hbase-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "huaxiang sun (JIRA)" <j...@apache.org>
Subject [jira] [Commented] (HBASE-19163) "Maximum lock count exceeded" from region server's batch processing
Date Thu, 16 Nov 2017 00:04:00 GMT

    [ https://issues.apache.org/jira/browse/HBASE-19163?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16254488#comment-16254488

huaxiang sun commented on HBASE-19163:

Right now, option 1 is implemented in the patch. There are other places which the same logic
can be applied, start with minimum changes first.

> "Maximum lock count exceeded" from region server's batch processing
> -------------------------------------------------------------------
>                 Key: HBASE-19163
>                 URL: https://issues.apache.org/jira/browse/HBASE-19163
>             Project: HBase
>          Issue Type: Bug
>          Components: regionserver
>    Affects Versions: 1.2.7
>            Reporter: huaxiang sun
>            Assignee: huaxiang sun
>         Attachments: HBASE-19163-master-v001.patch, unittest-case.diff
> In one of use cases, we found the following exception and replication is stuck.
> {code}
> 2017-10-25 19:41:17,199 WARN  [hconnection-0x28db294f-shared--pool4-t936] client.AsyncProcess:
#3, table=foo, attempt=5/5 failed=262836ops, last exception: java.io.IOException: java.io.IOException:
Maximum lock count exceeded
>         at org.apache.hadoop.hbase.ipc.RpcServer.call(RpcServer.java:2215)
>         at org.apache.hadoop.hbase.ipc.CallRunner.run(CallRunner.java:109)
>         at org.apache.hadoop.hbase.ipc.RpcExecutor$Handler.run(RpcExecutor.java:185)
>         at org.apache.hadoop.hbase.ipc.RpcExecutor$Handler.run(RpcExecutor.java:165)
> Caused by: java.lang.Error: Maximum lock count exceeded
>         at java.util.concurrent.locks.ReentrantReadWriteLock$Sync.fullTryAcquireShared(ReentrantReadWriteLock.java:528)
>         at java.util.concurrent.locks.ReentrantReadWriteLock$Sync.tryAcquireShared(ReentrantReadWriteLock.java:488)
>         at java.util.concurrent.locks.AbstractQueuedSynchronizer.tryAcquireSharedNanos(AbstractQueuedSynchronizer.java:1327)
>         at java.util.concurrent.locks.ReentrantReadWriteLock$ReadLock.tryLock(ReentrantReadWriteLock.java:871)
>         at org.apache.hadoop.hbase.regionserver.HRegion.getRowLock(HRegion.java:5163)
>         at org.apache.hadoop.hbase.regionserver.HRegion.doMiniBatchMutation(HRegion.java:3018)
>         at org.apache.hadoop.hbase.regionserver.HRegion.batchMutate(HRegion.java:2877)
>         at org.apache.hadoop.hbase.regionserver.HRegion.batchMutate(HRegion.java:2819)
>         at org.apache.hadoop.hbase.regionserver.RSRpcServices.doBatchOp(RSRpcServices.java:753)
>         at org.apache.hadoop.hbase.regionserver.RSRpcServices.doNonAtomicRegionMutation(RSRpcServices.java:715)
>         at org.apache.hadoop.hbase.regionserver.RSRpcServices.multi(RSRpcServices.java:2148)
>         at org.apache.hadoop.hbase.protobuf.generated.ClientProtos$ClientService$2.callBlockingMethod(ClientProtos.java:33656)
>         at org.apache.hadoop.hbase.ipc.RpcServer.call(RpcServer.java:2170)
>         ... 3 more
> {code}
> While we are still examining the data pattern, it is sure that there are too many mutations
in the batch against the same row, this exceeds the maximum 64k shared lock count and it throws
an error and failed the whole batch.
> There are two approaches to solve this issue.
> 1). Let's say there are mutations against the same row in the batch, we just need to
acquire the lock once for the same row vs to acquire the lock for each mutation.
> 2). We catch the error and start to process whatever it gets and loop back.
> With HBASE-17924, approach 1 seems easy to implement now. 
> Create the jira and will post update/patch when investigation moving forward.

This message was sent by Atlassian JIRA

View raw message