hive-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Mostafa Mokhtar (JIRA)" <j...@apache.org>
Subject [jira] [Updated] (HIVE-8031) CBO should use per column join selectivity not NDV when applying exponential backoff.
Date Tue, 09 Sep 2014 14:28:30 GMT

     [ https://issues.apache.org/jira/browse/HIVE-8031?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Mostafa Mokhtar updated HIVE-8031:
----------------------------------
    Description:     (was: Simplify predicates for disjunctive predicates so that can get
pushed down to the scan.

For TPC-DS query 13 we push down predicates in the following form 

where c_martial_status in ('M','D','U') etc.. 

{code}
select avg(ss_quantity)
       ,avg(ss_ext_sales_price)
       ,avg(ss_ext_wholesale_cost)
       ,sum(ss_ext_wholesale_cost)
 from store_sales
     ,store
     ,customer_demographics
     ,household_demographics
     ,customer_address
     ,date_dim
 where store.s_store_sk = store_sales.ss_store_sk
 and  store_sales.ss_sold_date_sk = date_dim.d_date_sk and date_dim.d_year = 2001
 and((store_sales.ss_hdemo_sk=household_demographics.hd_demo_sk
  and customer_demographics.cd_demo_sk = store_sales.ss_cdemo_sk
  and customer_demographics.cd_marital_status = 'M'
  and customer_demographics.cd_education_status = '4 yr Degree'
  and store_sales.ss_sales_price between 100.00 and 150.00
  and household_demographics.hd_dep_count = 3   
     )or
     (store_sales.ss_hdemo_sk=household_demographics.hd_demo_sk
  and customer_demographics.cd_demo_sk = store_sales.ss_cdemo_sk
  and customer_demographics.cd_marital_status = 'D'
  and customer_demographics.cd_education_status = 'Primary'
  and store_sales.ss_sales_price between 50.00 and 100.00   
  and household_demographics.hd_dep_count = 1
     ) or 
     (store_sales.ss_hdemo_sk=household_demographics.hd_demo_sk
  and customer_demographics.cd_demo_sk = ss_cdemo_sk
  and customer_demographics.cd_marital_status = 'U'
  and customer_demographics.cd_education_status = 'Advanced Degree'
  and store_sales.ss_sales_price between 150.00 and 200.00 
  and household_demographics.hd_dep_count = 1  
     ))
 and((store_sales.ss_addr_sk = customer_address.ca_address_sk
  and customer_address.ca_country = 'United States'
  and customer_address.ca_state in ('KY', 'GA', 'NM')
  and store_sales.ss_net_profit between 100 and 200  
     ) or
     (store_sales.ss_addr_sk = customer_address.ca_address_sk
  and customer_address.ca_country = 'United States'
  and customer_address.ca_state in ('MT', 'OR', 'IN')
  and store_sales.ss_net_profit between 150 and 300  
     ) or
     (store_sales.ss_addr_sk = customer_address.ca_address_sk
  and customer_address.ca_country = 'United States'
  and customer_address.ca_state in ('WI', 'MO', 'WV')
  and store_sales.ss_net_profit between 50 and 250  
     ))
;

{code}


This is the plan currently generated without any predicate simplification 
{code}
STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-0 depends on stages: Stage-1

STAGE PLANS:
  Stage: Stage-1
    Tez
      Edges:
        Map 7 <- Map 8 (BROADCAST_EDGE)
        Map 8 <- Map 5 (BROADCAST_EDGE), Map 6 (BROADCAST_EDGE)
        Reducer 2 <- Map 1 (SIMPLE_EDGE), Map 4 (BROADCAST_EDGE), Map 7 (SIMPLE_EDGE)
        Reducer 3 <- Reducer 2 (SIMPLE_EDGE)
      DagName: mmokhtar_20140828155050_7059c24b-501b-4683-86c0-4f3c023f0b0e:1
      Vertices:
        Map 1 
            Map Operator Tree:
                TableScan
                  alias: customer_address
                  Statistics: Num rows: 40000000 Data size: 40595195284 Basic stats: COMPLETE
Column stats: NONE
                  Select Operator
                    expressions: ca_address_sk (type: int), ca_state (type: string), ca_country
(type: string)
                    outputColumnNames: _col0, _col1, _col2
                    Statistics: Num rows: 40000000 Data size: 40595195284 Basic stats: COMPLETE
Column stats: NONE
                    Reduce Output Operator
                      sort order: 
                      Statistics: Num rows: 40000000 Data size: 40595195284 Basic stats: COMPLETE
Column stats: NONE
                      value expressions: _col0 (type: int), _col1 (type: string), _col2 (type:
string)
            Execution mode: vectorized
        Map 4 
            Map Operator Tree:
                TableScan
                  alias: date_dim
                  filterExpr: ((d_year = 2001) and d_date_sk is not null) (type: boolean)
                  Statistics: Num rows: 73049 Data size: 81741831 Basic stats: COMPLETE Column
stats: NONE
                  Filter Operator
                    predicate: ((d_year = 2001) and d_date_sk is not null) (type: boolean)
                    Statistics: Num rows: 18262 Data size: 20435178 Basic stats: COMPLETE
Column stats: NONE
                    Select Operator
                      expressions: d_date_sk (type: int)
                      outputColumnNames: _col0
                      Statistics: Num rows: 18262 Data size: 20435178 Basic stats: COMPLETE
Column stats: NONE
                      Reduce Output Operator
                        key expressions: _col0 (type: int)
                        sort order: +
                        Map-reduce partition columns: _col0 (type: int)
                        Statistics: Num rows: 18262 Data size: 20435178 Basic stats: COMPLETE
Column stats: NONE
            Execution mode: vectorized
        Map 5 
            Map Operator Tree:
                TableScan
                  alias: household_demographics
                  Statistics: Num rows: 7200 Data size: 770400 Basic stats: COMPLETE Column
stats: NONE
                  Select Operator
                    expressions: hd_demo_sk (type: int), hd_dep_count (type: int)
                    outputColumnNames: _col0, _col1
                    Statistics: Num rows: 7200 Data size: 770400 Basic stats: COMPLETE Column
stats: NONE
                    Reduce Output Operator
                      sort order: 
                      Statistics: Num rows: 7200 Data size: 770400 Basic stats: COMPLETE Column
stats: NONE
                      value expressions: _col0 (type: int), _col1 (type: int)
            Execution mode: vectorized
        Map 6 
            Map Operator Tree:
                TableScan
                  alias: store
                  filterExpr: (true and s_store_sk is not null) (type: boolean)
                  Statistics: Num rows: 1704 Data size: 3256276 Basic stats: COMPLETE Column
stats: NONE
                  Filter Operator
                    predicate: s_store_sk is not null (type: boolean)
                    Statistics: Num rows: 852 Data size: 1628138 Basic stats: COMPLETE Column
stats: NONE
                    Select Operator
                      expressions: s_store_sk (type: int)
                      outputColumnNames: _col0
                      Statistics: Num rows: 852 Data size: 1628138 Basic stats: COMPLETE Column
stats: NONE
                      Reduce Output Operator
                        sort order: 
                        Statistics: Num rows: 852 Data size: 1628138 Basic stats: COMPLETE
Column stats: NONE
                        value expressions: _col0 (type: int)
            Execution mode: vectorized
        Map 7 
            Map Operator Tree:
                TableScan
                  alias: store_sales
                  filterExpr: (ss_store_sk is not null and ss_sold_date_sk is not null) (type:
boolean)
                  Statistics: Num rows: 82510879939 Data size: 7203833257964 Basic stats:
COMPLETE Column stats: NONE
                  Filter Operator
                    predicate: (ss_store_sk is not null and ss_sold_date_sk is not null) (type:
boolean)
                    Statistics: Num rows: 20627719985 Data size: 1800958314512 Basic stats:
COMPLETE Column stats: NONE
                    Select Operator
                      expressions: ss_sold_date_sk (type: int), ss_cdemo_sk (type: int), ss_hdemo_sk
(type: int), ss_addr_sk (type: int), ss_store_sk (type: int), ss_quantity (type: int), ss_sales_price
(type: float), ss_ext_sales_price (type: float), ss_ext_wholesale_cost (type: float), ss_net_profit
(type: float)
                      outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6,
_col7, _col8, _col9
                      Statistics: Num rows: 20627719985 Data size: 1800958314512 Basic stats:
COMPLETE Column stats: NONE
                      Map Join Operator
                        condition map:
                             Inner Join 0 to 1
                        condition expressions:
                          0 {_col0} {_col1} {_col2} {_col4} {_col5}
                          1 {_col0} {_col1} {_col2} {_col3} {_col5} {_col6} {_col7} {_col8}
{_col9}
                        keys:
                          0 _col3 (type: int)
                          1 _col4 (type: int)
                        outputColumnNames: _col0, _col1, _col2, _col4, _col5, _col6, _col7,
_col8, _col9, _col11, _col12, _col13, _col14, _col15
                        input vertices:
                          0 Map 8
                        Statistics: Num rows: 22690492416 Data size: 1981054320640 Basic stats:
COMPLETE Column stats: NONE
                        Filter Operator
                          predicate: (((_col8 = _col4) and ((_col0 = _col7) and ((_col1 =
'M') and ((_col2 = '4 yr Degree') and (_col12 BETWEEN 100 AND 150 and (_col5 = 3)))))) or
(((_col8 = _col4) and ((_col0 = _col7) and ((_col1 = 'D') and ((_col2 = 'Primary') and (_col12
BETWEEN 50 AND 100 and (_col5 = 1)))))) or ((_col8 = _col4) and ((_col0 = _col7) and ((_col1
= 'U') and ((_col2 = 'Advanced Degree') and (_col12 BETWEEN 150 AND 200 and (_col5 = 1))))))))
(type: boolean)
                          Statistics: Num rows: 1063616832 Data size: 92861921280 Basic stats:
COMPLETE Column stats: NONE
                          Select Operator
                            expressions: _col6 (type: int), _col9 (type: int), _col11 (type:
int), _col13 (type: float), _col14 (type: float), _col15 (type: float)
                            outputColumnNames: _col0, _col3, _col5, _col7, _col8, _col9
                            Statistics: Num rows: 1063616832 Data size: 92861921280 Basic
stats: COMPLETE Column stats: NONE
                            Reduce Output Operator
                              sort order: 
                              Statistics: Num rows: 1063616832 Data size: 92861921280 Basic
stats: COMPLETE Column stats: NONE
                              value expressions: _col0 (type: int), _col3 (type: int), _col5
(type: int), _col7 (type: float), _col8 (type: float), _col9 (type: float)
            Execution mode: vectorized
        Map 8 
            Map Operator Tree:
                TableScan
                  alias: customer_demographics
                  Statistics: Num rows: 1920800 Data size: 718379200 Basic stats: COMPLETE
Column stats: NONE
                  Select Operator
                    expressions: cd_demo_sk (type: int), cd_marital_status (type: string),
cd_education_status (type: string)
                    outputColumnNames: _col0, _col1, _col2
                    Statistics: Num rows: 1920800 Data size: 718379200 Basic stats: COMPLETE
Column stats: NONE
                    Map Join Operator
                      condition map:
                           Inner Join 0 to 1
                      condition expressions:
                        0 {_col0} {_col1} {_col2}
                        1 {_col0}
                      keys:
                        0 
                        1 
                      outputColumnNames: _col0, _col1, _col2, _col3
                      input vertices:
                        1 Map 6
                      Statistics: Num rows: 2112880 Data size: 790217152 Basic stats: COMPLETE
Column stats: NONE
                      Map Join Operator
                        condition map:
                             Inner Join 0 to 1
                        condition expressions:
                          0 {_col0} {_col1} {_col2} {_col3}
                          1 {_col0} {_col1}
                        keys:
                          0 
                          1 
                        outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5
                        input vertices:
                          1 Map 5
                        Statistics: Num rows: 2324168 Data size: 869238912 Basic stats: COMPLETE
Column stats: NONE
                        Reduce Output Operator
                          key expressions: _col3 (type: int)
                          sort order: +
                          Map-reduce partition columns: _col3 (type: int)
                          Statistics: Num rows: 2324168 Data size: 869238912 Basic stats:
COMPLETE Column stats: NONE
                          value expressions: _col0 (type: int), _col1 (type: string), _col2
(type: string), _col4 (type: int), _col5 (type: int)
            Execution mode: vectorized
        Reducer 2 
            Reduce Operator Tree:
              Join Operator
                condition map:
                     Inner Join 0 to 1
                condition expressions:
                  0 {VALUE._col0} {VALUE._col3} {VALUE._col5} {VALUE._col7} {VALUE._col8}
{VALUE._col9}
                  1 {VALUE._col0} {VALUE._col1} {VALUE._col2}
                outputColumnNames: _col0, _col3, _col5, _col7, _col8, _col9, _col16, _col17,
_col18
                Statistics: Num rows: 1169978496 Data size: 102148120576 Basic stats: COMPLETE
Column stats: NONE
                Filter Operator
                  predicate: (((_col3 = _col16) and ((_col18 = 'United States') and ((_col17)
IN ('KY', 'GA', 'NM') and _col9 BETWEEN 100 AND 200))) or (((_col3 = _col16) and ((_col18
= 'United States') and ((_col17) IN ('MT', 'OR', 'IN') and _col9 BETWEEN 150 AND 300))) or
((_col3 = _col16) and ((_col18 = 'United States') and ((_col17) IN ('WI', 'MO', 'WV') and
_col9 BETWEEN 50 AND 250))))) (type: boolean)
                  Statistics: Num rows: 219370968 Data size: 19152772608 Basic stats: COMPLETE
Column stats: NONE
                  Select Operator
                    expressions: _col0 (type: int), _col5 (type: int), _col7 (type: float),
_col8 (type: float)
                    outputColumnNames: _col0, _col5, _col7, _col8
                    Statistics: Num rows: 219370968 Data size: 19152772608 Basic stats: COMPLETE
Column stats: NONE
                    Map Join Operator
                      condition map:
                           Inner Join 0 to 1
                      condition expressions:
                        0 {_col5} {_col7} {_col8}
                        1 
                      keys:
                        0 _col0 (type: int)
                        1 _col0 (type: int)
                      outputColumnNames: _col5, _col7, _col8
                      input vertices:
                        1 Map 4
                      Statistics: Num rows: 241308080 Data size: 21068050432 Basic stats:
COMPLETE Column stats: NONE
                      Select Operator
                        expressions: _col5 (type: int), _col7 (type: float), _col8 (type:
float)
                        outputColumnNames: _col0, _col1, _col2
                        Statistics: Num rows: 241308080 Data size: 21068050432 Basic stats:
COMPLETE Column stats: NONE
                        Group By Operator
                          aggregations: avg(_col0), avg(_col1), avg(_col2), sum(_col2)
                          mode: hash
                          outputColumnNames: _col0, _col1, _col2, _col3
                          Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column
stats: NONE
                          Reduce Output Operator
                            sort order: 
                            Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column
stats: NONE
                            value expressions: _col0 (type: struct<count:bigint,sum:double,input:int>),
_col1 (type: struct<count:bigint,sum:double,input:float>), _col2 (type: struct<count:bigint,sum:double,input:float>),
_col3 (type: double)
        Reducer 3 
            Reduce Operator Tree:
              Group By Operator
                aggregations: avg(VALUE._col0), avg(VALUE._col1), avg(VALUE._col2), sum(VALUE._col3)
                mode: mergepartial
                outputColumnNames: _col0, _col1, _col2, _col3
                Statistics: Num rows: 1 Data size: 32 Basic stats: COMPLETE Column stats:
NONE
                Select Operator
                  expressions: _col0 (type: double), _col1 (type: double), _col2 (type: double),
_col3 (type: double)
                  outputColumnNames: _col0, _col1, _col2, _col3
                  Statistics: Num rows: 1 Data size: 32 Basic stats: COMPLETE Column stats:
NONE
                  File Output Operator
                    compressed: false
                    Statistics: Num rows: 1 Data size: 32 Basic stats: COMPLETE Column stats:
NONE
                    table:
                        input format: org.apache.hadoop.mapred.TextInputFormat
                        output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
                        serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

  Stage: Stage-0
    Fetch Operator
      limit: -1
      Processor Tree:
        ListSink
{code})

> CBO should use per column join selectivity not NDV when applying exponential backoff.
> -------------------------------------------------------------------------------------
>
>                 Key: HIVE-8031
>                 URL: https://issues.apache.org/jira/browse/HIVE-8031
>             Project: Hive
>          Issue Type: Bug
>          Components: CBO
>    Affects Versions: 0.14.0, 0.13.1
>            Reporter: Mostafa Mokhtar
>            Assignee: Harish Butani
>             Fix For: 0.14.0
>
>




--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Mime
View raw message