incubator-general mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Andrew Purtell <apurt...@apache.org>
Subject Re: [DISCUSS] PredictionIO incubation proposal
Date Mon, 16 May 2016 19:14:12 GMT
The process for transferring the rights to the name PredictionIO has
started at Salesforce. I'm optimistic but can't guarantee an outcome as I
am not empowered to make such a decision wearing any hat. I think we can
proceed with the proposal using the PredictionIO mark conditionally as the
desired podling name. Completing the transfer or finding another mark would
be the earliest activity the podling would undertake working through their
PODLINGNAMESEARCH ticket. Does that sound reasonable?


On Sun, May 15, 2016 at 6:29 PM, John D. Ament <johndament@apache.org>
wrote:

> I just want to confirm, Salesforce plans to transfer the rights to the name
> "PredictionIO" to the ASF? Or is the podling expected to take a new name?
>
> John
>
> On Fri, May 13, 2016 at 4:42 PM Andrew Purtell <apurtell@apache.org>
> wrote:
>
> > Greetings,
> >
> > It is my pleasure to
> > ​ ​
> > propose the PredictionIO project for incubation at the Apache Software
> > Foundation.
> > ​ ​
> > PredictionIO is a
> > ​ popular​
> > open
> > ​ ​
> > source Machine Learning Server built on top of a state-of-the-art open
> > source stack, including several Apache technologies, that
> > ​ ​
> > enables developers to manage and deploy production-ready predictive
> > services for various kinds of machine learning tasks
> > ​, with more than 400 production deployments around the world and a
> growing
> > contributor community. ​
> >
> >
> > The text of the proposal is included below and is also available at
> > https://wiki.apache.org/incubator/PredictionIO
> >
> > Best regards,
> > Andrew Purtell
> >
> >
> > = PredictionIO Proposal =
> >
> > === Abstract ===
> > PredictionIO is an open source Machine Learning Server built on top of
> > state-of-the-art open source stack, that enables developers to manage and
> > deploy production-ready predictive services for various kinds of machine
> > learning tasks.
> >
> > === Proposal ===
> > The PredictionIO platform consists of the following components:
> >
> >  * PredictionIO framework - provides the machine learning stack for
> >  building, evaluating and deploying engines with machine learning
> >  algorithms. It uses Apache Spark for processing.
> >
> >  * Event Server - the machine learning analytics layer for unifying
> events
> >  from multiple platforms. It can use Apache HBase or any JDBC backends
> >  as its data store.
> >
> > The PredictionIO community also maintains a
> > ​ ​
> > Template Gallery, a place to
> > publish and download (free or proprietary) engine templates for different
> > types of machine learning applications, and is a complemental part of the
> > project. At this point we exclude the Template Gallery from the proposal,
> > as it has a separate set of contributors and we’re not familiar with an
> > Apache approved mechanism to maintain such a gallery.
> >
> > You can find the Template Gallery at https://templates.prediction.io/
> >
> > === Background ===
> > PredictionIO was started with a mission to democratize and bring machine
> > learning to the masses.
> >
> > Machine learning has traditionally been a luxury for big companies like
> > Google, Facebook, and Netflix. There are ML libraries and tools lying
> > around the internet but the effort of putting them all together as a
> > production-ready infrastructure is a very resource-intensive task that is
> > remotely reachable by individuals or small businesses.
> >
> > PredictionIO is a production-ready, full stack machine learning system
> that
> > allows organizations of any scale to quickly deploy machine learning
> > capabilities. It comes with official and community-contributed machine
> > learning engine templates that are easy to customize.
> >
> > === Rationale ===
> > As usage and number of contributors to PredictionIO has grown bigger and
> > more diverse, we have sought for an independent framework for the project
> > to keep thriving. We believe the Apache foundation is a great fit.
> Joining
> > Apache would ensure that tried and true processes and procedures are in
> > place for the growing number of organizations interested in contributing
> > to PredictionIO. PredictionIO is also a good fit for the Apache
> foundation.
> > PredictionIO was built on top of several Apache projects (HBase, Spark,
> > Hadoop). We are familiar with the Apache process and believe that the
> > democratic and meritocratic nature of the foundation aligns with the
> > project goals.
> >
> > === Initial Goals ===
> > The initial milestones will be to move the existing codebase to Apache
> and
> > integrate with the Apache development process. Once this is accomplished,
> > we plan for incremental development and releases that follow the Apache
> > guidelines, as well as growing our developer and user communities.
> >
> > === Current Status ===
> > PredictionIO has undergone nine minor releases and many patches.
> > PredictionIO is being used in production by Salesforce.com as well as
> many
> > other organizations and apps. The PredictionIO codebase is currently
> > hosted at GitHub, which will form the basis of the Apache git repository.
> >
> > ==== Meritocracy ====
> > We plan to invest in supporting a meritocracy. We will discuss the
> > requirements in an open forum. We intend to invite additional developers
> > to participate. We will encourage and monitor community participation so
> > that privileges can be extended to those that contribute.
> >
> > ==== Community ====
> > Acceptance into the Apache foundation would bolster the already strong
> > user and developer community around PredictionIO. That community includes
> > many contributors from various other companies, and an active mailing
> list
> > composed of hundreds of users.
> >
> > ==== Core Developers ====
> > The core developers of our project are listed in our contributors and
> > initial PPMC below. Though many are employed at Salesforce.com, there are
> > also engineers from ActionML, and independent developers.
> >
> > === Alignment ===
> > The ASF is the natural choice to host the PredictionIO project as its
> goal
> > is democratizing Machine Learning by making it more easily accessible to
> > every user/developer. PredictionIO is built on top of several top level
> > Apache projects as outlined above.
> >
> > === Known Risks ===
> >
> > ==== Orphaned products ====
> > PredictionIO has a solid and growing community. It is deployed on
> > production environments by companies of all sizes to run various kinds of
> > predictive engines.
> >
> > In addition to the community contribution to PredictionIO framework, the
> > community is also actively contributing new engines to the Template
> > Gallery as well as SDKs and documentation for the project. Salesforce is
> > committed to utilize and advance the PredictionIO code base and support
> > its user community.
> >
> > ==== Inexperience with Open Source ====
> > PredictionIO has existed as a healthy open source project for almost two
> > years and is the most starred Scala project on GitHub. All of the
> proposed
> > committers have contributed to ASF and Linux Foundation open source
> > projects. Several current committers on Apache projects and Apache
> Members
> > are involved in this proposal and intend to provide mentorship.
> >
> > ==== Homogeneous Developers ====
> > The initial list of committers includes developers from several
> > institutions, including Salesforce, ActionML, Channel4, USC as well as
> > unaffiliated developers.
> >
> > ==== Reliance on Salaried Developers ====
> > Like most open source projects, PredictionIO receives substantial support
> > from salaried developers. PredictionIO development is partially supported
> > by Salesforce.com, but there are many contributors from various other
> > companies, and an active mailing list composed of hundreds of users. We
> > will continue our efforts to ensure stewardship of the project to be
> > independent of salaried developers by meritocratically promoting those
> > contributors to committers.
> >
> > ==== Relationships with Other Apache Product ====
> > PredictionIO relies heavily on top level apache projects such as Apache
> > Spark, HBase and Hadoop. However it brings a distinguished functionality,
> > rather than just an abstraction - Machine Learning in a plug-and-play
> > fashion.
> >
> > Compared to Apache Mahout, which focuses on the development of a wide
> > variety of algorithms, PredictionIO offers a platform to manage the whole
> > machine learning workflow, including data collection, data preparation,
> > modeling, deployment and management of predictive services in production
> > environments.
> >
> > ==== An Excessive Fascination with the Apache Brand ====
> > PredictionIO is already a widely known open source project. This proposal
> > is not for the purpose of generating publicity. Rather, the primary
> > benefits to joining Apache are those outlined in the Rationale section.
> >
> > === Documentation ===
> > PredictionIO boasts rich and live documentation, included in the code
> repo
> > (docs/manual directory), is built with Middleman, and publicly hosted at
> > https://docs.prediction.io
> >
> > === Initial Source and Intellectual Property Submission Plan ===
> > Currently, the PredictionIO codebase is distributed under the Apache 2.0
> > License and hosted on GitHub:
> https://github.com/PredictionIO/PredictionIO
> >
> > === External Dependencies ===
> > PredictionIO has the following external dependencies:
> >  * Apache Hadoop 2.4.0 (optional, required only if YARN and HDFS are
> > needed)
> >  * Apache Spark 1.3.0 for Hadoop 2.4
> >  * Java SE Development Kit 8
> >  * and one of the following sets:
> > ​  ​
> >    * PostgreSQL 9.1
> >
> > ​  ​
> > or
> >
> > ​  ​
> > * MySQL 5.1
> > ​  ​
> >  or
> >
> > ​  ​
> >  * Apache HBase 0.98.6
> >
> > ​  ​
> > * Elasticsearch 1.4.0
> >
> > Upon acceptance to the incubator, we would begin a thorough analysis of
> > all transitive dependencies to verify this information and introduce
> > license checking into the build and release process by integrating with
> > Apache RAT.
> >
> > === Cryptography ===
> > PredictionIO does not include cryptographic code. We utilize standard
> > JCE and JSSE APIs provided by the Java Runtime Environment.
> >
> > === Required Resources ===
> > We request that following resources be created for the project to use
> >
> > ==== Mailing lists ====
> >
> > predictionio-private@incubator.apache.org (with moderated subscriptions)
> >
> > predictionio-dev
> >
> > predictionio-user
> >
> > predictionio-commits
> >
> > We will migrate the existing PredictionIO mailing lists.
> >
> > ==== Git repository ====
> > The PredictionIO team would like to use Git for source control, due to
> our
> > current use of GitHub.
> >
> > git://git.apache.org/incubator-predictionio
> >
> > ==== Documentation ====
> > https://predictionio.incubator.apache.org/docs/
> >
> > ==== JIRA instance ====
> > PredictionIO currently uses the GitHub issue tracking system associated
> > with its repository: https://github.com/PredictionIO/PredictionIO/issues
> .
> > We will migrate to Apache JIRA.
> >
> > JIRA PREDICTIONIO
> > https://issues.apache.org/jira/browse/PREDICTIONIO
> >
> > ==== Other Resources ====
> > * TravisCI for builds and test running.
> >
> > * PredictionIO's documentation, included in the code repo (docs/manual
> > directory), is built with Middleman and publicly hosted
> > https://docs.prediction.io
> >
> > * A blog to drive adoption and excitement at https://blog.prediction.io
> >
> > === Initial Committers ===
> >
> > * Pat Ferrell
> >
> > * Tamas Jambor
> >
> > * Justin Yip
> >
> > * Xusen Yin
> >
> > * Lee Moon Soo
> >
> > * Donald Szeto
> >
> > * Kenneth Chan
> >
> > * Tom Chan
> >
> > * Simon Chan
> >
> > * Marco Vivero
> >
> > * Matthew Tovbin
> >
> > * Yevgeny Khodorkovsky
> >
> > * Felipe Oliveira
> >
> > * Vitaly Gordon
> >
> > === Affiliations ===
> >
> > * Pat Ferrell - ActionML
> >
> > * Tamas Jambor - Channel4
> >
> > * Justin Yip - independent
> >
> > * Xusen Yin - USC
> >
> > * Lee Moon Soo - NFLabs
> >
> > * Donald Szeto - Salesforce
> >
> > * Kenneth Chan - Salesforce
> >
> > * Tom Chan - Salesforce
> >
> > * Simon Chan - Salesforce
> >
> > * Marco Vivero - Salesforce
> >
> > * Matthew Tovbin - Salesforce
> >
> > * Yevgeny Khodorkovsky - Salesforce
> >
> > * Felipe Oliveira - Salesforce
> >
> > * Vitaly Gordon - Salesforce
> >
> > === Sponsors ===
> >
> > ==== Champion ====
> >
> > Andrew Purtell <apurtell at apache dot org>
> >
> > ==== Nominated Mentors ====
> >
> > * Andrew Purtell <apurtell at apache dot org>
> >
> > * James Taylor <jtaylor at apache dot org>
> >
> > * Lars Hofhansl <larsh at apache dot org>
> >
> > * Suneel Marthi <smarthi at apache dot org>
> >
> > * Xiangrui Meng <meng at apache dot org>
> >
> > * Luciano Resende <lresende at apache dot org>
> >
> > ==== Sponsoring Entity ====
> >
> > Apache Incubator PMC
> >
>



-- 
Best regards,

   - Andy

Problems worthy of attack prove their worth by hitting back. - Piet Hein
(via Tom White)

Mime
  • Unnamed multipart/alternative (inline, None, 0 bytes)
View raw message