ignite-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From sboi...@apache.org
Subject [09/15] ignite git commit: IGNITE-5217: Gradient descent for OLS lin reg
Date Fri, 29 Dec 2017 09:28:26 GMT
http://git-wip-us.apache.org/repos/asf/ignite/blob/b2060855/modules/ml/src/test/java/org/apache/ignite/ml/regressions/linear/GridAwareAbstractLinearRegressionTrainerTest.java
----------------------------------------------------------------------
diff --git a/modules/ml/src/test/java/org/apache/ignite/ml/regressions/linear/GridAwareAbstractLinearRegressionTrainerTest.java b/modules/ml/src/test/java/org/apache/ignite/ml/regressions/linear/GridAwareAbstractLinearRegressionTrainerTest.java
new file mode 100644
index 0000000..1a60b80
--- /dev/null
+++ b/modules/ml/src/test/java/org/apache/ignite/ml/regressions/linear/GridAwareAbstractLinearRegressionTrainerTest.java
@@ -0,0 +1,124 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.ignite.ml.regressions.linear;
+
+import org.apache.ignite.Ignite;
+import org.apache.ignite.internal.util.IgniteUtils;
+import org.apache.ignite.ml.Trainer;
+import org.apache.ignite.ml.math.Matrix;
+import org.apache.ignite.ml.math.Vector;
+import org.apache.ignite.ml.math.functions.IgniteFunction;
+import org.apache.ignite.testframework.junits.common.GridCommonAbstractTest;
+import org.junit.Test;
+
+public abstract class GridAwareAbstractLinearRegressionTrainerTest extends GridCommonAbstractTest {
+    /** Number of nodes in grid */
+    private static final int NODE_COUNT = 3;
+
+    /**
+     * Delegate actually performs tests.
+     */
+    private final GenericLinearRegressionTrainerTest delegate;
+
+    /** */
+    private Ignite ignite;
+
+    /** */
+    public GridAwareAbstractLinearRegressionTrainerTest(
+        Trainer<LinearRegressionModel, Matrix> trainer,
+        IgniteFunction<double[][], Matrix> matrixCreator,
+        IgniteFunction<double[], Vector> vectorCreator,
+        double precision) {
+        delegate = new GenericLinearRegressionTrainerTest(trainer, matrixCreator, vectorCreator, precision);
+    }
+
+    /** {@inheritDoc} */
+    @Override protected void beforeTestsStarted() throws Exception {
+        for (int i = 1; i <= NODE_COUNT; i++)
+            startGrid(i);
+    }
+
+    /** {@inheritDoc} */
+    @Override protected void afterTestsStopped() {
+        stopAllGrids();
+    }
+
+    /**
+     * {@inheritDoc}
+     */
+    @Override protected void beforeTest() throws Exception {
+        /* Grid instance. */
+        ignite = grid(NODE_COUNT);
+        ignite.configuration().setPeerClassLoadingEnabled(true);
+        IgniteUtils.setCurrentIgniteName(ignite.configuration().getIgniteInstanceName());
+    }
+
+    /**
+     * Test trainer on regression model y = 2 * x.
+     */
+    @Test
+    public void testTrainWithoutIntercept() {
+        IgniteUtils.setCurrentIgniteName(ignite.configuration().getIgniteInstanceName());
+        delegate.testTrainWithoutIntercept();
+    }
+
+    /**
+     * Test trainer on regression model y = -1 * x + 1.
+     */
+    @Test
+    public void testTrainWithIntercept() {
+        IgniteUtils.setCurrentIgniteName(ignite.configuration().getIgniteInstanceName());
+        delegate.testTrainWithIntercept();
+    }
+
+    /**
+     * Tests trainer on artificial dataset with 10 observations described by 1 feature.
+     */
+    @Test
+    public void testTrainOnArtificialDataset10x1() {
+        IgniteUtils.setCurrentIgniteName(ignite.configuration().getIgniteInstanceName());
+        delegate.testTrainOnArtificialDataset10x1();
+    }
+
+    /**
+     * Tests trainer on artificial dataset with 10 observations described by 5 features.
+     */
+    @Test
+    public void testTrainOnArtificialDataset10x5() {
+        IgniteUtils.setCurrentIgniteName(ignite.configuration().getIgniteInstanceName());
+        delegate.testTrainOnArtificialDataset10x5();
+    }
+
+    /**
+     * Tests trainer on artificial dataset with 100 observations described by 5 features.
+     */
+    @Test
+    public void testTrainOnArtificialDataset100x5() {
+        IgniteUtils.setCurrentIgniteName(ignite.configuration().getIgniteInstanceName());
+        delegate.testTrainOnArtificialDataset100x5();
+    }
+
+    /**
+     * Tests trainer on artificial dataset with 100 observations described by 10 features.
+     */
+    @Test
+    public void testTrainOnArtificialDataset100x10() {
+        IgniteUtils.setCurrentIgniteName(ignite.configuration().getIgniteInstanceName());
+        delegate.testTrainOnArtificialDataset100x10();
+    }
+}

http://git-wip-us.apache.org/repos/asf/ignite/blob/b2060855/modules/ml/src/test/java/org/apache/ignite/ml/regressions/linear/LinearRegressionModelTest.java
----------------------------------------------------------------------
diff --git a/modules/ml/src/test/java/org/apache/ignite/ml/regressions/linear/LinearRegressionModelTest.java b/modules/ml/src/test/java/org/apache/ignite/ml/regressions/linear/LinearRegressionModelTest.java
new file mode 100644
index 0000000..aac24f4
--- /dev/null
+++ b/modules/ml/src/test/java/org/apache/ignite/ml/regressions/linear/LinearRegressionModelTest.java
@@ -0,0 +1,66 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.ignite.ml.regressions.linear;
+
+import org.apache.ignite.ml.TestUtils;
+import org.apache.ignite.ml.math.Vector;
+import org.apache.ignite.ml.math.exceptions.CardinalityException;
+import org.apache.ignite.ml.math.impls.vector.DenseLocalOnHeapVector;
+import org.junit.Test;
+
+/**
+ * Tests for {@link LinearRegressionModel}.
+ */
+public class LinearRegressionModelTest {
+    /** */
+    private static final double PRECISION = 1e-6;
+
+    /** */
+    @Test
+    public void testPredict() {
+        Vector weights = new DenseLocalOnHeapVector(new double[]{2.0, 3.0});
+        LinearRegressionModel mdl = new LinearRegressionModel(weights, 1.0);
+
+        Vector observation = new DenseLocalOnHeapVector(new double[]{1.0, 1.0});
+        TestUtils.assertEquals(1.0 + 2.0 * 1.0 + 3.0 * 1.0, mdl.apply(observation), PRECISION);
+
+        observation = new DenseLocalOnHeapVector(new double[]{2.0, 1.0});
+        TestUtils.assertEquals(1.0 + 2.0 * 2.0 + 3.0 * 1.0, mdl.apply(observation), PRECISION);
+
+        observation = new DenseLocalOnHeapVector(new double[]{1.0, 2.0});
+        TestUtils.assertEquals(1.0 + 2.0 * 1.0 + 3.0 * 2.0, mdl.apply(observation), PRECISION);
+
+        observation = new DenseLocalOnHeapVector(new double[]{-2.0, 1.0});
+        TestUtils.assertEquals(1.0 - 2.0 * 2.0 + 3.0 * 1.0, mdl.apply(observation), PRECISION);
+
+        observation = new DenseLocalOnHeapVector(new double[]{1.0, -2.0});
+        TestUtils.assertEquals(1.0 + 2.0 * 1.0 - 3.0 * 2.0, mdl.apply(observation), PRECISION);
+    }
+
+    /** */
+    @Test(expected = CardinalityException.class)
+    public void testPredictOnAnObservationWithWrongCardinality() {
+        Vector weights = new DenseLocalOnHeapVector(new double[]{2.0, 3.0});
+
+        LinearRegressionModel mdl = new LinearRegressionModel(weights, 1.0);
+
+        Vector observation = new DenseLocalOnHeapVector(new double[]{1.0});
+
+        mdl.apply(observation);
+    }
+}

http://git-wip-us.apache.org/repos/asf/ignite/blob/b2060855/modules/ml/src/test/java/org/apache/ignite/ml/regressions/linear/LocalLinearRegressionQRTrainerTest.java
----------------------------------------------------------------------
diff --git a/modules/ml/src/test/java/org/apache/ignite/ml/regressions/linear/LocalLinearRegressionQRTrainerTest.java b/modules/ml/src/test/java/org/apache/ignite/ml/regressions/linear/LocalLinearRegressionQRTrainerTest.java
new file mode 100644
index 0000000..f37d71d
--- /dev/null
+++ b/modules/ml/src/test/java/org/apache/ignite/ml/regressions/linear/LocalLinearRegressionQRTrainerTest.java
@@ -0,0 +1,36 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.ignite.ml.regressions.linear;
+
+import org.apache.ignite.ml.math.impls.matrix.DenseLocalOnHeapMatrix;
+import org.apache.ignite.ml.math.impls.vector.DenseLocalOnHeapVector;
+
+/**
+ * Tests for {@link LinearRegressionQRTrainer} on {@link DenseLocalOnHeapMatrix}.
+ */
+public class LocalLinearRegressionQRTrainerTest extends GenericLinearRegressionTrainerTest {
+    /** */
+    public LocalLinearRegressionQRTrainerTest() {
+        super(
+            new LinearRegressionQRTrainer(),
+            DenseLocalOnHeapMatrix::new,
+            DenseLocalOnHeapVector::new,
+            1e-6
+        );
+    }
+}
\ No newline at end of file

http://git-wip-us.apache.org/repos/asf/ignite/blob/b2060855/modules/ml/src/test/java/org/apache/ignite/ml/regressions/linear/LocalLinearRegressionSGDTrainerTest.java
----------------------------------------------------------------------
diff --git a/modules/ml/src/test/java/org/apache/ignite/ml/regressions/linear/LocalLinearRegressionSGDTrainerTest.java b/modules/ml/src/test/java/org/apache/ignite/ml/regressions/linear/LocalLinearRegressionSGDTrainerTest.java
new file mode 100644
index 0000000..bea164d
--- /dev/null
+++ b/modules/ml/src/test/java/org/apache/ignite/ml/regressions/linear/LocalLinearRegressionSGDTrainerTest.java
@@ -0,0 +1,35 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.ignite.ml.regressions.linear;
+
+import org.apache.ignite.ml.math.impls.matrix.DenseLocalOnHeapMatrix;
+import org.apache.ignite.ml.math.impls.vector.DenseLocalOnHeapVector;
+
+/**
+ * Tests for {@link LinearRegressionSGDTrainer} on {@link DenseLocalOnHeapMatrix}.
+ */
+public class LocalLinearRegressionSGDTrainerTest extends GenericLinearRegressionTrainerTest {
+    /** */
+    public LocalLinearRegressionSGDTrainerTest() {
+        super(
+            new LinearRegressionSGDTrainer(100_000, 1e-12),
+            DenseLocalOnHeapMatrix::new,
+            DenseLocalOnHeapVector::new,
+            1e-2);
+    }
+}
\ No newline at end of file

http://git-wip-us.apache.org/repos/asf/ignite/blob/b2060855/modules/ml/src/test/resources/datasets/regression/README.md
----------------------------------------------------------------------
diff --git a/modules/ml/src/test/resources/datasets/regression/README.md b/modules/ml/src/test/resources/datasets/regression/README.md
new file mode 100644
index 0000000..b4d57cf
--- /dev/null
+++ b/modules/ml/src/test/resources/datasets/regression/README.md
@@ -0,0 +1,98 @@
+This package contains two datasets:
+
+Boston House Prices dataset
+===========================
+
+Notes
+------
+Data Set Characteristics:
+
+    :Number of Instances: 506
+
+    :Number of Attributes: 13 numeric/categorical predictive
+
+    :Median Value (attribute 14) is usually the target
+
+    :Attribute Information (in order):
+        - CRIM     per capita crime rate by town
+        - ZN       proportion of residential land zoned for lots over 25,000 sq.ft.
+        - INDUS    proportion of non-retail business acres per town
+        - CHAS     Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
+        - NOX      nitric oxides concentration (parts per 10 million)
+        - RM       average number of rooms per dwelling
+        - AGE      proportion of owner-occupied units built prior to 1940
+        - DIS      weighted distances to five Boston employment centres
+        - RAD      index of accessibility to radial highways
+        - TAX      full-value property-tax rate per $10,000
+        - PTRATIO  pupil-teacher ratio by town
+        - B        1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
+        - LSTAT    % lower status of the population
+        - MEDV     Median value of owner-occupied homes in $1000's
+
+    :Missing Attribute Values: None
+
+    :Creator: Harrison, D. and Rubinfeld, D.L.
+
+This is a copy of UCI ML housing dataset.
+http://archive.ics.uci.edu/ml/datasets/Housing
+
+
+This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.
+
+The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
+prices and the demand for clean air', J. Environ. Economics & Management,
+vol.5, 81-102, 1978.   Used in Belsley, Kuh & Welsch, 'Regression diagnostics
+...', Wiley, 1980.   N.B. Various transformations are used in the table on
+pages 244-261 of the latter.
+
+The Boston house-price data has been used in many machine learning papers that address regression
+problems.
+
+**References**
+
+   - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
+   - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
+   - many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)
+
+
+Diabetes dataset
+================
+
+Notes
+-----
+
+Ten baseline variables, age, sex, body mass index, average blood
+pressure, and six blood serum measurements were obtained for each of n =
+442 diabetes patients, as well as the response of interest, a
+quantitative measure of disease progression one year after baseline.
+
+Data Set Characteristics:
+
+  :Number of Instances: 442
+
+  :Number of Attributes: First 10 columns are numeric predictive values
+
+  :Target: Column 11 is a quantitative measure of disease progression one year after baseline
+
+  :Attributes:
+    :Age:
+    :Sex:
+    :Body mass index:
+    :Average blood pressure:
+    :S1:
+    :S2:
+    :S3:
+    :S4:
+    :S5:
+    :S6:
+
+Note: Each of these 10 feature variables have been mean centered and scaled by the standard deviation times
+n_samples
+ (i.e. the sum of squares of each column totals 1).
+
+Source URL:
+http://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
+
+For more information see:
+Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani (2004) "Least Angle Regression," Annals of Statistics (with discussion), 407-499.
+(http://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf)
\ No newline at end of file

http://git-wip-us.apache.org/repos/asf/ignite/blob/b2060855/modules/ml/src/test/resources/datasets/regression/boston.csv
----------------------------------------------------------------------
diff --git a/modules/ml/src/test/resources/datasets/regression/boston.csv b/modules/ml/src/test/resources/datasets/regression/boston.csv
new file mode 100644
index 0000000..b43afa9
--- /dev/null
+++ b/modules/ml/src/test/resources/datasets/regression/boston.csv
@@ -0,0 +1,506 @@
+24.0, 0.00632, 18.0, 2.31, 0.0, 0.538, 6.575, 65.2, 4.09, 1.0, 296.0, 15.3, 396.9, 4.98
+21.6, 0.02731, 0.0, 7.07, 0.0, 0.469, 6.421, 78.9, 4.9671, 2.0, 242.0, 17.8, 396.9, 9.14
+34.7, 0.02729, 0.0, 7.07, 0.0, 0.469, 7.185, 61.1, 4.9671, 2.0, 242.0, 17.8, 392.83, 4.03
+33.4, 0.03237, 0.0, 2.18, 0.0, 0.458, 6.998, 45.8, 6.0622, 3.0, 222.0, 18.7, 394.63, 2.94
+36.2, 0.06905, 0.0, 2.18, 0.0, 0.458, 7.147, 54.2, 6.0622, 3.0, 222.0, 18.7, 396.9, 5.33
+28.7, 0.02985, 0.0, 2.18, 0.0, 0.458, 6.43, 58.7, 6.0622, 3.0, 222.0, 18.7, 394.12, 5.21
+22.9, 0.08829, 12.5, 7.87, 0.0, 0.524, 6.012, 66.6, 5.5605, 5.0, 311.0, 15.2, 395.6, 12.43
+27.1, 0.14455, 12.5, 7.87, 0.0, 0.524, 6.172, 96.1, 5.9505, 5.0, 311.0, 15.2, 396.9, 19.15
+16.5, 0.21124, 12.5, 7.87, 0.0, 0.524, 5.631, 100.0, 6.0821, 5.0, 311.0, 15.2, 386.63, 29.93
+18.9, 0.17004, 12.5, 7.87, 0.0, 0.524, 6.004, 85.9, 6.5921, 5.0, 311.0, 15.2, 386.71, 17.1
+15.0, 0.22489, 12.5, 7.87, 0.0, 0.524, 6.377, 94.3, 6.3467, 5.0, 311.0, 15.2, 392.52, 20.45
+18.9, 0.11747, 12.5, 7.87, 0.0, 0.524, 6.009, 82.9, 6.2267, 5.0, 311.0, 15.2, 396.9, 13.27
+21.7, 0.09378, 12.5, 7.87, 0.0, 0.524, 5.889, 39.0, 5.4509, 5.0, 311.0, 15.2, 390.5, 15.71
+20.4, 0.62976, 0.0, 8.14, 0.0, 0.538, 5.949, 61.8, 4.7075, 4.0, 307.0, 21.0, 396.9, 8.26
+18.2, 0.63796, 0.0, 8.14, 0.0, 0.538, 6.096, 84.5, 4.4619, 4.0, 307.0, 21.0, 380.02, 10.26
+19.9, 0.62739, 0.0, 8.14, 0.0, 0.538, 5.834, 56.5, 4.4986, 4.0, 307.0, 21.0, 395.62, 8.47
+23.1, 1.05393, 0.0, 8.14, 0.0, 0.538, 5.935, 29.3, 4.4986, 4.0, 307.0, 21.0, 386.85, 6.58
+17.5, 0.7842, 0.0, 8.14, 0.0, 0.538, 5.99, 81.7, 4.2579, 4.0, 307.0, 21.0, 386.75, 14.67
+20.2, 0.80271, 0.0, 8.14, 0.0, 0.538, 5.456, 36.6, 3.7965, 4.0, 307.0, 21.0, 288.99, 11.69
+18.2, 0.7258, 0.0, 8.14, 0.0, 0.538, 5.727, 69.5, 3.7965, 4.0, 307.0, 21.0, 390.95, 11.28
+13.6, 1.25179, 0.0, 8.14, 0.0, 0.538, 5.57, 98.1, 3.7979, 4.0, 307.0, 21.0, 376.57, 21.02
+19.6, 0.85204, 0.0, 8.14, 0.0, 0.538, 5.965, 89.2, 4.0123, 4.0, 307.0, 21.0, 392.53, 13.83
+15.2, 1.23247, 0.0, 8.14, 0.0, 0.538, 6.142, 91.7, 3.9769, 4.0, 307.0, 21.0, 396.9, 18.72
+14.5, 0.98843, 0.0, 8.14, 0.0, 0.538, 5.813, 100.0, 4.0952, 4.0, 307.0, 21.0, 394.54, 19.88
+15.6, 0.75026, 0.0, 8.14, 0.0, 0.538, 5.924, 94.1, 4.3996, 4.0, 307.0, 21.0, 394.33, 16.3
+13.9, 0.84054, 0.0, 8.14, 0.0, 0.538, 5.599, 85.7, 4.4546, 4.0, 307.0, 21.0, 303.42, 16.51
+16.6, 0.67191, 0.0, 8.14, 0.0, 0.538, 5.813, 90.3, 4.682, 4.0, 307.0, 21.0, 376.88, 14.81
+14.8, 0.95577, 0.0, 8.14, 0.0, 0.538, 6.047, 88.8, 4.4534, 4.0, 307.0, 21.0, 306.38, 17.28
+18.4, 0.77299, 0.0, 8.14, 0.0, 0.538, 6.495, 94.4, 4.4547, 4.0, 307.0, 21.0, 387.94, 12.8
+21.0, 1.00245, 0.0, 8.14, 0.0, 0.538, 6.674, 87.3, 4.239, 4.0, 307.0, 21.0, 380.23, 11.98
+12.7, 1.13081, 0.0, 8.14, 0.0, 0.538, 5.713, 94.1, 4.233, 4.0, 307.0, 21.0, 360.17, 22.6
+14.5, 1.35472, 0.0, 8.14, 0.0, 0.538, 6.072, 100.0, 4.175, 4.0, 307.0, 21.0, 376.73, 13.04
+13.2, 1.38799, 0.0, 8.14, 0.0, 0.538, 5.95, 82.0, 3.99, 4.0, 307.0, 21.0, 232.6, 27.71
+13.1, 1.15172, 0.0, 8.14, 0.0, 0.538, 5.701, 95.0, 3.7872, 4.0, 307.0, 21.0, 358.77, 18.35
+13.5, 1.61282, 0.0, 8.14, 0.0, 0.538, 6.096, 96.9, 3.7598, 4.0, 307.0, 21.0, 248.31, 20.34
+18.9, 0.06417, 0.0, 5.96, 0.0, 0.499, 5.933, 68.2, 3.3603, 5.0, 279.0, 19.2, 396.9, 9.68
+20.0, 0.09744, 0.0, 5.96, 0.0, 0.499, 5.841, 61.4, 3.3779, 5.0, 279.0, 19.2, 377.56, 11.41
+21.0, 0.08014, 0.0, 5.96, 0.0, 0.499, 5.85, 41.5, 3.9342, 5.0, 279.0, 19.2, 396.9, 8.77
+24.7, 0.17505, 0.0, 5.96, 0.0, 0.499, 5.966, 30.2, 3.8473, 5.0, 279.0, 19.2, 393.43, 10.13
+30.8, 0.02763, 75.0, 2.95, 0.0, 0.428, 6.595, 21.8, 5.4011, 3.0, 252.0, 18.3, 395.63, 4.32
+34.9, 0.03359, 75.0, 2.95, 0.0, 0.428, 7.024, 15.8, 5.4011, 3.0, 252.0, 18.3, 395.62, 1.98
+26.6, 0.12744, 0.0, 6.91, 0.0, 0.448, 6.77, 2.9, 5.7209, 3.0, 233.0, 17.9, 385.41, 4.84
+25.3, 0.1415, 0.0, 6.91, 0.0, 0.448, 6.169, 6.6, 5.7209, 3.0, 233.0, 17.9, 383.37, 5.81
+24.7, 0.15936, 0.0, 6.91, 0.0, 0.448, 6.211, 6.5, 5.7209, 3.0, 233.0, 17.9, 394.46, 7.44
+21.2, 0.12269, 0.0, 6.91, 0.0, 0.448, 6.069, 40.0, 5.7209, 3.0, 233.0, 17.9, 389.39, 9.55
+19.3, 0.17142, 0.0, 6.91, 0.0, 0.448, 5.682, 33.8, 5.1004, 3.0, 233.0, 17.9, 396.9, 10.21
+20.0, 0.18836, 0.0, 6.91, 0.0, 0.448, 5.786, 33.3, 5.1004, 3.0, 233.0, 17.9, 396.9, 14.15
+16.6, 0.22927, 0.0, 6.91, 0.0, 0.448, 6.03, 85.5, 5.6894, 3.0, 233.0, 17.9, 392.74, 18.8
+14.4, 0.25387, 0.0, 6.91, 0.0, 0.448, 5.399, 95.3, 5.87, 3.0, 233.0, 17.9, 396.9, 30.81
+19.4, 0.21977, 0.0, 6.91, 0.0, 0.448, 5.602, 62.0, 6.0877, 3.0, 233.0, 17.9, 396.9, 16.2
+19.7, 0.08873, 21.0, 5.64, 0.0, 0.439, 5.963, 45.7, 6.8147, 4.0, 243.0, 16.8, 395.56, 13.45
+20.5, 0.04337, 21.0, 5.64, 0.0, 0.439, 6.115, 63.0, 6.8147, 4.0, 243.0, 16.8, 393.97, 9.43
+25.0, 0.0536, 21.0, 5.64, 0.0, 0.439, 6.511, 21.1, 6.8147, 4.0, 243.0, 16.8, 396.9, 5.28
+23.4, 0.04981, 21.0, 5.64, 0.0, 0.439, 5.998, 21.4, 6.8147, 4.0, 243.0, 16.8, 396.9, 8.43
+18.9, 0.0136, 75.0, 4.0, 0.0, 0.41, 5.888, 47.6, 7.3197, 3.0, 469.0, 21.1, 396.9, 14.8
+35.4, 0.01311, 90.0, 1.22, 0.0, 0.403, 7.249, 21.9, 8.6966, 5.0, 226.0, 17.9, 395.93, 4.81
+24.7, 0.02055, 85.0, 0.74, 0.0, 0.41, 6.383, 35.7, 9.1876, 2.0, 313.0, 17.3, 396.9, 5.77
+31.6, 0.01432, 100.0, 1.32, 0.0, 0.411, 6.816, 40.5, 8.3248, 5.0, 256.0, 15.1, 392.9, 3.95
+23.3, 0.15445, 25.0, 5.13, 0.0, 0.453, 6.145, 29.2, 7.8148, 8.0, 284.0, 19.7, 390.68, 6.86
+19.6, 0.10328, 25.0, 5.13, 0.0, 0.453, 5.927, 47.2, 6.932, 8.0, 284.0, 19.7, 396.9, 9.22
+18.7, 0.14932, 25.0, 5.13, 0.0, 0.453, 5.741, 66.2, 7.2254, 8.0, 284.0, 19.7, 395.11, 13.15
+16.0, 0.17171, 25.0, 5.13, 0.0, 0.453, 5.966, 93.4, 6.8185, 8.0, 284.0, 19.7, 378.08, 14.44
+22.2, 0.11027, 25.0, 5.13, 0.0, 0.453, 6.456, 67.8, 7.2255, 8.0, 284.0, 19.7, 396.9, 6.73
+25.0, 0.1265, 25.0, 5.13, 0.0, 0.453, 6.762, 43.4, 7.9809, 8.0, 284.0, 19.7, 395.58, 9.5
+33.0, 0.01951, 17.5, 1.38, 0.0, 0.4161, 7.104, 59.5, 9.2229, 3.0, 216.0, 18.6, 393.24, 8.05
+23.5, 0.03584, 80.0, 3.37, 0.0, 0.398, 6.29, 17.8, 6.6115, 4.0, 337.0, 16.1, 396.9, 4.67
+19.4, 0.04379, 80.0, 3.37, 0.0, 0.398, 5.787, 31.1, 6.6115, 4.0, 337.0, 16.1, 396.9, 10.24
+22.0, 0.05789, 12.5, 6.07, 0.0, 0.409, 5.878, 21.4, 6.498, 4.0, 345.0, 18.9, 396.21, 8.1
+17.4, 0.13554, 12.5, 6.07, 0.0, 0.409, 5.594, 36.8, 6.498, 4.0, 345.0, 18.9, 396.9, 13.09
+20.9, 0.12816, 12.5, 6.07, 0.0, 0.409, 5.885, 33.0, 6.498, 4.0, 345.0, 18.9, 396.9, 8.79
+24.2, 0.08826, 0.0, 10.81, 0.0, 0.413, 6.417, 6.6, 5.2873, 4.0, 305.0, 19.2, 383.73, 6.72
+21.7, 0.15876, 0.0, 10.81, 0.0, 0.413, 5.961, 17.5, 5.2873, 4.0, 305.0, 19.2, 376.94, 9.88
+22.8, 0.09164, 0.0, 10.81, 0.0, 0.413, 6.065, 7.8, 5.2873, 4.0, 305.0, 19.2, 390.91, 5.52
+23.4, 0.19539, 0.0, 10.81, 0.0, 0.413, 6.245, 6.2, 5.2873, 4.0, 305.0, 19.2, 377.17, 7.54
+24.1, 0.07896, 0.0, 12.83, 0.0, 0.437, 6.273, 6.0, 4.2515, 5.0, 398.0, 18.7, 394.92, 6.78
+21.4, 0.09512, 0.0, 12.83, 0.0, 0.437, 6.286, 45.0, 4.5026, 5.0, 398.0, 18.7, 383.23, 8.94
+20.0, 0.10153, 0.0, 12.83, 0.0, 0.437, 6.279, 74.5, 4.0522, 5.0, 398.0, 18.7, 373.66, 11.97
+20.8, 0.08707, 0.0, 12.83, 0.0, 0.437, 6.14, 45.8, 4.0905, 5.0, 398.0, 18.7, 386.96, 10.27
+21.2, 0.05646, 0.0, 12.83, 0.0, 0.437, 6.232, 53.7, 5.0141, 5.0, 398.0, 18.7, 386.4, 12.34
+20.3, 0.08387, 0.0, 12.83, 0.0, 0.437, 5.874, 36.6, 4.5026, 5.0, 398.0, 18.7, 396.06, 9.1
+28.0, 0.04113, 25.0, 4.86, 0.0, 0.426, 6.727, 33.5, 5.4007, 4.0, 281.0, 19.0, 396.9, 5.29
+23.9, 0.04462, 25.0, 4.86, 0.0, 0.426, 6.619, 70.4, 5.4007, 4.0, 281.0, 19.0, 395.63, 7.22
+24.8, 0.03659, 25.0, 4.86, 0.0, 0.426, 6.302, 32.2, 5.4007, 4.0, 281.0, 19.0, 396.9, 6.72
+22.9, 0.03551, 25.0, 4.86, 0.0, 0.426, 6.167, 46.7, 5.4007, 4.0, 281.0, 19.0, 390.64, 7.51
+23.9, 0.05059, 0.0, 4.49, 0.0, 0.449, 6.389, 48.0, 4.7794, 3.0, 247.0, 18.5, 396.9, 9.62
+26.6, 0.05735, 0.0, 4.49, 0.0, 0.449, 6.63, 56.1, 4.4377, 3.0, 247.0, 18.5, 392.3, 6.53
+22.5, 0.05188, 0.0, 4.49, 0.0, 0.449, 6.015, 45.1, 4.4272, 3.0, 247.0, 18.5, 395.99, 12.86
+22.2, 0.07151, 0.0, 4.49, 0.0, 0.449, 6.121, 56.8, 3.7476, 3.0, 247.0, 18.5, 395.15, 8.44
+23.6, 0.0566, 0.0, 3.41, 0.0, 0.489, 7.007, 86.3, 3.4217, 2.0, 270.0, 17.8, 396.9, 5.5
+28.7, 0.05302, 0.0, 3.41, 0.0, 0.489, 7.079, 63.1, 3.4145, 2.0, 270.0, 17.8, 396.06, 5.7
+22.6, 0.04684, 0.0, 3.41, 0.0, 0.489, 6.417, 66.1, 3.0923, 2.0, 270.0, 17.8, 392.18, 8.81
+22.0, 0.03932, 0.0, 3.41, 0.0, 0.489, 6.405, 73.9, 3.0921, 2.0, 270.0, 17.8, 393.55, 8.2
+22.9, 0.04203, 28.0, 15.04, 0.0, 0.464, 6.442, 53.6, 3.6659, 4.0, 270.0, 18.2, 395.01, 8.16
+25.0, 0.02875, 28.0, 15.04, 0.0, 0.464, 6.211, 28.9, 3.6659, 4.0, 270.0, 18.2, 396.33, 6.21
+20.6, 0.04294, 28.0, 15.04, 0.0, 0.464, 6.249, 77.3, 3.615, 4.0, 270.0, 18.2, 396.9, 10.59
+28.4, 0.12204, 0.0, 2.89, 0.0, 0.445, 6.625, 57.8, 3.4952, 2.0, 276.0, 18.0, 357.98, 6.65
+21.4, 0.11504, 0.0, 2.89, 0.0, 0.445, 6.163, 69.6, 3.4952, 2.0, 276.0, 18.0, 391.83, 11.34
+38.7, 0.12083, 0.0, 2.89, 0.0, 0.445, 8.069, 76.0, 3.4952, 2.0, 276.0, 18.0, 396.9, 4.21
+43.8, 0.08187, 0.0, 2.89, 0.0, 0.445, 7.82, 36.9, 3.4952, 2.0, 276.0, 18.0, 393.53, 3.57
+33.2, 0.0686, 0.0, 2.89, 0.0, 0.445, 7.416, 62.5, 3.4952, 2.0, 276.0, 18.0, 396.9, 6.19
+27.5, 0.14866, 0.0, 8.56, 0.0, 0.52, 6.727, 79.9, 2.7778, 5.0, 384.0, 20.9, 394.76, 9.42
+26.5, 0.11432, 0.0, 8.56, 0.0, 0.52, 6.781, 71.3, 2.8561, 5.0, 384.0, 20.9, 395.58, 7.67
+18.6, 0.22876, 0.0, 8.56, 0.0, 0.52, 6.405, 85.4, 2.7147, 5.0, 384.0, 20.9, 70.8, 10.63
+19.3, 0.21161, 0.0, 8.56, 0.0, 0.52, 6.137, 87.4, 2.7147, 5.0, 384.0, 20.9, 394.47, 13.44
+20.1, 0.1396, 0.0, 8.56, 0.0, 0.52, 6.167, 90.0, 2.421, 5.0, 384.0, 20.9, 392.69, 12.33
+19.5, 0.13262, 0.0, 8.56, 0.0, 0.52, 5.851, 96.7, 2.1069, 5.0, 384.0, 20.9, 394.05, 16.47
+19.5, 0.1712, 0.0, 8.56, 0.0, 0.52, 5.836, 91.9, 2.211, 5.0, 384.0, 20.9, 395.67, 18.66
+20.4, 0.13117, 0.0, 8.56, 0.0, 0.52, 6.127, 85.2, 2.1224, 5.0, 384.0, 20.9, 387.69, 14.09
+19.8, 0.12802, 0.0, 8.56, 0.0, 0.52, 6.474, 97.1, 2.4329, 5.0, 384.0, 20.9, 395.24, 12.27
+19.4, 0.26363, 0.0, 8.56, 0.0, 0.52, 6.229, 91.2, 2.5451, 5.0, 384.0, 20.9, 391.23, 15.55
+21.7, 0.10793, 0.0, 8.56, 0.0, 0.52, 6.195, 54.4, 2.7778, 5.0, 384.0, 20.9, 393.49, 13.0
+22.8, 0.10084, 0.0, 10.01, 0.0, 0.547, 6.715, 81.6, 2.6775, 6.0, 432.0, 17.8, 395.59, 10.16
+18.8, 0.12329, 0.0, 10.01, 0.0, 0.547, 5.913, 92.9, 2.3534, 6.0, 432.0, 17.8, 394.95, 16.21
+18.7, 0.22212, 0.0, 10.01, 0.0, 0.547, 6.092, 95.4, 2.548, 6.0, 432.0, 17.8, 396.9, 17.09
+18.5, 0.14231, 0.0, 10.01, 0.0, 0.547, 6.254, 84.2, 2.2565, 6.0, 432.0, 17.8, 388.74, 10.45
+18.3, 0.17134, 0.0, 10.01, 0.0, 0.547, 5.928, 88.2, 2.4631, 6.0, 432.0, 17.8, 344.91, 15.76
+21.2, 0.13158, 0.0, 10.01, 0.0, 0.547, 6.176, 72.5, 2.7301, 6.0, 432.0, 17.8, 393.3, 12.04
+19.2, 0.15098, 0.0, 10.01, 0.0, 0.547, 6.021, 82.6, 2.7474, 6.0, 432.0, 17.8, 394.51, 10.3
+20.4, 0.13058, 0.0, 10.01, 0.0, 0.547, 5.872, 73.1, 2.4775, 6.0, 432.0, 17.8, 338.63, 15.37
+19.3, 0.14476, 0.0, 10.01, 0.0, 0.547, 5.731, 65.2, 2.7592, 6.0, 432.0, 17.8, 391.5, 13.61
+22.0, 0.06899, 0.0, 25.65, 0.0, 0.581, 5.87, 69.7, 2.2577, 2.0, 188.0, 19.1, 389.15, 14.37
+20.3, 0.07165, 0.0, 25.65, 0.0, 0.581, 6.004, 84.1, 2.1974, 2.0, 188.0, 19.1, 377.67, 14.27
+20.5, 0.09299, 0.0, 25.65, 0.0, 0.581, 5.961, 92.9, 2.0869, 2.0, 188.0, 19.1, 378.09, 17.93
+17.3, 0.15038, 0.0, 25.65, 0.0, 0.581, 5.856, 97.0, 1.9444, 2.0, 188.0, 19.1, 370.31, 25.41
+18.8, 0.09849, 0.0, 25.65, 0.0, 0.581, 5.879, 95.8, 2.0063, 2.0, 188.0, 19.1, 379.38, 17.58
+21.4, 0.16902, 0.0, 25.65, 0.0, 0.581, 5.986, 88.4, 1.9929, 2.0, 188.0, 19.1, 385.02, 14.81
+15.7, 0.38735, 0.0, 25.65, 0.0, 0.581, 5.613, 95.6, 1.7572, 2.0, 188.0, 19.1, 359.29, 27.26
+16.2, 0.25915, 0.0, 21.89, 0.0, 0.624, 5.693, 96.0, 1.7883, 4.0, 437.0, 21.2, 392.11, 17.19
+18.0, 0.32543, 0.0, 21.89, 0.0, 0.624, 6.431, 98.8, 1.8125, 4.0, 437.0, 21.2, 396.9, 15.39
+14.3, 0.88125, 0.0, 21.89, 0.0, 0.624, 5.637, 94.7, 1.9799, 4.0, 437.0, 21.2, 396.9, 18.34
+19.2, 0.34006, 0.0, 21.89, 0.0, 0.624, 6.458, 98.9, 2.1185, 4.0, 437.0, 21.2, 395.04, 12.6
+19.6, 1.19294, 0.0, 21.89, 0.0, 0.624, 6.326, 97.7, 2.271, 4.0, 437.0, 21.2, 396.9, 12.26
+23.0, 0.59005, 0.0, 21.89, 0.0, 0.624, 6.372, 97.9, 2.3274, 4.0, 437.0, 21.2, 385.76, 11.12
+18.4, 0.32982, 0.0, 21.89, 0.0, 0.624, 5.822, 95.4, 2.4699, 4.0, 437.0, 21.2, 388.69, 15.03
+15.6, 0.97617, 0.0, 21.89, 0.0, 0.624, 5.757, 98.4, 2.346, 4.0, 437.0, 21.2, 262.76, 17.31
+18.1, 0.55778, 0.0, 21.89, 0.0, 0.624, 6.335, 98.2, 2.1107, 4.0, 437.0, 21.2, 394.67, 16.96
+17.4, 0.32264, 0.0, 21.89, 0.0, 0.624, 5.942, 93.5, 1.9669, 4.0, 437.0, 21.2, 378.25, 16.9
+17.1, 0.35233, 0.0, 21.89, 0.0, 0.624, 6.454, 98.4, 1.8498, 4.0, 437.0, 21.2, 394.08, 14.59
+13.3, 0.2498, 0.0, 21.89, 0.0, 0.624, 5.857, 98.2, 1.6686, 4.0, 437.0, 21.2, 392.04, 21.32
+17.8, 0.54452, 0.0, 21.89, 0.0, 0.624, 6.151, 97.9, 1.6687, 4.0, 437.0, 21.2, 396.9, 18.46
+14.0, 0.2909, 0.0, 21.89, 0.0, 0.624, 6.174, 93.6, 1.6119, 4.0, 437.0, 21.2, 388.08, 24.16
+14.4, 1.62864, 0.0, 21.89, 0.0, 0.624, 5.019, 100.0, 1.4394, 4.0, 437.0, 21.2, 396.9, 34.41
+13.4, 3.32105, 0.0, 19.58, 1.0, 0.871, 5.403, 100.0, 1.3216, 5.0, 403.0, 14.7, 396.9, 26.82
+15.6, 4.0974, 0.0, 19.58, 0.0, 0.871, 5.468, 100.0, 1.4118, 5.0, 403.0, 14.7, 396.9, 26.42
+11.8, 2.77974, 0.0, 19.58, 0.0, 0.871, 4.903, 97.8, 1.3459, 5.0, 403.0, 14.7, 396.9, 29.29
+13.8, 2.37934, 0.0, 19.58, 0.0, 0.871, 6.13, 100.0, 1.4191, 5.0, 403.0, 14.7, 172.91, 27.8
+15.6, 2.15505, 0.0, 19.58, 0.0, 0.871, 5.628, 100.0, 1.5166, 5.0, 403.0, 14.7, 169.27, 16.65
+14.6, 2.36862, 0.0, 19.58, 0.0, 0.871, 4.926, 95.7, 1.4608, 5.0, 403.0, 14.7, 391.71, 29.53
+17.8, 2.33099, 0.0, 19.58, 0.0, 0.871, 5.186, 93.8, 1.5296, 5.0, 403.0, 14.7, 356.99, 28.32
+15.4, 2.73397, 0.0, 19.58, 0.0, 0.871, 5.597, 94.9, 1.5257, 5.0, 403.0, 14.7, 351.85, 21.45
+21.5, 1.6566, 0.0, 19.58, 0.0, 0.871, 6.122, 97.3, 1.618, 5.0, 403.0, 14.7, 372.8, 14.1
+19.6, 1.49632, 0.0, 19.58, 0.0, 0.871, 5.404, 100.0, 1.5916, 5.0, 403.0, 14.7, 341.6, 13.28
+15.3, 1.12658, 0.0, 19.58, 1.0, 0.871, 5.012, 88.0, 1.6102, 5.0, 403.0, 14.7, 343.28, 12.12
+19.4, 2.14918, 0.0, 19.58, 0.0, 0.871, 5.709, 98.5, 1.6232, 5.0, 403.0, 14.7, 261.95, 15.79
+17.0, 1.41385, 0.0, 19.58, 1.0, 0.871, 6.129, 96.0, 1.7494, 5.0, 403.0, 14.7, 321.02, 15.12
+15.6, 3.53501, 0.0, 19.58, 1.0, 0.871, 6.152, 82.6, 1.7455, 5.0, 403.0, 14.7, 88.01, 15.02
+13.1, 2.44668, 0.0, 19.58, 0.0, 0.871, 5.272, 94.0, 1.7364, 5.0, 403.0, 14.7, 88.63, 16.14
+41.3, 1.22358, 0.0, 19.58, 0.0, 0.605, 6.943, 97.4, 1.8773, 5.0, 403.0, 14.7, 363.43, 4.59
+24.3, 1.34284, 0.0, 19.58, 0.0, 0.605, 6.066, 100.0, 1.7573, 5.0, 403.0, 14.7, 353.89, 6.43
+23.3, 1.42502, 0.0, 19.58, 0.0, 0.871, 6.51, 100.0, 1.7659, 5.0, 403.0, 14.7, 364.31, 7.39
+27.0, 1.27346, 0.0, 19.58, 1.0, 0.605, 6.25, 92.6, 1.7984, 5.0, 403.0, 14.7, 338.92, 5.5
+50.0, 1.46336, 0.0, 19.58, 0.0, 0.605, 7.489, 90.8, 1.9709, 5.0, 403.0, 14.7, 374.43, 1.73
+50.0, 1.83377, 0.0, 19.58, 1.0, 0.605, 7.802, 98.2, 2.0407, 5.0, 403.0, 14.7, 389.61, 1.92
+50.0, 1.51902, 0.0, 19.58, 1.0, 0.605, 8.375, 93.9, 2.162, 5.0, 403.0, 14.7, 388.45, 3.32
+22.7, 2.24236, 0.0, 19.58, 0.0, 0.605, 5.854, 91.8, 2.422, 5.0, 403.0, 14.7, 395.11, 11.64
+25.0, 2.924, 0.0, 19.58, 0.0, 0.605, 6.101, 93.0, 2.2834, 5.0, 403.0, 14.7, 240.16, 9.81
+50.0, 2.01019, 0.0, 19.58, 0.0, 0.605, 7.929, 96.2, 2.0459, 5.0, 403.0, 14.7, 369.3, 3.7
+23.8, 1.80028, 0.0, 19.58, 0.0, 0.605, 5.877, 79.2, 2.4259, 5.0, 403.0, 14.7, 227.61, 12.14
+23.8, 2.3004, 0.0, 19.58, 0.0, 0.605, 6.319, 96.1, 2.1, 5.0, 403.0, 14.7, 297.09, 11.1
+22.3, 2.44953, 0.0, 19.58, 0.0, 0.605, 6.402, 95.2, 2.2625, 5.0, 403.0, 14.7, 330.04, 11.32
+17.4, 1.20742, 0.0, 19.58, 0.0, 0.605, 5.875, 94.6, 2.4259, 5.0, 403.0, 14.7, 292.29, 14.43
+19.1, 2.3139, 0.0, 19.58, 0.0, 0.605, 5.88, 97.3, 2.3887, 5.0, 403.0, 14.7, 348.13, 12.03
+23.1, 0.13914, 0.0, 4.05, 0.0, 0.51, 5.572, 88.5, 2.5961, 5.0, 296.0, 16.6, 396.9, 14.69
+23.6, 0.09178, 0.0, 4.05, 0.0, 0.51, 6.416, 84.1, 2.6463, 5.0, 296.0, 16.6, 395.5, 9.04
+22.6, 0.08447, 0.0, 4.05, 0.0, 0.51, 5.859, 68.7, 2.7019, 5.0, 296.0, 16.6, 393.23, 9.64
+29.4, 0.06664, 0.0, 4.05, 0.0, 0.51, 6.546, 33.1, 3.1323, 5.0, 296.0, 16.6, 390.96, 5.33
+23.2, 0.07022, 0.0, 4.05, 0.0, 0.51, 6.02, 47.2, 3.5549, 5.0, 296.0, 16.6, 393.23, 10.11
+24.6, 0.05425, 0.0, 4.05, 0.0, 0.51, 6.315, 73.4, 3.3175, 5.0, 296.0, 16.6, 395.6, 6.29
+29.9, 0.06642, 0.0, 4.05, 0.0, 0.51, 6.86, 74.4, 2.9153, 5.0, 296.0, 16.6, 391.27, 6.92
+37.2, 0.0578, 0.0, 2.46, 0.0, 0.488, 6.98, 58.4, 2.829, 3.0, 193.0, 17.8, 396.9, 5.04
+39.8, 0.06588, 0.0, 2.46, 0.0, 0.488, 7.765, 83.3, 2.741, 3.0, 193.0, 17.8, 395.56, 7.56
+36.2, 0.06888, 0.0, 2.46, 0.0, 0.488, 6.144, 62.2, 2.5979, 3.0, 193.0, 17.8, 396.9, 9.45
+37.9, 0.09103, 0.0, 2.46, 0.0, 0.488, 7.155, 92.2, 2.7006, 3.0, 193.0, 17.8, 394.12, 4.82
+32.5, 0.10008, 0.0, 2.46, 0.0, 0.488, 6.563, 95.6, 2.847, 3.0, 193.0, 17.8, 396.9, 5.68
+26.4, 0.08308, 0.0, 2.46, 0.0, 0.488, 5.604, 89.8, 2.9879, 3.0, 193.0, 17.8, 391.0, 13.98
+29.6, 0.06047, 0.0, 2.46, 0.0, 0.488, 6.153, 68.8, 3.2797, 3.0, 193.0, 17.8, 387.11, 13.15
+50.0, 0.05602, 0.0, 2.46, 0.0, 0.488, 7.831, 53.6, 3.1992, 3.0, 193.0, 17.8, 392.63, 4.45
+32.0, 0.07875, 45.0, 3.44, 0.0, 0.437, 6.782, 41.1, 3.7886, 5.0, 398.0, 15.2, 393.87, 6.68
+29.8, 0.12579, 45.0, 3.44, 0.0, 0.437, 6.556, 29.1, 4.5667, 5.0, 398.0, 15.2, 382.84, 4.56
+34.9, 0.0837, 45.0, 3.44, 0.0, 0.437, 7.185, 38.9, 4.5667, 5.0, 398.0, 15.2, 396.9, 5.39
+37.0, 0.09068, 45.0, 3.44, 0.0, 0.437, 6.951, 21.5, 6.4798, 5.0, 398.0, 15.2, 377.68, 5.1
+30.5, 0.06911, 45.0, 3.44, 0.0, 0.437, 6.739, 30.8, 6.4798, 5.0, 398.0, 15.2, 389.71, 4.69
+36.4, 0.08664, 45.0, 3.44, 0.0, 0.437, 7.178, 26.3, 6.4798, 5.0, 398.0, 15.2, 390.49, 2.87
+31.1, 0.02187, 60.0, 2.93, 0.0, 0.401, 6.8, 9.9, 6.2196, 1.0, 265.0, 15.6, 393.37, 5.03
+29.1, 0.01439, 60.0, 2.93, 0.0, 0.401, 6.604, 18.8, 6.2196, 1.0, 265.0, 15.6, 376.7, 4.38
+50.0, 0.01381, 80.0, 0.46, 0.0, 0.422, 7.875, 32.0, 5.6484, 4.0, 255.0, 14.4, 394.23, 2.97
+33.3, 0.04011, 80.0, 1.52, 0.0, 0.404, 7.287, 34.1, 7.309, 2.0, 329.0, 12.6, 396.9, 4.08
+30.3, 0.04666, 80.0, 1.52, 0.0, 0.404, 7.107, 36.6, 7.309, 2.0, 329.0, 12.6, 354.31, 8.61
+34.6, 0.03768, 80.0, 1.52, 0.0, 0.404, 7.274, 38.3, 7.309, 2.0, 329.0, 12.6, 392.2, 6.62
+34.9, 0.0315, 95.0, 1.47, 0.0, 0.403, 6.975, 15.3, 7.6534, 3.0, 402.0, 17.0, 396.9, 4.56
+32.9, 0.01778, 95.0, 1.47, 0.0, 0.403, 7.135, 13.9, 7.6534, 3.0, 402.0, 17.0, 384.3, 4.45
+24.1, 0.03445, 82.5, 2.03, 0.0, 0.415, 6.162, 38.4, 6.27, 2.0, 348.0, 14.7, 393.77, 7.43
+42.3, 0.02177, 82.5, 2.03, 0.0, 0.415, 7.61, 15.7, 6.27, 2.0, 348.0, 14.7, 395.38, 3.11
+48.5, 0.0351, 95.0, 2.68, 0.0, 0.4161, 7.853, 33.2, 5.118, 4.0, 224.0, 14.7, 392.78, 3.81
+50.0, 0.02009, 95.0, 2.68, 0.0, 0.4161, 8.034, 31.9, 5.118, 4.0, 224.0, 14.7, 390.55, 2.88
+22.6, 0.13642, 0.0, 10.59, 0.0, 0.489, 5.891, 22.3, 3.9454, 4.0, 277.0, 18.6, 396.9, 10.87
+24.4, 0.22969, 0.0, 10.59, 0.0, 0.489, 6.326, 52.5, 4.3549, 4.0, 277.0, 18.6, 394.87, 10.97
+22.5, 0.25199, 0.0, 10.59, 0.0, 0.489, 5.783, 72.7, 4.3549, 4.0, 277.0, 18.6, 389.43, 18.06
+24.4, 0.13587, 0.0, 10.59, 1.0, 0.489, 6.064, 59.1, 4.2392, 4.0, 277.0, 18.6, 381.32, 14.66
+20.0, 0.43571, 0.0, 10.59, 1.0, 0.489, 5.344, 100.0, 3.875, 4.0, 277.0, 18.6, 396.9, 23.09
+21.7, 0.17446, 0.0, 10.59, 1.0, 0.489, 5.96, 92.1, 3.8771, 4.0, 277.0, 18.6, 393.25, 17.27
+19.3, 0.37578, 0.0, 10.59, 1.0, 0.489, 5.404, 88.6, 3.665, 4.0, 277.0, 18.6, 395.24, 23.98
+22.4, 0.21719, 0.0, 10.59, 1.0, 0.489, 5.807, 53.8, 3.6526, 4.0, 277.0, 18.6, 390.94, 16.03
+28.1, 0.14052, 0.0, 10.59, 0.0, 0.489, 6.375, 32.3, 3.9454, 4.0, 277.0, 18.6, 385.81, 9.38
+23.7, 0.28955, 0.0, 10.59, 0.0, 0.489, 5.412, 9.8, 3.5875, 4.0, 277.0, 18.6, 348.93, 29.55
+25.0, 0.19802, 0.0, 10.59, 0.0, 0.489, 6.182, 42.4, 3.9454, 4.0, 277.0, 18.6, 393.63, 9.47
+23.3, 0.0456, 0.0, 13.89, 1.0, 0.55, 5.888, 56.0, 3.1121, 5.0, 276.0, 16.4, 392.8, 13.51
+28.7, 0.07013, 0.0, 13.89, 0.0, 0.55, 6.642, 85.1, 3.4211, 5.0, 276.0, 16.4, 392.78, 9.69
+21.5, 0.11069, 0.0, 13.89, 1.0, 0.55, 5.951, 93.8, 2.8893, 5.0, 276.0, 16.4, 396.9, 17.92
+23.0, 0.11425, 0.0, 13.89, 1.0, 0.55, 6.373, 92.4, 3.3633, 5.0, 276.0, 16.4, 393.74, 10.5
+26.7, 0.35809, 0.0, 6.2, 1.0, 0.507, 6.951, 88.5, 2.8617, 8.0, 307.0, 17.4, 391.7, 9.71
+21.7, 0.40771, 0.0, 6.2, 1.0, 0.507, 6.164, 91.3, 3.048, 8.0, 307.0, 17.4, 395.24, 21.46
+27.5, 0.62356, 0.0, 6.2, 1.0, 0.507, 6.879, 77.7, 3.2721, 8.0, 307.0, 17.4, 390.39, 9.93
+30.1, 0.6147, 0.0, 6.2, 0.0, 0.507, 6.618, 80.8, 3.2721, 8.0, 307.0, 17.4, 396.9, 7.6
+44.8, 0.31533, 0.0, 6.2, 0.0, 0.504, 8.266, 78.3, 2.8944, 8.0, 307.0, 17.4, 385.05, 4.14
+50.0, 0.52693, 0.0, 6.2, 0.0, 0.504, 8.725, 83.0, 2.8944, 8.0, 307.0, 17.4, 382.0, 4.63
+37.6, 0.38214, 0.0, 6.2, 0.0, 0.504, 8.04, 86.5, 3.2157, 8.0, 307.0, 17.4, 387.38, 3.13
+31.6, 0.41238, 0.0, 6.2, 0.0, 0.504, 7.163, 79.9, 3.2157, 8.0, 307.0, 17.4, 372.08, 6.36
+46.7, 0.29819, 0.0, 6.2, 0.0, 0.504, 7.686, 17.0, 3.3751, 8.0, 307.0, 17.4, 377.51, 3.92
+31.5, 0.44178, 0.0, 6.2, 0.0, 0.504, 6.552, 21.4, 3.3751, 8.0, 307.0, 17.4, 380.34, 3.76
+24.3, 0.537, 0.0, 6.2, 0.0, 0.504, 5.981, 68.1, 3.6715, 8.0, 307.0, 17.4, 378.35, 11.65
+31.7, 0.46296, 0.0, 6.2, 0.0, 0.504, 7.412, 76.9, 3.6715, 8.0, 307.0, 17.4, 376.14, 5.25
+41.7, 0.57529, 0.0, 6.2, 0.0, 0.507, 8.337, 73.3, 3.8384, 8.0, 307.0, 17.4, 385.91, 2.47
+48.3, 0.33147, 0.0, 6.2, 0.0, 0.507, 8.247, 70.4, 3.6519, 8.0, 307.0, 17.4, 378.95, 3.95
+29.0, 0.44791, 0.0, 6.2, 1.0, 0.507, 6.726, 66.5, 3.6519, 8.0, 307.0, 17.4, 360.2, 8.05
+24.0, 0.33045, 0.0, 6.2, 0.0, 0.507, 6.086, 61.5, 3.6519, 8.0, 307.0, 17.4, 376.75, 10.88
+25.1, 0.52058, 0.0, 6.2, 1.0, 0.507, 6.631, 76.5, 4.148, 8.0, 307.0, 17.4, 388.45, 9.54
+31.5, 0.51183, 0.0, 6.2, 0.0, 0.507, 7.358, 71.6, 4.148, 8.0, 307.0, 17.4, 390.07, 4.73
+23.7, 0.08244, 30.0, 4.93, 0.0, 0.428, 6.481, 18.5, 6.1899, 6.0, 300.0, 16.6, 379.41, 6.36
+23.3, 0.09252, 30.0, 4.93, 0.0, 0.428, 6.606, 42.2, 6.1899, 6.0, 300.0, 16.6, 383.78, 7.37
+22.0, 0.11329, 30.0, 4.93, 0.0, 0.428, 6.897, 54.3, 6.3361, 6.0, 300.0, 16.6, 391.25, 11.38
+20.1, 0.10612, 30.0, 4.93, 0.0, 0.428, 6.095, 65.1, 6.3361, 6.0, 300.0, 16.6, 394.62, 12.4
+22.2, 0.1029, 30.0, 4.93, 0.0, 0.428, 6.358, 52.9, 7.0355, 6.0, 300.0, 16.6, 372.75, 11.22
+23.7, 0.12757, 30.0, 4.93, 0.0, 0.428, 6.393, 7.8, 7.0355, 6.0, 300.0, 16.6, 374.71, 5.19
+17.6, 0.20608, 22.0, 5.86, 0.0, 0.431, 5.593, 76.5, 7.9549, 7.0, 330.0, 19.1, 372.49, 12.5
+18.5, 0.19133, 22.0, 5.86, 0.0, 0.431, 5.605, 70.2, 7.9549, 7.0, 330.0, 19.1, 389.13, 18.46
+24.3, 0.33983, 22.0, 5.86, 0.0, 0.431, 6.108, 34.9, 8.0555, 7.0, 330.0, 19.1, 390.18, 9.16
+20.5, 0.19657, 22.0, 5.86, 0.0, 0.431, 6.226, 79.2, 8.0555, 7.0, 330.0, 19.1, 376.14, 10.15
+24.5, 0.16439, 22.0, 5.86, 0.0, 0.431, 6.433, 49.1, 7.8265, 7.0, 330.0, 19.1, 374.71, 9.52
+26.2, 0.19073, 22.0, 5.86, 0.0, 0.431, 6.718, 17.5, 7.8265, 7.0, 330.0, 19.1, 393.74, 6.56
+24.4, 0.1403, 22.0, 5.86, 0.0, 0.431, 6.487, 13.0, 7.3967, 7.0, 330.0, 19.1, 396.28, 5.9
+24.8, 0.21409, 22.0, 5.86, 0.0, 0.431, 6.438, 8.9, 7.3967, 7.0, 330.0, 19.1, 377.07, 3.59
+29.6, 0.08221, 22.0, 5.86, 0.0, 0.431, 6.957, 6.8, 8.9067, 7.0, 330.0, 19.1, 386.09, 3.53
+42.8, 0.36894, 22.0, 5.86, 0.0, 0.431, 8.259, 8.4, 8.9067, 7.0, 330.0, 19.1, 396.9, 3.54
+21.9, 0.04819, 80.0, 3.64, 0.0, 0.392, 6.108, 32.0, 9.2203, 1.0, 315.0, 16.4, 392.89, 6.57
+20.9, 0.03548, 80.0, 3.64, 0.0, 0.392, 5.876, 19.1, 9.2203, 1.0, 315.0, 16.4, 395.18, 9.25
+44.0, 0.01538, 90.0, 3.75, 0.0, 0.394, 7.454, 34.2, 6.3361, 3.0, 244.0, 15.9, 386.34, 3.11
+50.0, 0.61154, 20.0, 3.97, 0.0, 0.647, 8.704, 86.9, 1.801, 5.0, 264.0, 13.0, 389.7, 5.12
+36.0, 0.66351, 20.0, 3.97, 0.0, 0.647, 7.333, 100.0, 1.8946, 5.0, 264.0, 13.0, 383.29, 7.79
+30.1, 0.65665, 20.0, 3.97, 0.0, 0.647, 6.842, 100.0, 2.0107, 5.0, 264.0, 13.0, 391.93, 6.9
+33.8, 0.54011, 20.0, 3.97, 0.0, 0.647, 7.203, 81.8, 2.1121, 5.0, 264.0, 13.0, 392.8, 9.59
+43.1, 0.53412, 20.0, 3.97, 0.0, 0.647, 7.52, 89.4, 2.1398, 5.0, 264.0, 13.0, 388.37, 7.26
+48.8, 0.52014, 20.0, 3.97, 0.0, 0.647, 8.398, 91.5, 2.2885, 5.0, 264.0, 13.0, 386.86, 5.91
+31.0, 0.82526, 20.0, 3.97, 0.0, 0.647, 7.327, 94.5, 2.0788, 5.0, 264.0, 13.0, 393.42, 11.25
+36.5, 0.55007, 20.0, 3.97, 0.0, 0.647, 7.206, 91.6, 1.9301, 5.0, 264.0, 13.0, 387.89, 8.1
+22.8, 0.76162, 20.0, 3.97, 0.0, 0.647, 5.56, 62.8, 1.9865, 5.0, 264.0, 13.0, 392.4, 10.45
+30.7, 0.7857, 20.0, 3.97, 0.0, 0.647, 7.014, 84.6, 2.1329, 5.0, 264.0, 13.0, 384.07, 14.79
+50.0, 0.57834, 20.0, 3.97, 0.0, 0.575, 8.297, 67.0, 2.4216, 5.0, 264.0, 13.0, 384.54, 7.44
+43.5, 0.5405, 20.0, 3.97, 0.0, 0.575, 7.47, 52.6, 2.872, 5.0, 264.0, 13.0, 390.3, 3.16
+20.7, 0.09065, 20.0, 6.96, 1.0, 0.464, 5.92, 61.5, 3.9175, 3.0, 223.0, 18.6, 391.34, 13.65
+21.1, 0.29916, 20.0, 6.96, 0.0, 0.464, 5.856, 42.1, 4.429, 3.0, 223.0, 18.6, 388.65, 13.0
+25.2, 0.16211, 20.0, 6.96, 0.0, 0.464, 6.24, 16.3, 4.429, 3.0, 223.0, 18.6, 396.9, 6.59
+24.4, 0.1146, 20.0, 6.96, 0.0, 0.464, 6.538, 58.7, 3.9175, 3.0, 223.0, 18.6, 394.96, 7.73
+35.2, 0.22188, 20.0, 6.96, 1.0, 0.464, 7.691, 51.8, 4.3665, 3.0, 223.0, 18.6, 390.77, 6.58
+32.4, 0.05644, 40.0, 6.41, 1.0, 0.447, 6.758, 32.9, 4.0776, 4.0, 254.0, 17.6, 396.9, 3.53
+32.0, 0.09604, 40.0, 6.41, 0.0, 0.447, 6.854, 42.8, 4.2673, 4.0, 254.0, 17.6, 396.9, 2.98
+33.2, 0.10469, 40.0, 6.41, 1.0, 0.447, 7.267, 49.0, 4.7872, 4.0, 254.0, 17.6, 389.25, 6.05
+33.1, 0.06127, 40.0, 6.41, 1.0, 0.447, 6.826, 27.6, 4.8628, 4.0, 254.0, 17.6, 393.45, 4.16
+29.1, 0.07978, 40.0, 6.41, 0.0, 0.447, 6.482, 32.1, 4.1403, 4.0, 254.0, 17.6, 396.9, 7.19
+35.1, 0.21038, 20.0, 3.33, 0.0, 0.4429, 6.812, 32.2, 4.1007, 5.0, 216.0, 14.9, 396.9, 4.85
+45.4, 0.03578, 20.0, 3.33, 0.0, 0.4429, 7.82, 64.5, 4.6947, 5.0, 216.0, 14.9, 387.31, 3.76
+35.4, 0.03705, 20.0, 3.33, 0.0, 0.4429, 6.968, 37.2, 5.2447, 5.0, 216.0, 14.9, 392.23, 4.59
+46.0, 0.06129, 20.0, 3.33, 1.0, 0.4429, 7.645, 49.7, 5.2119, 5.0, 216.0, 14.9, 377.07, 3.01
+50.0, 0.01501, 90.0, 1.21, 1.0, 0.401, 7.923, 24.8, 5.885, 1.0, 198.0, 13.6, 395.52, 3.16
+32.2, 0.00906, 90.0, 2.97, 0.0, 0.4, 7.088, 20.8, 7.3073, 1.0, 285.0, 15.3, 394.72, 7.85
+22.0, 0.01096, 55.0, 2.25, 0.0, 0.389, 6.453, 31.9, 7.3073, 1.0, 300.0, 15.3, 394.72, 8.23
+20.1, 0.01965, 80.0, 1.76, 0.0, 0.385, 6.23, 31.5, 9.0892, 1.0, 241.0, 18.2, 341.6, 12.93
+23.2, 0.03871, 52.5, 5.32, 0.0, 0.405, 6.209, 31.3, 7.3172, 6.0, 293.0, 16.6, 396.9, 7.14
+22.3, 0.0459, 52.5, 5.32, 0.0, 0.405, 6.315, 45.6, 7.3172, 6.0, 293.0, 16.6, 396.9, 7.6
+24.8, 0.04297, 52.5, 5.32, 0.0, 0.405, 6.565, 22.9, 7.3172, 6.0, 293.0, 16.6, 371.72, 9.51
+28.5, 0.03502, 80.0, 4.95, 0.0, 0.411, 6.861, 27.9, 5.1167, 4.0, 245.0, 19.2, 396.9, 3.33
+37.3, 0.07886, 80.0, 4.95, 0.0, 0.411, 7.148, 27.7, 5.1167, 4.0, 245.0, 19.2, 396.9, 3.56
+27.9, 0.03615, 80.0, 4.95, 0.0, 0.411, 6.63, 23.4, 5.1167, 4.0, 245.0, 19.2, 396.9, 4.7
+23.9, 0.08265, 0.0, 13.92, 0.0, 0.437, 6.127, 18.4, 5.5027, 4.0, 289.0, 16.0, 396.9, 8.58
+21.7, 0.08199, 0.0, 13.92, 0.0, 0.437, 6.009, 42.3, 5.5027, 4.0, 289.0, 16.0, 396.9, 10.4
+28.6, 0.12932, 0.0, 13.92, 0.0, 0.437, 6.678, 31.1, 5.9604, 4.0, 289.0, 16.0, 396.9, 6.27
+27.1, 0.05372, 0.0, 13.92, 0.0, 0.437, 6.549, 51.0, 5.9604, 4.0, 289.0, 16.0, 392.85, 7.39
+20.3, 0.14103, 0.0, 13.92, 0.0, 0.437, 5.79, 58.0, 6.32, 4.0, 289.0, 16.0, 396.9, 15.84
+22.5, 0.06466, 70.0, 2.24, 0.0, 0.4, 6.345, 20.1, 7.8278, 5.0, 358.0, 14.8, 368.24, 4.97
+29.0, 0.05561, 70.0, 2.24, 0.0, 0.4, 7.041, 10.0, 7.8278, 5.0, 358.0, 14.8, 371.58, 4.74
+24.8, 0.04417, 70.0, 2.24, 0.0, 0.4, 6.871, 47.4, 7.8278, 5.0, 358.0, 14.8, 390.86, 6.07
+22.0, 0.03537, 34.0, 6.09, 0.0, 0.433, 6.59, 40.4, 5.4917, 7.0, 329.0, 16.1, 395.75, 9.5
+26.4, 0.09266, 34.0, 6.09, 0.0, 0.433, 6.495, 18.4, 5.4917, 7.0, 329.0, 16.1, 383.61, 8.67
+33.1, 0.1, 34.0, 6.09, 0.0, 0.433, 6.982, 17.7, 5.4917, 7.0, 329.0, 16.1, 390.43, 4.86
+36.1, 0.05515, 33.0, 2.18, 0.0, 0.472, 7.236, 41.1, 4.022, 7.0, 222.0, 18.4, 393.68, 6.93
+28.4, 0.05479, 33.0, 2.18, 0.0, 0.472, 6.616, 58.1, 3.37, 7.0, 222.0, 18.4, 393.36, 8.93
+33.4, 0.07503, 33.0, 2.18, 0.0, 0.472, 7.42, 71.9, 3.0992, 7.0, 222.0, 18.4, 396.9, 6.47
+28.2, 0.04932, 33.0, 2.18, 0.0, 0.472, 6.849, 70.3, 3.1827, 7.0, 222.0, 18.4, 396.9, 7.53
+22.8, 0.49298, 0.0, 9.9, 0.0, 0.544, 6.635, 82.5, 3.3175, 4.0, 304.0, 18.4, 396.9, 4.54
+20.3, 0.3494, 0.0, 9.9, 0.0, 0.544, 5.972, 76.7, 3.1025, 4.0, 304.0, 18.4, 396.24, 9.97
+16.1, 2.63548, 0.0, 9.9, 0.0, 0.544, 4.973, 37.8, 2.5194, 4.0, 304.0, 18.4, 350.45, 12.64
+22.1, 0.79041, 0.0, 9.9, 0.0, 0.544, 6.122, 52.8, 2.6403, 4.0, 304.0, 18.4, 396.9, 5.98
+19.4, 0.26169, 0.0, 9.9, 0.0, 0.544, 6.023, 90.4, 2.834, 4.0, 304.0, 18.4, 396.3, 11.72
+21.6, 0.26938, 0.0, 9.9, 0.0, 0.544, 6.266, 82.8, 3.2628, 4.0, 304.0, 18.4, 393.39, 7.9
+23.8, 0.3692, 0.0, 9.9, 0.0, 0.544, 6.567, 87.3, 3.6023, 4.0, 304.0, 18.4, 395.69, 9.28
+16.2, 0.25356, 0.0, 9.9, 0.0, 0.544, 5.705, 77.7, 3.945, 4.0, 304.0, 18.4, 396.42, 11.5
+17.8, 0.31827, 0.0, 9.9, 0.0, 0.544, 5.914, 83.2, 3.9986, 4.0, 304.0, 18.4, 390.7, 18.33
+19.8, 0.24522, 0.0, 9.9, 0.0, 0.544, 5.782, 71.7, 4.0317, 4.0, 304.0, 18.4, 396.9, 15.94
+23.1, 0.40202, 0.0, 9.9, 0.0, 0.544, 6.382, 67.2, 3.5325, 4.0, 304.0, 18.4, 395.21, 10.36
+21.0, 0.47547, 0.0, 9.9, 0.0, 0.544, 6.113, 58.8, 4.0019, 4.0, 304.0, 18.4, 396.23, 12.73
+23.8, 0.1676, 0.0, 7.38, 0.0, 0.493, 6.426, 52.3, 4.5404, 5.0, 287.0, 19.6, 396.9, 7.2
+23.1, 0.18159, 0.0, 7.38, 0.0, 0.493, 6.376, 54.3, 4.5404, 5.0, 287.0, 19.6, 396.9, 6.87
+20.4, 0.35114, 0.0, 7.38, 0.0, 0.493, 6.041, 49.9, 4.7211, 5.0, 287.0, 19.6, 396.9, 7.7
+18.5, 0.28392, 0.0, 7.38, 0.0, 0.493, 5.708, 74.3, 4.7211, 5.0, 287.0, 19.6, 391.13, 11.74
+25.0, 0.34109, 0.0, 7.38, 0.0, 0.493, 6.415, 40.1, 4.7211, 5.0, 287.0, 19.6, 396.9, 6.12
+24.6, 0.19186, 0.0, 7.38, 0.0, 0.493, 6.431, 14.7, 5.4159, 5.0, 287.0, 19.6, 393.68, 5.08
+23.0, 0.30347, 0.0, 7.38, 0.0, 0.493, 6.312, 28.9, 5.4159, 5.0, 287.0, 19.6, 396.9, 6.15
+22.2, 0.24103, 0.0, 7.38, 0.0, 0.493, 6.083, 43.7, 5.4159, 5.0, 287.0, 19.6, 396.9, 12.79
+19.3, 0.06617, 0.0, 3.24, 0.0, 0.46, 5.868, 25.8, 5.2146, 4.0, 430.0, 16.9, 382.44, 9.97
+22.6, 0.06724, 0.0, 3.24, 0.0, 0.46, 6.333, 17.2, 5.2146, 4.0, 430.0, 16.9, 375.21, 7.34
+19.8, 0.04544, 0.0, 3.24, 0.0, 0.46, 6.144, 32.2, 5.8736, 4.0, 430.0, 16.9, 368.57, 9.09
+17.1, 0.05023, 35.0, 6.06, 0.0, 0.4379, 5.706, 28.4, 6.6407, 1.0, 304.0, 16.9, 394.02, 12.43
+19.4, 0.03466, 35.0, 6.06, 0.0, 0.4379, 6.031, 23.3, 6.6407, 1.0, 304.0, 16.9, 362.25, 7.83
+22.2, 0.05083, 0.0, 5.19, 0.0, 0.515, 6.316, 38.1, 6.4584, 5.0, 224.0, 20.2, 389.71, 5.68
+20.7, 0.03738, 0.0, 5.19, 0.0, 0.515, 6.31, 38.5, 6.4584, 5.0, 224.0, 20.2, 389.4, 6.75
+21.1, 0.03961, 0.0, 5.19, 0.0, 0.515, 6.037, 34.5, 5.9853, 5.0, 224.0, 20.2, 396.9, 8.01
+19.5, 0.03427, 0.0, 5.19, 0.0, 0.515, 5.869, 46.3, 5.2311, 5.0, 224.0, 20.2, 396.9, 9.8
+18.5, 0.03041, 0.0, 5.19, 0.0, 0.515, 5.895, 59.6, 5.615, 5.0, 224.0, 20.2, 394.81, 10.56
+20.6, 0.03306, 0.0, 5.19, 0.0, 0.515, 6.059, 37.3, 4.8122, 5.0, 224.0, 20.2, 396.14, 8.51
+19.0, 0.05497, 0.0, 5.19, 0.0, 0.515, 5.985, 45.4, 4.8122, 5.0, 224.0, 20.2, 396.9, 9.74
+18.7, 0.06151, 0.0, 5.19, 0.0, 0.515, 5.968, 58.5, 4.8122, 5.0, 224.0, 20.2, 396.9, 9.29
+32.7, 0.01301, 35.0, 1.52, 0.0, 0.442, 7.241, 49.3, 7.0379, 1.0, 284.0, 15.5, 394.74, 5.49
+16.5, 0.02498, 0.0, 1.89, 0.0, 0.518, 6.54, 59.7, 6.2669, 1.0, 422.0, 15.9, 389.96, 8.65
+23.9, 0.02543, 55.0, 3.78, 0.0, 0.484, 6.696, 56.4, 5.7321, 5.0, 370.0, 17.6, 396.9, 7.18
+31.2, 0.03049, 55.0, 3.78, 0.0, 0.484, 6.874, 28.1, 6.4654, 5.0, 370.0, 17.6, 387.97, 4.61
+17.5, 0.03113, 0.0, 4.39, 0.0, 0.442, 6.014, 48.5, 8.0136, 3.0, 352.0, 18.8, 385.64, 10.53
+17.2, 0.06162, 0.0, 4.39, 0.0, 0.442, 5.898, 52.3, 8.0136, 3.0, 352.0, 18.8, 364.61, 12.67
+23.1, 0.0187, 85.0, 4.15, 0.0, 0.429, 6.516, 27.7, 8.5353, 4.0, 351.0, 17.9, 392.43, 6.36
+24.5, 0.01501, 80.0, 2.01, 0.0, 0.435, 6.635, 29.7, 8.344, 4.0, 280.0, 17.0, 390.94, 5.99
+26.6, 0.02899, 40.0, 1.25, 0.0, 0.429, 6.939, 34.5, 8.7921, 1.0, 335.0, 19.7, 389.85, 5.89
+22.9, 0.06211, 40.0, 1.25, 0.0, 0.429, 6.49, 44.4, 8.7921, 1.0, 335.0, 19.7, 396.9, 5.98
+24.1, 0.0795, 60.0, 1.69, 0.0, 0.411, 6.579, 35.9, 10.7103, 4.0, 411.0, 18.3, 370.78, 5.49
+18.6, 0.07244, 60.0, 1.69, 0.0, 0.411, 5.884, 18.5, 10.7103, 4.0, 411.0, 18.3, 392.33, 7.79
+30.1, 0.01709, 90.0, 2.02, 0.0, 0.41, 6.728, 36.1, 12.1265, 5.0, 187.0, 17.0, 384.46, 4.5
+18.2, 0.04301, 80.0, 1.91, 0.0, 0.413, 5.663, 21.9, 10.5857, 4.0, 334.0, 22.0, 382.8, 8.05
+20.6, 0.10659, 80.0, 1.91, 0.0, 0.413, 5.936, 19.5, 10.5857, 4.0, 334.0, 22.0, 376.04, 5.57
+17.8, 8.98296, 0.0, 18.1, 1.0, 0.77, 6.212, 97.4, 2.1222, 24.0, 666.0, 20.2, 377.73, 17.6
+21.7, 3.8497, 0.0, 18.1, 1.0, 0.77, 6.395, 91.0, 2.5052, 24.0, 666.0, 20.2, 391.34, 13.27
+22.7, 5.20177, 0.0, 18.1, 1.0, 0.77, 6.127, 83.4, 2.7227, 24.0, 666.0, 20.2, 395.43, 11.48
+22.6, 4.26131, 0.0, 18.1, 0.0, 0.77, 6.112, 81.3, 2.5091, 24.0, 666.0, 20.2, 390.74, 12.67
+25.0, 4.54192, 0.0, 18.1, 0.0, 0.77, 6.398, 88.0, 2.5182, 24.0, 666.0, 20.2, 374.56, 7.79
+19.9, 3.83684, 0.0, 18.1, 0.0, 0.77, 6.251, 91.1, 2.2955, 24.0, 666.0, 20.2, 350.65, 14.19
+20.8, 3.67822, 0.0, 18.1, 0.0, 0.77, 5.362, 96.2, 2.1036, 24.0, 666.0, 20.2, 380.79, 10.19
+16.8, 4.22239, 0.0, 18.1, 1.0, 0.77, 5.803, 89.0, 1.9047, 24.0, 666.0, 20.2, 353.04, 14.64
+21.9, 3.47428, 0.0, 18.1, 1.0, 0.718, 8.78, 82.9, 1.9047, 24.0, 666.0, 20.2, 354.55, 5.29
+27.5, 4.55587, 0.0, 18.1, 0.0, 0.718, 3.561, 87.9, 1.6132, 24.0, 666.0, 20.2, 354.7, 7.12
+21.9, 3.69695, 0.0, 18.1, 0.0, 0.718, 4.963, 91.4, 1.7523, 24.0, 666.0, 20.2, 316.03, 14.0
+23.1, 13.5222, 0.0, 18.1, 0.0, 0.631, 3.863, 100.0, 1.5106, 24.0, 666.0, 20.2, 131.42, 13.33
+50.0, 4.89822, 0.0, 18.1, 0.0, 0.631, 4.97, 100.0, 1.3325, 24.0, 666.0, 20.2, 375.52, 3.26
+50.0, 5.66998, 0.0, 18.1, 1.0, 0.631, 6.683, 96.8, 1.3567, 24.0, 666.0, 20.2, 375.33, 3.73
+50.0, 6.53876, 0.0, 18.1, 1.0, 0.631, 7.016, 97.5, 1.2024, 24.0, 666.0, 20.2, 392.05, 2.96
+50.0, 9.2323, 0.0, 18.1, 0.0, 0.631, 6.216, 100.0, 1.1691, 24.0, 666.0, 20.2, 366.15, 9.53
+50.0, 8.26725, 0.0, 18.1, 1.0, 0.668, 5.875, 89.6, 1.1296, 24.0, 666.0, 20.2, 347.88, 8.88
+13.8, 11.1081, 0.0, 18.1, 0.0, 0.668, 4.906, 100.0, 1.1742, 24.0, 666.0, 20.2, 396.9, 34.77
+13.8, 18.4982, 0.0, 18.1, 0.0, 0.668, 4.138, 100.0, 1.137, 24.0, 666.0, 20.2, 396.9, 37.97
+15.0, 19.6091, 0.0, 18.1, 0.0, 0.671, 7.313, 97.9, 1.3163, 24.0, 666.0, 20.2, 396.9, 13.44
+13.9, 15.288, 0.0, 18.1, 0.0, 0.671, 6.649, 93.3, 1.3449, 24.0, 666.0, 20.2, 363.02, 23.24
+13.3, 9.82349, 0.0, 18.1, 0.0, 0.671, 6.794, 98.8, 1.358, 24.0, 666.0, 20.2, 396.9, 21.24
+13.1, 23.6482, 0.0, 18.1, 0.0, 0.671, 6.38, 96.2, 1.3861, 24.0, 666.0, 20.2, 396.9, 23.69
+10.2, 17.8667, 0.0, 18.1, 0.0, 0.671, 6.223, 100.0, 1.3861, 24.0, 666.0, 20.2, 393.74, 21.78
+10.4, 88.9762, 0.0, 18.1, 0.0, 0.671, 6.968, 91.9, 1.4165, 24.0, 666.0, 20.2, 396.9, 17.21
+10.9, 15.8744, 0.0, 18.1, 0.0, 0.671, 6.545, 99.1, 1.5192, 24.0, 666.0, 20.2, 396.9, 21.08
+11.3, 9.18702, 0.0, 18.1, 0.0, 0.7, 5.536, 100.0, 1.5804, 24.0, 666.0, 20.2, 396.9, 23.6
+12.3, 7.99248, 0.0, 18.1, 0.0, 0.7, 5.52, 100.0, 1.5331, 24.0, 666.0, 20.2, 396.9, 24.56
+8.8, 20.0849, 0.0, 18.1, 0.0, 0.7, 4.368, 91.2, 1.4395, 24.0, 666.0, 20.2, 285.83, 30.63
+7.2, 16.8118, 0.0, 18.1, 0.0, 0.7, 5.277, 98.1, 1.4261, 24.0, 666.0, 20.2, 396.9, 30.81
+10.5, 24.3938, 0.0, 18.1, 0.0, 0.7, 4.652, 100.0, 1.4672, 24.0, 666.0, 20.2, 396.9, 28.28
+7.4, 22.5971, 0.0, 18.1, 0.0, 0.7, 5.0, 89.5, 1.5184, 24.0, 666.0, 20.2, 396.9, 31.99
+10.2, 14.3337, 0.0, 18.1, 0.0, 0.7, 4.88, 100.0, 1.5895, 24.0, 666.0, 20.2, 372.92, 30.62
+11.5, 8.15174, 0.0, 18.1, 0.0, 0.7, 5.39, 98.9, 1.7281, 24.0, 666.0, 20.2, 396.9, 20.85
+15.1, 6.96215, 0.0, 18.1, 0.0, 0.7, 5.713, 97.0, 1.9265, 24.0, 666.0, 20.2, 394.43, 17.11
+23.2, 5.29305, 0.0, 18.1, 0.0, 0.7, 6.051, 82.5, 2.1678, 24.0, 666.0, 20.2, 378.38, 18.76
+9.7, 11.5779, 0.0, 18.1, 0.0, 0.7, 5.036, 97.0, 1.77, 24.0, 666.0, 20.2, 396.9, 25.68
+13.8, 8.64476, 0.0, 18.1, 0.0, 0.693, 6.193, 92.6, 1.7912, 24.0, 666.0, 20.2, 396.9, 15.17
+12.7, 13.3598, 0.0, 18.1, 0.0, 0.693, 5.887, 94.7, 1.7821, 24.0, 666.0, 20.2, 396.9, 16.35
+13.1, 8.71675, 0.0, 18.1, 0.0, 0.693, 6.471, 98.8, 1.7257, 24.0, 666.0, 20.2, 391.98, 17.12
+12.5, 5.87205, 0.0, 18.1, 0.0, 0.693, 6.405, 96.0, 1.6768, 24.0, 666.0, 20.2, 396.9, 19.37
+8.5, 7.67202, 0.0, 18.1, 0.0, 0.693, 5.747, 98.9, 1.6334, 24.0, 666.0, 20.2, 393.1, 19.92
+5.0, 38.3518, 0.0, 18.1, 0.0, 0.693, 5.453, 100.0, 1.4896, 24.0, 666.0, 20.2, 396.9, 30.59
+6.3, 9.91655, 0.0, 18.1, 0.0, 0.693, 5.852, 77.8, 1.5004, 24.0, 666.0, 20.2, 338.16, 29.97
+5.6, 25.0461, 0.0, 18.1, 0.0, 0.693, 5.987, 100.0, 1.5888, 24.0, 666.0, 20.2, 396.9, 26.77
+7.2, 14.2362, 0.0, 18.1, 0.0, 0.693, 6.343, 100.0, 1.5741, 24.0, 666.0, 20.2, 396.9, 20.32
+12.1, 9.59571, 0.0, 18.1, 0.0, 0.693, 6.404, 100.0, 1.639, 24.0, 666.0, 20.2, 376.11, 20.31
+8.3, 24.8017, 0.0, 18.1, 0.0, 0.693, 5.349, 96.0, 1.7028, 24.0, 666.0, 20.2, 396.9, 19.77
+8.5, 41.5292, 0.0, 18.1, 0.0, 0.693, 5.531, 85.4, 1.6074, 24.0, 666.0, 20.2, 329.46, 27.38
+5.0, 67.9208, 0.0, 18.1, 0.0, 0.693, 5.683, 100.0, 1.4254, 24.0, 666.0, 20.2, 384.97, 22.98
+11.9, 20.7162, 0.0, 18.1, 0.0, 0.659, 4.138, 100.0, 1.1781, 24.0, 666.0, 20.2, 370.22, 23.34
+27.9, 11.9511, 0.0, 18.1, 0.0, 0.659, 5.608, 100.0, 1.2852, 24.0, 666.0, 20.2, 332.09, 12.13
+17.2, 7.40389, 0.0, 18.1, 0.0, 0.597, 5.617, 97.9, 1.4547, 24.0, 666.0, 20.2, 314.64, 26.4
+27.5, 14.4383, 0.0, 18.1, 0.0, 0.597, 6.852, 100.0, 1.4655, 24.0, 666.0, 20.2, 179.36, 19.78
+15.0, 51.1358, 0.0, 18.1, 0.0, 0.597, 5.757, 100.0, 1.413, 24.0, 666.0, 20.2, 2.6, 10.11
+17.2, 14.0507, 0.0, 18.1, 0.0, 0.597, 6.657, 100.0, 1.5275, 24.0, 666.0, 20.2, 35.05, 21.22
+17.9, 18.811, 0.0, 18.1, 0.0, 0.597, 4.628, 100.0, 1.5539, 24.0, 666.0, 20.2, 28.79, 34.37
+16.3, 28.6558, 0.0, 18.1, 0.0, 0.597, 5.155, 100.0, 1.5894, 24.0, 666.0, 20.2, 210.97, 20.08
+7.0, 45.7461, 0.0, 18.1, 0.0, 0.693, 4.519, 100.0, 1.6582, 24.0, 666.0, 20.2, 88.27, 36.98
+7.2, 18.0846, 0.0, 18.1, 0.0, 0.679, 6.434, 100.0, 1.8347, 24.0, 666.0, 20.2, 27.25, 29.05
+7.5, 10.8342, 0.0, 18.1, 0.0, 0.679, 6.782, 90.8, 1.8195, 24.0, 666.0, 20.2, 21.57, 25.79
+10.4, 25.9406, 0.0, 18.1, 0.0, 0.679, 5.304, 89.1, 1.6475, 24.0, 666.0, 20.2, 127.36, 26.64
+8.8, 73.5341, 0.0, 18.1, 0.0, 0.679, 5.957, 100.0, 1.8026, 24.0, 666.0, 20.2, 16.45, 20.62
+8.4, 11.8123, 0.0, 18.1, 0.0, 0.718, 6.824, 76.5, 1.794, 24.0, 666.0, 20.2, 48.45, 22.74
+16.7, 11.0874, 0.0, 18.1, 0.0, 0.718, 6.411, 100.0, 1.8589, 24.0, 666.0, 20.2, 318.75, 15.02
+14.2, 7.02259, 0.0, 18.1, 0.0, 0.718, 6.006, 95.3, 1.8746, 24.0, 666.0, 20.2, 319.98, 15.7
+20.8, 12.0482, 0.0, 18.1, 0.0, 0.614, 5.648, 87.6, 1.9512, 24.0, 666.0, 20.2, 291.55, 14.1
+13.4, 7.05042, 0.0, 18.1, 0.0, 0.614, 6.103, 85.1, 2.0218, 24.0, 666.0, 20.2, 2.52, 23.29
+11.7, 8.79212, 0.0, 18.1, 0.0, 0.584, 5.565, 70.6, 2.0635, 24.0, 666.0, 20.2, 3.65, 17.16
+8.3, 15.8603, 0.0, 18.1, 0.0, 0.679, 5.896, 95.4, 1.9096, 24.0, 666.0, 20.2, 7.68, 24.39
+10.2, 12.2472, 0.0, 18.1, 0.0, 0.584, 5.837, 59.7, 1.9976, 24.0, 666.0, 20.2, 24.65, 15.69
+10.9, 37.6619, 0.0, 18.1, 0.0, 0.679, 6.202, 78.7, 1.8629, 24.0, 666.0, 20.2, 18.82, 14.52
+11.0, 7.36711, 0.0, 18.1, 0.0, 0.679, 6.193, 78.1, 1.9356, 24.0, 666.0, 20.2, 96.73, 21.52
+9.5, 9.33889, 0.0, 18.1, 0.0, 0.679, 6.38, 95.6, 1.9682, 24.0, 666.0, 20.2, 60.72, 24.08
+14.5, 8.49213, 0.0, 18.1, 0.0, 0.584, 6.348, 86.1, 2.0527, 24.0, 666.0, 20.2, 83.45, 17.64
+14.1, 10.0623, 0.0, 18.1, 0.0, 0.584, 6.833, 94.3, 2.0882, 24.0, 666.0, 20.2, 81.33, 19.69
+16.1, 6.44405, 0.0, 18.1, 0.0, 0.584, 6.425, 74.8, 2.2004, 24.0, 666.0, 20.2, 97.95, 12.03
+14.3, 5.58107, 0.0, 18.1, 0.0, 0.713, 6.436, 87.9, 2.3158, 24.0, 666.0, 20.2, 100.19, 16.22
+11.7, 13.9134, 0.0, 18.1, 0.0, 0.713, 6.208, 95.0, 2.2222, 24.0, 666.0, 20.2, 100.63, 15.17
+13.4, 11.1604, 0.0, 18.1, 0.0, 0.74, 6.629, 94.6, 2.1247, 24.0, 666.0, 20.2, 109.85, 23.27
+9.6, 14.4208, 0.0, 18.1, 0.0, 0.74, 6.461, 93.3, 2.0026, 24.0, 666.0, 20.2, 27.49, 18.05
+8.7, 15.1772, 0.0, 18.1, 0.0, 0.74, 6.152, 100.0, 1.9142, 24.0, 666.0, 20.2, 9.32, 26.45
+8.4, 13.6781, 0.0, 18.1, 0.0, 0.74, 5.935, 87.9, 1.8206, 24.0, 666.0, 20.2, 68.95, 34.02
+12.8, 9.39063, 0.0, 18.1, 0.0, 0.74, 5.627, 93.9, 1.8172, 24.0, 666.0, 20.2, 396.9, 22.88
+10.5, 22.0511, 0.0, 18.1, 0.0, 0.74, 5.818, 92.4, 1.8662, 24.0, 666.0, 20.2, 391.45, 22.11
+17.1, 9.72418, 0.0, 18.1, 0.0, 0.74, 6.406, 97.2, 2.0651, 24.0, 666.0, 20.2, 385.96, 19.52
+18.4, 5.66637, 0.0, 18.1, 0.0, 0.74, 6.219, 100.0, 2.0048, 24.0, 666.0, 20.2, 395.69, 16.59
+15.4, 9.96654, 0.0, 18.1, 0.0, 0.74, 6.485, 100.0, 1.9784, 24.0, 666.0, 20.2, 386.73, 18.85
+10.8, 12.8023, 0.0, 18.1, 0.0, 0.74, 5.854, 96.6, 1.8956, 24.0, 666.0, 20.2, 240.52, 23.79
+11.8, 0.6718, 0.0, 18.1, 0.0, 0.74, 6.459, 94.8, 1.9879, 24.0, 666.0, 20.2, 43.06, 23.98
+14.9, 6.28807, 0.0, 18.1, 0.0, 0.74, 6.341, 96.4, 2.072, 24.0, 666.0, 20.2, 318.01, 17.79
+12.6, 9.92485, 0.0, 18.1, 0.0, 0.74, 6.251, 96.6, 2.198, 24.0, 666.0, 20.2, 388.52, 16.44
+14.1, 9.32909, 0.0, 18.1, 0.0, 0.713, 6.185, 98.7, 2.2616, 24.0, 666.0, 20.2, 396.9, 18.13
+13.0, 7.52601, 0.0, 18.1, 0.0, 0.713, 6.417, 98.3, 2.185, 24.0, 666.0, 20.2, 304.21, 19.31
+13.4, 6.71772, 0.0, 18.1, 0.0, 0.713, 6.749, 92.6, 2.3236, 24.0, 666.0, 20.2, 0.32, 17.44
+15.2, 5.44114, 0.0, 18.1, 0.0, 0.713, 6.655, 98.2, 2.3552, 24.0, 666.0, 20.2, 355.29, 17.73
+16.1, 5.09017, 0.0, 18.1, 0.0, 0.713, 6.297, 91.8, 2.3682, 24.0, 666.0, 20.2, 385.09, 17.27
+17.8, 8.24809, 0.0, 18.1, 0.0, 0.713, 7.393, 99.3, 2.4527, 24.0, 666.0, 20.2, 375.87, 16.74
+14.9, 9.51363, 0.0, 18.1, 0.0, 0.713, 6.728, 94.1, 2.4961, 24.0, 666.0, 20.2, 6.68, 18.71
+14.1, 4.75237, 0.0, 18.1, 0.0, 0.713, 6.525, 86.5, 2.4358, 24.0, 666.0, 20.2, 50.92, 18.13
+12.7, 4.66883, 0.0, 18.1, 0.0, 0.713, 5.976, 87.9, 2.5806, 24.0, 666.0, 20.2, 10.48, 19.01
+13.5, 8.20058, 0.0, 18.1, 0.0, 0.713, 5.936, 80.3, 2.7792, 24.0, 666.0, 20.2, 3.5, 16.94
+14.9, 7.75223, 0.0, 18.1, 0.0, 0.713, 6.301, 83.7, 2.7831, 24.0, 666.0, 20.2, 272.21, 16.23
+20.0, 6.80117, 0.0, 18.1, 0.0, 0.713, 6.081, 84.4, 2.7175, 24.0, 666.0, 20.2, 396.9, 14.7
+16.4, 4.81213, 0.0, 18.1, 0.0, 0.713, 6.701, 90.0, 2.5975, 24.0, 666.0, 20.2, 255.23, 16.42
+17.7, 3.69311, 0.0, 18.1, 0.0, 0.713, 6.376, 88.4, 2.5671, 24.0, 666.0, 20.2, 391.43, 14.65
+19.5, 6.65492, 0.0, 18.1, 0.0, 0.713, 6.317, 83.0, 2.7344, 24.0, 666.0, 20.2, 396.9, 13.99
+20.2, 5.82115, 0.0, 18.1, 0.0, 0.713, 6.513, 89.9, 2.8016, 24.0, 666.0, 20.2, 393.82, 10.29
+21.4, 7.83932, 0.0, 18.1, 0.0, 0.655, 6.209, 65.4, 2.9634, 24.0, 666.0, 20.2, 396.9, 13.22
+19.9, 3.1636, 0.0, 18.1, 0.0, 0.655, 5.759, 48.2, 3.0665, 24.0, 666.0, 20.2, 334.4, 14.13
+19.0, 3.77498, 0.0, 18.1, 0.0, 0.655, 5.952, 84.7, 2.8715, 24.0, 666.0, 20.2, 22.01, 17.15
+19.1, 4.42228, 0.0, 18.1, 0.0, 0.584, 6.003, 94.5, 2.5403, 24.0, 666.0, 20.2, 331.29, 21.32
+19.1, 15.5757, 0.0, 18.1, 0.0, 0.58, 5.926, 71.0, 2.9084, 24.0, 666.0, 20.2, 368.74, 18.13
+20.1, 13.0751, 0.0, 18.1, 0.0, 0.58, 5.713, 56.7, 2.8237, 24.0, 666.0, 20.2, 396.9, 14.76
+19.9, 4.34879, 0.0, 18.1, 0.0, 0.58, 6.167, 84.0, 3.0334, 24.0, 666.0, 20.2, 396.9, 16.29
+19.6, 4.03841, 0.0, 18.1, 0.0, 0.532, 6.229, 90.7, 3.0993, 24.0, 666.0, 20.2, 395.33, 12.87
+23.2, 3.56868, 0.0, 18.1, 0.0, 0.58, 6.437, 75.0, 2.8965, 24.0, 666.0, 20.2, 393.37, 14.36
+29.8, 4.64689, 0.0, 18.1, 0.0, 0.614, 6.98, 67.6, 2.5329, 24.0, 666.0, 20.2, 374.68, 11.66
+13.8, 8.05579, 0.0, 18.1, 0.0, 0.584, 5.427, 95.4, 2.4298, 24.0, 666.0, 20.2, 352.58, 18.14
+13.3, 6.39312, 0.0, 18.1, 0.0, 0.584, 6.162, 97.4, 2.206, 24.0, 666.0, 20.2, 302.76, 24.1
+16.7, 4.87141, 0.0, 18.1, 0.0, 0.614, 6.484, 93.6, 2.3053, 24.0, 666.0, 20.2, 396.21, 18.68
+12.0, 15.0234, 0.0, 18.1, 0.0, 0.614, 5.304, 97.3, 2.1007, 24.0, 666.0, 20.2, 349.48, 24.91
+14.6, 10.233, 0.0, 18.1, 0.0, 0.614, 6.185, 96.7, 2.1705, 24.0, 666.0, 20.2, 379.7, 18.03
+21.4, 14.3337, 0.0, 18.1, 0.0, 0.614, 6.229, 88.0, 1.9512, 24.0, 666.0, 20.2, 383.32, 13.11
+23.0, 5.82401, 0.0, 18.1, 0.0, 0.532, 6.242, 64.7, 3.4242, 24.0, 666.0, 20.2, 396.9, 10.74
+23.7, 5.70818, 0.0, 18.1, 0.0, 0.532, 6.75, 74.9, 3.3317, 24.0, 666.0, 20.2, 393.07, 7.74
+25.0, 5.73116, 0.0, 18.1, 0.0, 0.532, 7.061, 77.0, 3.4106, 24.0, 666.0, 20.2, 395.28, 7.01
+21.8, 2.81838, 0.0, 18.1, 0.0, 0.532, 5.762, 40.3, 4.0983, 24.0, 666.0, 20.2, 392.92, 10.42
+20.6, 2.37857, 0.0, 18.1, 0.0, 0.583, 5.871, 41.9, 3.724, 24.0, 666.0, 20.2, 370.73, 13.34
+21.2, 3.67367, 0.0, 18.1, 0.0, 0.583, 6.312, 51.9, 3.9917, 24.0, 666.0, 20.2, 388.62, 10.58
+19.1, 5.69175, 0.0, 18.1, 0.0, 0.583, 6.114, 79.8, 3.5459, 24.0, 666.0, 20.2, 392.68, 14.98
+20.6, 4.83567, 0.0, 18.1, 0.0, 0.583, 5.905, 53.2, 3.1523, 24.0, 666.0, 20.2, 388.22, 11.45
+15.2, 0.15086, 0.0, 27.74, 0.0, 0.609, 5.454, 92.7, 1.8209, 4.0, 711.0, 20.1, 395.09, 18.06
+7.0, 0.18337, 0.0, 27.74, 0.0, 0.609, 5.414, 98.3, 1.7554, 4.0, 711.0, 20.1, 344.05, 23.97
+8.1, 0.20746, 0.0, 27.74, 0.0, 0.609, 5.093, 98.0, 1.8226, 4.0, 711.0, 20.1, 318.43, 29.68
+13.6, 0.10574, 0.0, 27.74, 0.0, 0.609, 5.983, 98.8, 1.8681, 4.0, 711.0, 20.1, 390.11, 18.07
+20.1, 0.11132, 0.0, 27.74, 0.0, 0.609, 5.983, 83.5, 2.1099, 4.0, 711.0, 20.1, 396.9, 13.35
+21.8, 0.17331, 0.0, 9.69, 0.0, 0.585, 5.707, 54.0, 2.3817, 6.0, 391.0, 19.2, 396.9, 12.01
+24.5, 0.27957, 0.0, 9.69, 0.0, 0.585, 5.926, 42.6, 2.3817, 6.0, 391.0, 19.2, 396.9, 13.59
+23.1, 0.17899, 0.0, 9.69, 0.0, 0.585, 5.67, 28.8, 2.7986, 6.0, 391.0, 19.2, 393.29, 17.6
+19.7, 0.2896, 0.0, 9.69, 0.0, 0.585, 5.39, 72.9, 2.7986, 6.0, 391.0, 19.2, 396.9, 21.14
+18.3, 0.26838, 0.0, 9.69, 0.0, 0.585, 5.794, 70.6, 2.8927, 6.0, 391.0, 19.2, 396.9, 14.1
+21.2, 0.23912, 0.0, 9.69, 0.0, 0.585, 6.019, 65.3, 2.4091, 6.0, 391.0, 19.2, 396.9, 12.92
+17.5, 0.17783, 0.0, 9.69, 0.0, 0.585, 5.569, 73.5, 2.3999, 6.0, 391.0, 19.2, 395.77, 15.1
+16.8, 0.22438, 0.0, 9.69, 0.0, 0.585, 6.027, 79.7, 2.4982, 6.0, 391.0, 19.2, 396.9, 14.33
+22.4, 0.06263, 0.0, 11.93, 0.0, 0.573, 6.593, 69.1, 2.4786, 1.0, 273.0, 21.0, 391.99, 9.67
+20.6, 0.04527, 0.0, 11.93, 0.0, 0.573, 6.12, 76.7, 2.2875, 1.0, 273.0, 21.0, 396.9, 9.08
+23.9, 0.06076, 0.0, 11.93, 0.0, 0.573, 6.976, 91.0, 2.1675, 1.0, 273.0, 21.0, 396.9, 5.64
+22.0, 0.10959, 0.0, 11.93, 0.0, 0.573, 6.794, 89.3, 2.3889, 1.0, 273.0, 21.0, 393.45, 6.48
+11.9, 0.04741, 0.0, 11.93, 0.0, 0.573, 6.03, 80.8, 2.505, 1.0, 273.0, 21.0, 396.9, 7.88
\ No newline at end of file


Mime
View raw message