uint i = 0, l = bi.length;
+				if (n != 0) {
+					uint x, carry = 0;
+					while (i < l) {
+						x = bi.data [i];
+						ret.data [i + w] = (x << n) | carry;
+						carry = x >> (32 - n);
+						i++;
+					}
+					ret.data [i + w] = carry;
+				} else {
+					while (i < l) {
+						ret.data [i + w] = bi.data [i];
+						i++;
+					}
+				}
+
+				ret.Normalize ();
+				return ret;
+			}
+
+			public static BigInteger RightShift (BigInteger bi, int n)
+			{
+				if (n == 0) return new BigInteger (bi);
+
+				int w = n >> 5;
+				int s = n & ((1 << 5) - 1);
+
+				BigInteger ret = new BigInteger (Sign.Positive, bi.length - (uint)w + 1);
+				uint l = (uint)ret.data.Length - 1;
+
+				if (s != 0) {
+
+					uint x, carry = 0;
+
+					while (l-- > 0) {
+						x = bi.data [l + w];
+						ret.data [l] = (x >> n) | carry;
+						carry = x << (32 - n);
+					}
+				} else {
+					while (l-- > 0)
+						ret.data [l] = bi.data [l + w];
+
+				}
+				ret.Normalize ();
+				return ret;
+			}
+
+			#endregion
+
+			#region Multiply
+
+			public static BigInteger MultiplyByDword (BigInteger n, uint f)
+			{
+				BigInteger ret = new BigInteger (Sign.Positive, n.length + 1);
+
+				uint i = 0;
+				ulong c = 0;
+
+				do {
+					c += (ulong)n.data [i] * (ulong)f;
+					ret.data [i] = (uint)c;
+					c >>= 32;
+				} while (++i < n.length);
+				ret.data [i] = (uint)c;
+				ret.Normalize ();
+				return ret;
+
+			}
+
+			/// <summary>
+			/// Multiplies the data in x [xOffset:xOffset+xLen] by
+			/// y [yOffset:yOffset+yLen] and puts it into
+			/// d [dOffset:dOffset+xLen+yLen].
+			/// </summary>
+			/// <remarks>
+			/// This code is unsafe! It is the caller's responsibility to make
+			/// sure that it is safe to access x [xOffset:xOffset+xLen],
+			/// y [yOffset:yOffset+yLen], and d [dOffset:dOffset+xLen+yLen].
+			/// </remarks>
+			public static unsafe void Multiply (uint [] x, uint xOffset, uint xLen, uint [] y, uint yOffset, uint yLen, uint [] d, uint dOffset)
+			{
+				fixed (uint* xx = x, yy = y, dd = d) {
+					uint* xP = xx + xOffset,
+						xE = xP + xLen,
+						yB = yy + yOffset,
+						yE = yB + yLen,
+						dB = dd + dOffset;
+
+					for (; xP < xE; xP++, dB++) {
+
+						if (*xP == 0) continue;
+
+						ulong mcarry = 0;
+
+						uint* dP = dB;
+						for (uint* yP = yB; yP < yE; yP++, dP++) {
+							mcarry += ((ulong)*xP * (ulong)*yP) + (ulong)*dP;
+
+							*dP = (uint)mcarry;
+							mcarry >>= 32;
+						}
+
+						if (mcarry != 0)
+							*dP = (uint)mcarry;
+					}
+				}
+			}
+
+			/// <summary>
+			/// Multiplies the data in x [xOffset:xOffset+xLen] by
+			/// y [yOffset:yOffset+yLen] and puts the low mod words into
+			/// d [dOffset:dOffset+mod].
+			/// </summary>
+			/// <remarks>
+			/// This code is unsafe! It is the caller's responsibility to make
+			/// sure that it is safe to access x [xOffset:xOffset+xLen],
+			/// y [yOffset:yOffset+yLen], and d [dOffset:dOffset+mod].
+			/// </remarks>
+			public static unsafe void MultiplyMod2p32pmod (uint [] x, int xOffset, int xLen, uint [] y, int yOffest, int yLen, uint [] d, int dOffset, int mod)
+			{
+				fixed (uint* xx = x, yy = y, dd = d) {
+					uint* xP = xx + xOffset,
+						xE = xP + xLen,
+						yB = yy + yOffest,
+						yE = yB + yLen,
+						dB = dd + dOffset,
+						dE = dB + mod;
+
+					for (; xP < xE; xP++, dB++) {
+
+						if (*xP == 0) continue;
+
+						ulong mcarry = 0;
+						uint* dP = dB;
+						for (uint* yP = yB; yP < yE && dP < dE; yP++, dP++) {
+							mcarry += ((ulong)*xP * (ulong)*yP) + (ulong)*dP;
+
+							*dP = (uint)mcarry;
+							mcarry >>= 32;
+						}
+
+						if (mcarry != 0 && dP < dE)
+							*dP = (uint)mcarry;
+					}
+				}
+			}
+
+			public static unsafe void SquarePositive (BigInteger bi, ref uint [] wkSpace)
+			{
+				uint [] t = wkSpace;
+				wkSpace = bi.data;
+				uint [] d = bi.data;
+				uint dl = bi.length;
+				bi.data = t;
+
+				fixed (uint* dd = d, tt = t) {
+
+					uint* ttE = tt + t.Length;
+					// Clear the dest
+					for (uint* ttt = tt; ttt < ttE; ttt++)
+						*ttt = 0;
+
+					uint* dP = dd, tP = tt;
+
+					for (uint i = 0; i < dl; i++, dP++) {
+						if (*dP == 0)
+							continue;
+
+						ulong mcarry = 0;
+						uint bi1val = *dP;
+
+						uint* dP2 = dP + 1, tP2 = tP + 2*i + 1;
+
+						for (uint j = i + 1; j < dl; j++, tP2++, dP2++) {
+							// k = i + j
+							mcarry += ((ulong)bi1val * (ulong)*dP2) + *tP2;
+
+							*tP2 = (uint)mcarry;
+							mcarry >>= 32;
+						}
+
+						if (mcarry != 0)
+							*tP2 = (uint)mcarry;
+					}
+
+					// Double t. Inlined for speed.
+
+					tP = tt;
+
+					uint x, carry = 0;
+					while (tP < ttE) {
+						x = *tP;
+						*tP = (x << 1) | carry;
+						carry = x >> (32 - 1);
+						tP++;
+					}
+					if (carry != 0) *tP = carry;
+
+					// Add in the diagnals
+
+					dP = dd;
+					tP = tt;
+					for (uint* dE = dP + dl; (dP < dE); dP++, tP++) {
+						ulong val = (ulong)*dP * (ulong)*dP + *tP;
+						*tP = (uint)val;
+						val >>= 32;
+						*(++tP) += (uint)val;
+						if (*tP < (uint)val) {
+							uint* tP3 = tP;
+							// Account for the first carry
+							(*++tP3)++;
+
+							// Keep adding until no carry
+							while ((*tP3++) == 0)
+								(*tP3)++;
+						}
+
+					}
+
+					bi.length <<= 1;
+
+					// Normalize length
+					while (tt [bi.length-1] == 0 && bi.length > 1) bi.length--;
+
+				}
+			}
+
+/* 
+ * Never called in BigInteger (and part of a private class)
+ * 			public static bool Double (uint [] u, int l)
+			{
+				uint x, carry = 0;
+				uint i = 0;
+				while (i < l) {
+					x = u [i];
+					u [i] = (x << 1) | carry;
+					carry = x >> (32 - 1);
+					i++;
+				}
+				if (carry != 0) u [l] = carry;
+				return carry != 0;
+			}*/
+
+			#endregion
+
+			#region Number Theory
+
+			public static BigInteger gcd (BigInteger a, BigInteger b)
+			{
+				BigInteger x = a;
+				BigInteger y = b;
+
+				BigInteger g = y;
+
+				while (x.length > 1) {
+					g = x;
+					x = y % x;
+					y = g;
+
+				}
+				if (x == 0) return g;
+
+				// TODO: should we have something here if we can convert to long?
+
+				//
+				// Now we can just do it with single precision. I am using the binary gcd method,
+				// as it should be faster.
+				//
+
+				uint yy = x.data [0];
+				uint xx = y % yy;
+
+				int t = 0;
+
+				while (((xx | yy) & 1) == 0) {
+					xx >>= 1; yy >>= 1; t++;
+				}
+				while (xx != 0) {
+					while ((xx & 1) == 0) xx >>= 1;
+					while ((yy & 1) == 0) yy >>= 1;
+					if (xx >= yy)
+						xx = (xx - yy) >> 1;
+					else
+						yy = (yy - xx) >> 1;
+				}
+
+				return yy << t;
+			}
+
+			public static uint modInverse (BigInteger bi, uint modulus)
+			{
+				uint a = modulus, b = bi % modulus;
+				uint p0 = 0, p1 = 1;
+
+				while (b != 0) {
+					if (b == 1)
+						return p1;
+					p0 += (a / b) * p1;
+					a %= b;
+
+					if (a == 0)
+						break;
+					if (a == 1)
+						return modulus-p0;
+
+					p1 += (b / a) * p0;
+					b %= a;
+
+				}
+				return 0;
+			}
+			
+			public static BigInteger modInverse (BigInteger bi, BigInteger modulus)
+			{
+				if (modulus.length == 1) return modInverse (bi, modulus.data [0]);
+
+				BigInteger [] p = { 0, 1 };
+				BigInteger [] q = new BigInteger [2];    // quotients
+				BigInteger [] r = { 0, 0 };             // remainders
+
+				int step = 0;
+
+				BigInteger a = modulus;
+				BigInteger b = bi;
+
+				ModulusRing mr = new ModulusRing (modulus);
+
+				while (b != 0) {
+
+					if (step > 1) {
+
+						BigInteger pval = mr.Difference (p [0], p [1] * q [0]);
+						p [0] = p [1]; p [1] = pval;
+					}
+
+					BigInteger [] divret = multiByteDivide (a, b);
+
+					q [0] = q [1]; q [1] = divret [0];
+					r [0] = r [1]; r [1] = divret [1];
+					a = b;
+					b = divret [1];
+
+					step++;
+				}
+
+				if (r [0] != 1)
+					throw (new ArithmeticException ("No inverse!"));
+
+				return mr.Difference (p [0], p [1] * q [0]);
+
+			}
+			#endregion
+		}
+	}
+}

Added: incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Security.Cryptography/DHKeyGeneration.cs
URL: http://svn.apache.org/viewvc/incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Security.Cryptography/DHKeyGeneration.cs?view=auto&rev=463009
==============================================================================
--- incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Security.Cryptography/DHKeyGeneration.cs (added)
+++ incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Security.Cryptography/DHKeyGeneration.cs Wed Oct 11 15:24:51 2006
@@ -0,0 +1,66 @@
+//
+// DHKeyGeneration.cs: Defines the different key generation methods.
+//
+// Author:
+//	Pieter Philippaerts (Pieter@mentalis.org)
+//
+// (C) 2003 The Mentalis.org Team (http://www.mentalis.org/)
+//
+
+//
+// Permission is hereby granted, free of charge, to any person obtaining
+// a copy of this software and associated documentation files (the
+// "Software"), to deal in the Software without restriction, including
+// without limitation the rights to use, copy, modify, merge, publish,
+// distribute, sublicense, and/or sell copies of the Software, and to
+// permit persons to whom the Software is furnished to do so, subject to
+// the following conditions:
+// 
+// The above copyright notice and this permission notice shall be
+// included in all copies or substantial portions of the Software.
+// 
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+//
+
+using System;
+
+namespace Mono.Security.Cryptography {
+	/// <summary>
+	/// Defines the different Diffie-Hellman key generation methods.
+	/// </summary>
+	public enum DHKeyGeneration {
+		/// <summary>
+		/// [TODO] you first randomly select a prime Q of size 160 bits, then choose P randomly among numbers like
+		/// Q*R+1 with R random. Then you go along with finding a generator G which has order exactly Q. The private
+		/// key X is then a number modulo Q.
+		/// [FIPS 186-2-Change1 -- http://csrc.nist.gov/publications/fips/]
+		/// </summary>
+		// see RFC2631 [http://www.faqs.org/rfcs/rfc2631.html]
+		//DSA,
+		/// <summary>
+		/// Returns dynamically generated values for P and G. Unlike the Sophie Germain or DSA key generation methods,
+		/// this method does not ensure that the selected prime offers an adequate security level.
+		/// </summary>
+		Random,
+		/// <summary>
+		/// Returns dynamically generated values for P and G. P is a Sophie Germain prime, which has some interesting
+		/// security features when used with Diffie Hellman.
+		/// </summary>
+		//SophieGermain,
+		/// <summary>
+		/// Returns values for P and G that are hard coded in this library. Contrary to what your intuition may tell you,
+		/// using these hard coded values is perfectly safe.
+		/// The values of the P and G parameters are taken from 'The OAKLEY Key Determination Protocol' [RFC2412].
+		/// This is the prefered key generation method, because it is very fast and very safe.
+		/// Because this method uses fixed values for the P and G parameters, not all bit sizes are supported.
+		/// The current implementation supports bit sizes of 768, 1024 and 1536.
+		/// </summary>
+		Static
+	}
+}
\ No newline at end of file

Added: incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Security.Cryptography/DHParameters.cs
URL: http://svn.apache.org/viewvc/incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Security.Cryptography/DHParameters.cs?view=auto&rev=463009
==============================================================================
--- incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Security.Cryptography/DHParameters.cs (added)
+++ incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Security.Cryptography/DHParameters.cs Wed Oct 11 15:24:51 2006
@@ -0,0 +1,53 @@
+//
+// DHParameters.cs: Defines a structure that holds the parameters of the Diffie-Hellman algorithm
+//
+// Author:
+//	Pieter Philippaerts (Pieter@mentalis.org)
+//
+// (C) 2003 The Mentalis.org Team (http://www.mentalis.org/)
+//
+
+//
+// Permission is hereby granted, free of charge, to any person obtaining
+// a copy of this software and associated documentation files (the
+// "Software"), to deal in the Software without restriction, including
+// without limitation the rights to use, copy, modify, merge, publish,
+// distribute, sublicense, and/or sell copies of the Software, and to
+// permit persons to whom the Software is furnished to do so, subject to
+// the following conditions:
+// 
+// The above copyright notice and this permission notice shall be
+// included in all copies or substantial portions of the Software.
+// 
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+//
+
+using System;
+
+namespace Mono.Security.Cryptography {
+	/// <summary>
+	/// Represents the parameters of the Diffie-Hellman algorithm.
+	/// </summary>
+	[Serializable]
+	public struct DHParameters {
+		/// <summary>
+		/// Represents the public <b>P</b> parameter of the Diffie-Hellman algorithm.
+		/// </summary>
+		public byte[] P;
+		/// <summary>
+		/// Represents the public <b>G</b> parameter of the Diffie-Hellman algorithm.
+		/// </summary>
+		public byte[] G;
+		/// <summary>
+		/// Represents the private <b>X</b> parameter of the Diffie-Hellman algorithm.
+		/// </summary>
+		[NonSerialized]
+		public byte[] X;
+	}
+}
\ No newline at end of file

Added: incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Security.Cryptography/DiffieHellman.cs
URL: http://svn.apache.org/viewvc/incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Security.Cryptography/DiffieHellman.cs?view=auto&rev=463009
==============================================================================
--- incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Security.Cryptography/DiffieHellman.cs (added)
+++ incubator/heraldry/libraries/csharp/openid/trunk/Mono/Mono.Security.Cryptography/DiffieHellman.cs Wed Oct 11 15:24:51 2006
@@ -0,0 +1,153 @@
+//
+// DiffieHellman.cs: Defines a base class from which all Diffie-Hellman implementations inherit
+//
+// Author:
+//	Pieter Philippaerts (Pieter@mentalis.org)
+//
+// (C) 2003 The Mentalis.org Team (http://www.mentalis.org/)
+//
+
+//
+// Permission is hereby granted, free of charge, to any person obtaining
+// a copy of this software and associated documentation files (the
+// "Software"), to deal in the Software without restriction, including
+// without limitation the rights to use, copy, modify, merge, publish,
+// distribute, sublicense, and/or sell copies of the Software, and to
+// permit persons to whom the Software is furnished to do so, subject to
+// the following conditions:
+// 
+// The above copyright notice and this permission notice shall be
+// included in all copies or substantial portions of the Software.
+// 
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+//
+
+using System;
+using System.Text;
+using System.Security;
+using System.Security.Cryptography;
+using Mono.Xml;
+using Mono.Math;
+
+namespace Mono.Security.Cryptography {
+	/// <summary>
+	/// Defines a base class from which all Diffie-Hellman implementations inherit.
+	/// </summary>
+	public abstract class DiffieHellman : AsymmetricAlgorithm {
+		/// <summary>
+		/// Creates an instance of the default implementation of the <see cref="DiffieHellman"/> algorithm.
+		/// </summary>
+		/// <returns>A new instance of the default implementation of DiffieHellman.</returns>
+		public static new DiffieHellman Create () {
+			return Create ("Mono.Security.Cryptography.DiffieHellman");
+		}
+		/// <summary>
+		/// Creates an instance of the specified implementation of <see cref="DiffieHellman"/>.
+		/// </summary>
+		/// <param name="algName">The name of the implementation of DiffieHellman to use.</param>
+		/// <returns>A new instance of the specified implementation of DiffieHellman.</returns>
+		public static new DiffieHellman Create (string algName) {
+			return (DiffieHellman) CryptoConfig.CreateFromName (algName);
+		}
+
+		/// <summary>
+		/// When overridden in a derived class, creates the key exchange data. 
+		/// </summary>
+		/// <returns>The key exchange data to be sent to the intended recipient.</returns>
+		public abstract byte[] CreateKeyExchange();
+		/// <summary>
+		/// When overridden in a derived class, extracts secret information from the key exchange data.
+		/// </summary>
+		/// <param name="keyex">The key exchange data within which the secret information is hidden.</param>
+		/// <returns>The secret information derived from the key exchange data.</returns>
+		public abstract byte[] DecryptKeyExchange (byte[] keyex);
+
+		/// <summary>
+		/// When overridden in a derived class, exports the <see cref="DHParameters"/>.
+		/// </summary>
+		/// <param name="includePrivate"><b>true</b> to include private parameters; otherwise, <b>false</b>.</param>
+		/// <returns>The parameters for Diffie-Hellman.</returns>
+		public abstract DHParameters ExportParameters (bool includePrivate);
+		/// <summary>
+		/// When overridden in a derived class, imports the specified <see cref="DHParameters"/>.
+		/// </summary>
+		/// <param name="parameters">The parameters for Diffie-Hellman.</param>
+		public abstract void ImportParameters (DHParameters parameters);
+
+		private byte[] GetNamedParam(SecurityElement se, string param) {
+			SecurityElement sep = se.SearchForChildByTag(param);
+			if (sep == null)
+				return null;
+			return Convert.FromBase64String(sep.Text);
+		}
+		/// <summary>
+		/// Reconstructs a <see cref="DiffieHellman"/> object from an XML string.
+		/// </summary>
+		/// <param name="xmlString">The XML string to use to reconstruct the DiffieHellman object.</param>
+		/// <exception cref="CryptographicException">One of the values in the XML string is invalid.</exception>
+		public override void FromXmlString (string xmlString) {
+			if (xmlString == null)
+				throw new ArgumentNullException ("xmlString");
+
+			DHParameters dhParams = new DHParameters();
+			try {
+				SecurityParser sp = new SecurityParser();
+				sp.LoadXml(xmlString);
+				SecurityElement se = sp.ToXml();
+				if (se.Tag != "DHKeyValue")
+					throw new CryptographicException();
+				dhParams.P = GetNamedParam(se, "P");
+				dhParams.G = GetNamedParam(se, "G");
+				dhParams.X = GetNamedParam(se, "X");
+				ImportParameters(dhParams);
+			} finally {
+				if (dhParams.P != null)
+					Array.Clear(dhParams.P, 0, dhParams.P.Length);
+				if (dhParams.G != null)
+					Array.Clear(dhParams.G, 0, dhParams.G.Length);
+				if (dhParams.X != null)
+					Array.Clear(dhParams.X, 0, dhParams.X.Length);
+			}
+		}
+		/// <summary>
+		/// Creates and returns an XML string representation of the current <see cref="DiffieHellman"/> object.
+		/// </summary>
+		/// <param name="includePrivateParameters"><b>true</b> to include private parameters; otherwise, <b>false</b>.</param>
+		/// <returns>An XML string encoding of the current DiffieHellman object.</returns>
+		public override string ToXmlString (bool includePrivateParameters) {
+			StringBuilder sb = new StringBuilder ();
+			DHParameters dhParams = ExportParameters(includePrivateParameters);
+			try {
+				sb.Append ("<DHKeyValue>");
+				
+				sb.Append ("<P>");
+				sb.Append (Convert.ToBase64String (dhParams.P));
+				sb.Append ("</P>");
+
+				sb.Append ("<G>");
+				sb.Append (Convert.ToBase64String (dhParams.G));
+				sb.Append ("</G>");
+
+				if (includePrivateParameters) {
+					sb.Append ("<X>");
+					sb.Append (Convert.ToBase64String (dhParams.X));
+					sb.Append ("</X>");
+				}
+				
+				sb.Append ("</DHKeyValue>");
+			} finally {
+				Array.Clear(dhParams.P, 0, dhParams.P.Length);
+				Array.Clear(dhParams.G, 0, dhParams.G.Length);
+				if (dhParams.X != null)
+					Array.Clear(dhParams.X, 0, dhParams.X.Length);
+			}
+			return sb.ToString ();
+		}
+	}
+}
\ No newline at end of file



Mime
View raw message