hbase-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Ivan Cores gonzalez <ivan.co...@inria.fr>
Subject Re: Processing rows in parallel with MapReduce jobs.
Date Thu, 21 Apr 2016 14:31:54 GMT
Thanks Ted, 
Finally I found the real mistake, the class had to be declared static.

Best,
Iván.

----- Mensaje original -----
> De: "Ted Yu" <yuzhihong@gmail.com>
> Para: user@hbase.apache.org
> Enviados: Martes, 19 de Abril 2016 15:56:56
> Asunto: Re: Processing rows in parallel with MapReduce jobs.
> 
> From the error, you need to provide an argumentless ctor for
> MyTableInputFormat.
> 
> On Tue, Apr 19, 2016 at 12:12 AM, Ivan Cores gonzalez <ivan.cores@inria.fr>
> wrote:
> 
> >
> > Hi Ted,
> >
> > Sorry, I forgot to write the error. In runtime I have the next exception:
> >
> > Exception in thread "main" java.lang.RuntimeException:
> > java.lang.NoSuchMethodException:
> > simplerowcounter.SimpleRowCounter$MyTableInputFormat.<init>()
> >
> > the program works fine if I don't use "MyTableInputFormat" modifying the
> > call to initTableMapperJob:
> >
> >     TableMapReduceUtil.initTableMapperJob(tableName, scan,
> > RowCounterMapper.class,
> >                 ImmutableBytesWritable.class, Result.class, job);   // -->
> > works fine without MyTableInputFormat
> >
> > That's why I asked If you see any problem in the code. Because maybe I
> > forgot override some method or something is missing.
> >
> > Best,
> > Iván.
> >
> >
> > ----- Mensaje original -----
> > > De: "Ted Yu" <yuzhihong@gmail.com>
> > > Para: user@hbase.apache.org
> > > Enviados: Martes, 19 de Abril 2016 0:22:05
> > > Asunto: Re: Processing rows in parallel with MapReduce jobs.
> > >
> > > Did you see the "    Message to log?" log ?
> > >
> > > Can you pastebin the error / exception you got ?
> > >
> > > On Mon, Apr 18, 2016 at 1:54 AM, Ivan Cores gonzalez <
> > ivan.cores@inria.fr>
> > > wrote:
> > >
> > > >
> > > >
> > > > Hi Ted,
> > > > So, If I understand the behaviour of getSplits(), I can create
> > "virtual"
> > > > splits overriding the getSplits function.
> > > > I was performing some tests, but my code crash in runtime and I cannot
> > > > found the problem.
> > > > Any help? I didn't find examples.
> > > >
> > > >
> > > > public class SimpleRowCounter extends Configured implements Tool {
> > > >
> > > >   static class RowCounterMapper extends
> > > > TableMapper<ImmutableBytesWritable, Result> {
> > > >     public static enum Counters { ROWS }
> > > >     @Override
> > > >     public void map(ImmutableBytesWritable row, Result value, Context
> > > > context) {
> > > >       context.getCounter(Counters.ROWS).increment(1);
> > > >                 try {
> > > >                         Thread.sleep(3000); //Simulates work
> > > >                 } catch (InterruptedException name) { }
> > > >     }
> > > >   }
> > > >
> > > >   public class MyTableInputFormat extends TableInputFormat {
> > > >     @Override
> > > >     public List<InputSplit> getSplits(JobContext context) throws
> > > > IOException {
> > > >         //Just to detect if this method is being called ...
> > > >         List<InputSplit> splits = super.getSplits(context);
> > > >         System.out.printf("    Message to log? \n" );
> > > >         return splits;
> > > >     }
> > > >   }
> > > >
> > > >   @Override
> > > >   public int run(String[] args) throws Exception {
> > > >     if (args.length != 1) {
> > > >       System.err.println("Usage: SimpleRowCounter <tablename>");
> > > >       return -1;
> > > >     }
> > > >     String tableName = args[0];
> > > >
> > > >     Scan scan = new Scan();
> > > >     scan.setFilter(new FirstKeyOnlyFilter());
> > > >     scan.setCaching(500);
> > > >     scan.setCacheBlocks(false);
> > > >
> > > >     Job job = new Job(getConf(), getClass().getSimpleName());
> > > >     job.setJarByClass(getClass());
> > > >
> > > >     TableMapReduceUtil.initTableMapperJob(tableName, scan,
> > > > RowCounterMapper.class,
> > > >                 ImmutableBytesWritable.class, Result.class, job, true,
> > > > MyTableInputFormat.class);
> > > >
> > > >     job.setNumReduceTasks(0);
> > > >     job.setOutputFormatClass(NullOutputFormat.class);
> > > >     return job.waitForCompletion(true) ? 0 : 1;
> > > >   }
> > > >
> > > >   public static void main(String[] args) throws Exception {
> > > >     int exitCode = ToolRunner.run(HBaseConfiguration.create(),
> > > >         new SimpleRowCounter(), args);
> > > >     System.exit(exitCode);
> > > >   }
> > > > }
> > > >
> > > > Thanks so much,
> > > > Iván.
> > > >
> > > >
> > > >
> > > >
> > > > ----- Mensaje original -----
> > > > > De: "Ted Yu" <yuzhihong@gmail.com>
> > > > > Para: user@hbase.apache.org
> > > > > Enviados: Martes, 12 de Abril 2016 17:29:52
> > > > > Asunto: Re: Processing rows in parallel with MapReduce jobs.
> > > > >
> > > > > Please take a look at TableInputFormatBase#getSplits() :
> > > > >
> > > > >    * Calculates the splits that will serve as input for the map
> > tasks.
> > > > The
> > > > >
> > > > >    * number of splits matches the number of regions in a table.
> > > > >
> > > > > Each mapper would be reading one of the regions.
> > > > >
> > > > > On Tue, Apr 12, 2016 at 8:18 AM, Ivan Cores gonzalez <
> > > > ivan.cores@inria.fr>
> > > > > wrote:
> > > > >
> > > > > > Hi Ted,
> > > > > > Yes, I mean same region.
> > > > > >
> > > > > > I wasn't using the getSplits() function. I'm trying to add it
to my
> > > > code
> > > > > > but I'm not sure how I have to do it. Is there any example in
the
> > > > website?
> > > > > > I can not find anything. (By the way, I'm using TableInputFormat,
> > not
> > > > > > InputFormat)
> > > > > >
> > > > > > But just to confirm, with the getSplits() function, Are mappers
> > > > processing
> > > > > > rows in the same region executed in parallel? (assuming that
there
> > are
> > > > > > empty
> > > > > > processors/cores)
> > > > > >
> > > > > > Thanks,
> > > > > > Ivan.
> > > > > >
> > > > > >
> > > > > > ----- Mensaje original -----
> > > > > > > De: "Ted Yu" <yuzhihong@gmail.com>
> > > > > > > Para: user@hbase.apache.org
> > > > > > > Enviados: Lunes, 11 de Abril 2016 15:10:29
> > > > > > > Asunto: Re: Processing rows in parallel with MapReduce
jobs.
> > > > > > >
> > > > > > > bq. if they are located in the same split?
> > > > > > >
> > > > > > > Probably you meant same region.
> > > > > > >
> > > > > > > Can you show the getSplits() for the InputFormat of your
> > MapReduce
> > > > job ?
> > > > > > >
> > > > > > > Thanks
> > > > > > >
> > > > > > > On Mon, Apr 11, 2016 at 5:48 AM, Ivan Cores gonzalez <
> > > > > > ivan.cores@inria.fr>
> > > > > > > wrote:
> > > > > > >
> > > > > > > > Hi all,
> > > > > > > >
> > > > > > > > I have a small question regarding the MapReduce jobs
behaviour
> > with
> > > > > > HBase.
> > > > > > > >
> > > > > > > > I have a HBase test table with only 8 rows. I splitted
the
> > table
> > > > with
> > > > > > the
> > > > > > > > hbase shell
> > > > > > > > split command into 2 splits. So now there are 4 rows
in every
> > > > split.
> > > > > > > >
> > > > > > > > I create a MapReduce job that only prints the row
key in the
> > log
> > > > files.
> > > > > > > > When I run the MapReduce job, every row is processed
by 1
> > mapper.
> > > > But
> > > > > > the
> > > > > > > > mappers
> > > > > > > > in the same split are executed sequentially (inside
the same
> > > > > > container).
> > > > > > > > That means,
> > > > > > > > the first four rows are processed sequentially by
4 mappers.
> > The
> > > > system
> > > > > > > > has cores
> > > > > > > > that are free, so is it possible to process rows in
parallel if
> > > > they
> > > > > > are
> > > > > > > > located
> > > > > > > > in the same split?
> > > > > > > >
> > > > > > > > The only way I found to have 8 mappers executed in
parallel is
> > > > split
> > > > > > the
> > > > > > > > table
> > > > > > > > in 8 splits (1 split per row). But obviously this
is not the
> > best
> > > > > > solution
> > > > > > > > for
> > > > > > > > big tables ...
> > > > > > > >
> > > > > > > > Thanks,
> > > > > > > > Ivan.
> > > > > > > >
> > > > > > >
> > > > > >
> > > > >
> > > >
> > >
> >
> 

Mime
View raw message