hawq-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From dyozie <...@git.apache.org>
Subject [GitHub] incubator-hawq-docs pull request #39: HAWQ-1071 - add examples for HiveText ...
Date Thu, 27 Oct 2016 16:11:18 GMT
Github user dyozie commented on a diff in the pull request:

    https://github.com/apache/incubator-hawq-docs/pull/39#discussion_r85369947
  
    --- Diff: pxf/HivePXF.html.md.erb ---
    @@ -2,121 +2,450 @@
     title: Accessing Hive Data
     ---
     
    -This topic describes how to access Hive data using PXF. You have several options for
querying data stored in Hive. You can create external tables in PXF and then query those tables,
or you can easily query Hive tables by using HAWQ and PXF's integration with HCatalog. HAWQ
accesses Hive table metadata stored in HCatalog.
    +Apache Hive is a distributed data warehousing infrastructure.  Hive facilitates managing
large data sets supporting multiple data formats, including comma-separated value (.csv),
RC, ORC, and parquet. The PXF Hive plug-in reads data stored in Hive, as well as HDFS or HBase.
    +
    +This section describes how to use PXF to access Hive data. Options for querying data
stored in Hive include:
    +
    +-  Creating an external table in PXF and querying that table
    +-  Querying Hive tables via PXF's integration with HCatalog
     
     ## <a id="installingthepxfhiveplugin"></a>Prerequisites
     
    -Check the following before using PXF to access Hive:
    +Before accessing Hive data with HAWQ and PXF, ensure that:
     
    --   The PXF HDFS plug-in is installed on all cluster nodes.
    +-   The PXF HDFS plug-in is installed on all cluster nodes. See [Installing PXF Plug-ins](InstallPXFPlugins.html)
for PXF plug-in installation information.
     -   The PXF Hive plug-in is installed on all cluster nodes.
     -   The Hive JAR files and conf directory are installed on all cluster nodes.
    --   Test PXF on HDFS before connecting to Hive or HBase.
    +-   You have tested PXF on HDFS.
     -   You are running the Hive Metastore service on a machine in your cluster. 
     -   You have set the `hive.metastore.uris` property in the `hive-site.xml` on the NameNode.
     
    +## <a id="topic_p2s_lvl_25"></a>Hive File Formats
    +
    +Hive supports several file formats:
    +
    +-   TextFile - flat file with data in comma-, tab-, or space-separated value format or
JSON notation
    +-   SequenceFile - flat file consisting of binary key/value pairs
    +-   RCFile - record columnar data consisting of binary key/value pairs; high row compression
rate
    +-   ORCFile - optimized row columnar data with stripe, footer, and postscript sections;
reduces data size
    +-   Parquet - compressed columnar data representation
    +-   Avro - JSON-defined, schema-based data serialization format
    +
    +Refer to [File Formats](https://cwiki.apache.org/confluence/display/Hive/FileFormats)
for detailed information about the file formats supported by Hive.
    +
    +The PXF Hive plug-in supports the following profiles for accessing the Hive file formats
listed above. These include:
    +
    +- `Hive`
    +- `HiveText`
    +- `HiveRC`
    +
    +## <a id="topic_p2s_lvl_29"></a>Data Type Mapping
    +
    +### <a id="hive_primdatatypes"></a>Primitive Data Types
    +
    +To represent Hive data in HAWQ, map data values that use a primitive data type to HAWQ
columns of the same type.
    +
    +The following table summarizes external mapping rules for Hive primitive types.
    +
    +| Hive Data Type  | Hawq Data Type |
    +|-------|---------------------------|
    +| boolean    | bool |
    +| int   | int4 |
    +| smallint   | int2 |
    +| tinyint   | int2 |
    +| bigint   | int8 |
    +| decimal  |  numeric  |
    +| float   | float4 |
    +| double   | float8 |
    +| string   | text |
    +| binary   | bytea |
    +| char   | bpchar |
    +| varchar   | varchar |
    +| timestamp   | timestamp |
    +| date   | date |
    +
    +
    +### <a id="topic_b4v_g3n_25"></a>Complex Data Types
    +
    +Hive supports complex data types including array, struct, map, and union. PXF maps each
of these complex types to `text`.  While HAWQ does not natively support these types, you can
create HAWQ functions or application code to extract subcomponents of these complex data types.
    +
    +An example using complex data types is provided later in this topic.
    +
    +
    +## <a id="hive_sampledataset"></a>Sample Data Set
    +
    +Examples used in this topic will operate on a common data set. This simple data set models
a retail sales operation and includes fields with the following names and data types:
    +
    +- location - text
    +- month - text
    +- number\_of\_orders - integer
    +- total\_sales - double
    +
    +Prepare the sample data set for use:
    +
    +1. First, create a text file:
    +
    +    ```
    +    $ vi /tmp/pxf_hive_datafile.txt
    +    ```
    +
    +2. Add the following data to `pxf_hive_datafile.txt`; notice the use of the comma `,`
to separate the four field values:
    +
    +    ```
    +    Prague,Jan,101,4875.33
    +    Rome,Mar,87,1557.39
    +    Bangalore,May,317,8936.99
    +    Beijing,Jul,411,11600.67
    +    San Francisco,Sept,156,6846.34
    +    Paris,Nov,159,7134.56
    +    San Francisco,Jan,113,5397.89
    +    Prague,Dec,333,9894.77
    +    Bangalore,Jul,271,8320.55
    +    Beijing,Dec,100,4248.41
    +    ```
    +
    +Make note of the path to `pxf_hive_datafile.txt`; you will use it in later exercises.
    +
    +
     ## <a id="hivecommandline"></a>Hive Command Line
     
    -To start the Hive command line and work directly on a Hive table:
    +The Hive command line is a subsystem similar to that of `psql`. To start the Hive command
line:
     
     ``` shell
    -$ hive
    +$ HADOOP_USER_NAME=hdfs hive
     ```
     
    -Here is an example of how to create and load data into a sample Hive table from an
existing file.
    +The default Hive database is named `default`. 
     
    -``` sql
    -hive> CREATE TABLE test (name string, type string, supplier_key int, full_price double)
row format delimited fields terminated by ',';
    -hive> LOAD DATA local inpath '/local/path/data.txt' into table test;
    -```
    +### <a id="hivecommandline_createdb"></a>Example: Create a Hive Database
     
    -## <a id="topic_p2s_lvl_25"></a>Using PXF Tables to Query Hive
    +Create a Hive table to expose our sample data set.
     
    -Hive tables are defined in a specific way in PXF, regardless of the underlying file storage
format. The PXF Hive plug-ins automatically detect source tables in the following formats:
    +1. Create a Hive table named `sales_info` in the `default` database:
     
    --   Text based
    --   SequenceFile
    --   RCFile
    --   ORCFile
    --   Parquet
    --   Avro
    +    ``` sql
    +    hive> CREATE TABLE sales_info (location string, month string,
    +            number_of_orders int, total_sales double)
    +            ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
    +            STORED AS textfile;
    +    ```
     
    -The source table can also be a combination of these types. The PXF Hive plug-in uses
this information to query the data in runtime.
    +    Notice that:
     
    --   **[Syntax Example](../pxf/HivePXF.html#syntax2)**
    +    - The `STORED AS textfile` subclause instructs Hive to create the table in Textfile
(the default) format.  Hive Textfile format supports comma-, tab-, and space-separated values,
as well as data specified in JSON notation.
    +    - The `DELIMITED FIELDS TERMINATED BY` subclause identifies the field delimiter within
a data record (line). The `sales_info` table field delimiter is a comma (`,`).
     
    --   **[Hive Complex Types](../pxf/HivePXF.html#topic_b4v_g3n_25)**
    +2. Load the `pxf_hive_datafile.txt` sample data file into the `sales_info` table you
just created:
     
    -### <a id="syntax2"></a>Syntax Example
    +    ``` sql
    +    hive> LOAD DATA local INPATH '/tmp/pxf_hive_datafile.txt'
    +            INTO TABLE sales_info;
    +    ```
    +
    +3. Perform a query on `sales_info` to verify the data was loaded successfully:
    +
    +    ``` sql
    +    hive> SELECT * FROM sales_info;
    +    ```
     
    -The following PXF table definition is valid for any Hive file storage type.
    +In examples later in this section, you will access the `sales_info` Hive table directly
via PXF. You will also insert `sales_info` data into tables of other Hive file format types,
and use PXF to access those directly as well.
    +
    +## <a id="topic_p2s_lvl_28"></a>Querying External Hive Data
    +
    +The PXF Hive plug-in supports several Hive-related profiles. These include `Hive`, `HiveText`,
and `HiveRC`.
    +
    +Use the following syntax to create a HAWQ external table representing Hive data:
     
     ``` sql
    -CREATE [READABLE|WRITABLE] EXTERNAL TABLE table_name 
    -    ( column_name data_type [, ...] | LIKE other_table )
    -LOCATION ('pxf://namenode[:port]/hive-db-name.hive-table-name?<pxf parameters>[&custom-option=value...]')FORMAT
'CUSTOM' (formatter='pxfwritable_import')
    +CREATE EXTERNAL TABLE <table_name>
    +    ( <column_name> <data_type> [, ...] | LIKE <other_table> )
    +LOCATION ('pxf://<host>[:<port>]/<hive-db-name>.<hive-table-name>
    +    ?PROFILE=Hive|HiveText|HiveRC[&DELIMITER=<delim>'])
    +FORMAT 'CUSTOM|TEXT' (formatter='pxfwritable_import' | delimiter='<delim>')
     ```
     
    -where `<pxf parameters>` is:
    +Hive-plug-in-specific keywords and values used in the [CREATE EXTERNAL TABLE](../reference/sql/CREATE-EXTERNAL-TABLE.html)
call are described below.
     
    -``` pre
    -   FRAGMENTER=fragmenter_class&ACCESSOR=accessor_class&RESOLVER=resolver_class]
    - | PROFILE=profile-name
    -```
    +| Keyword  | Value |
    +|-------|-------------------------------------|
    +| \<host\>[:<port\>]    | The HDFS NameNode and port. |
    +| \<hive-db-name\>    | Name of the Hive database. If omitted, defaults to the
Hive database named `default`. |
    +| \<hive-table-name\>    | Name of the Hive table. |
    +| PROFILE    | The `PROFILE` keyword must specify one of the values `Hive`, `HiveText`,
or `HiveRC`. |
    +| DELIMITER    | The `DELIMITER` clause is required for both the `HiveText` and `HiveRC`
profiles and identifies the field delimiter used in the Hive data set.  \<delim\> must
be a single ascii character or specified in hexadecimal representation. |
    +| FORMAT (`Hive` profile)   | The `FORMAT` clause must specify `CUSTOM`. The `CUSTOM`
format supports only the built-in `pxfwritable_import` `formatter`.   |
    +| FORMAT (`HiveText` and `HiveRC` profiles) | The `FORMAT` clause must specify `TEXT`.
The `delimiter` must be specified a second time in '\<delim\>'. |
     
     
    -If `hive-db-name` is omitted, pxf will default to the Hive `default` database.
    +## <a id="profile_hive"></a>Hive Profile
     
    -**Note:** The port is the connection port for the PXF service. If the port is omitted,
PXF assumes that High Availability (HA) is enabled and connects to the HA name service port,
51200 by default. The HA name service port can be changed by setting the pxf\_service\_port
configuration parameter.
    +The `Hive` profile works with any Hive file format.
     
    -PXF has three built-in profiles for Hive tables:
    +### <a id="profile_hive_using"></a>Example: Using the Hive Profile
     
    --   Hive
    --   HiveRC
    --   HiveText
    +Use the `Hive` profile to create a queryable HAWQ external table from the Hive `sales_info`
textfile format table created earlier.
     
    -The Hive profile works with any Hive storage type. 
    -The following example creates a readable HAWQ external table representing a Hive table
named `accessories` in the `inventory` Hive database using the PXF Hive profile:
    +1. Create a queryable HAWQ external table from the Hive `sales_info` textfile format
table created earlier:
     
    -``` shell
    -$ psql -d postgres
    +    ``` sql
    +    postgres=# CREATE EXTERNAL TABLE salesinfo_hiveprofile(location text, month text,
num_orders int, total_sales float8)
    +                LOCATION ('pxf://namenode:51200/default.sales_info?PROFILE=Hive')
    +              FORMAT 'custom' (formatter='pxfwritable_import');
    +    ```
    +
    +2. Query the table:
    +
    +    ``` sql
    +    postgres=# SELECT * FROM salesinfo_hiveprofile;
    +    ```
    +
    +    ``` shell
    +       location    | month | num_orders | total_sales
    +    ---------------+-------+------------+-------------
    +     Prague        | Jan   |        101 |     4875.33
    +     Rome          | Mar   |         87 |     1557.39
    +     Bangalore     | May   |        317 |     8936.99
    +     ...
    +
    +    ```
    +
    +## <a id="profile_hivetext"></a>HiveText Profile
    +
    +Use the `HiveText` profile to query text formats. The `HiveText` profile is more performant
than the `Hive` profile.
    +
    +**Note**: When using the `HiveText` profile, you *must* specify a delimiter option in
*both* the `LOCATION` and `FORMAT` clauses.
    +
    +### <a id="profile_hivetext_using"></a>Example: Using the HiveText Profile
    +
    +Use the PXF `HiveText` profile to create a queryable HAWQ external table from the Hive
`sales_info` textfile format table created earlier.
    +
    +1. Create the external table:
    +
    +    ``` sql
    +    postgres=# CREATE EXTERNAL TABLE salesinfo_hivetextprofile(location text, month text,
num_orders int, total_sales float8)
    +                 LOCATION ('pxf://namenode:51200/default.sales_info?PROFILE=HiveText&DELIMITER=\x2c')
    +               FORMAT 'TEXT' (delimiter=E',');
    +    ```
    +
    +    (You can safely ignore the "nonstandard use of escape in a string literal" warning
and related messages.)
    +
    +    Notice that:
    +
    +    - The `LOCATION` subclause `DELIMITER` value is specified in hexadecimal format.
`\x` is a prefix that instructs PXF to interpret the following characters as hexadecimal.
`2c` is the hex value for the comma character.
    +    - The `FORMAT` subclause `delimiter` value is specified as the single ascii comma
character ','. `E` escapes the character.
    +
    +2. Query the external table:
    +
    +    ``` sql
    +    postgres=# SELECT * FROM salesinfo_hivetextprofile where location="Beijing";
    +    ```
    +
    +    ``` shell
    +     location | month | num_orders | total_sales
    +    ----------+-------+------------+-------------
    +     Beijing  | Jul   |        411 |    11600.67
    +     Beijing  | Dec   |        100 |     4248.41
    +    (2 rows)
    +    ```
    +
    +## <a id="profile_hiverc"></a>HiveRC Profile
    +
    +The RCFile Hive format is used for row columnar formatted data. The `HiveRC` profile
provides access to RCFile data.
    +
    +### <a id="profile_hiverc_rcfiletbl_using"></a>Example: Using the HiveRC
Profile
    +
    +Use the `HiveRC` profile to query RCFile-formatted data in Hive tables. The `HiveRC`
profile is more performant than the `Hive` profile for this file format type.
    +
    +1. Create a Hive table with RCFile format:
    +
    +    ``` shell
    +    $ HADOOP_USER_NAME=hdfs hive
    +    ```
    +
    +    ``` sql
    +    hive> CREATE TABLE sales_info_rcfile (location string, month string,
    +            number_of_orders int, total_sales double)
    +          ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
    +          STORED AS rcfile;
    +    ```
    +
    +2. Insert the data from the `sales_info` table into `sales_info_rcfile`:
    +
    +    ``` sql
    +    hive> INSERT INTO TABLE sales_info_rcfile SELECT * FROM sales_info;
    +    ```
    +
    +    A copy of the sample data set is now stored in RCFile format in `sales_info_rcfile`.

    +    
    +3. Perform a Hive query on `sales_info_rcfile` to verify the data was loaded successfully:
    +
    +    ``` sql
    +    hive> SELECT * FROM sales_info_rcfile;
    +    ```
    +
    +4. Use the PXF `HiveRC` profile to create a queryable HAWQ external table from the Hive
`sales_info_rcfile` table created in the previous step. When using the `HiveRC` profile, you
**must** specify a delimiter option in *both* the `LOCATION` and `FORMAT` clauses.:
    +
    +    ``` sql
    +    postgres=# CREATE EXTERNAL TABLE salesinfo_hivercprofile(location text, month text,
num_orders int, total_sales float8)
    +                 LOCATION ('pxf://namenode:51200/default.sales_info_rcfile?PROFILE=HiveRC&DELIMITER=\x2c')
    +               FORMAT 'TEXT' (delimiter=E',');
    +    ```
    +
    +    (Again, you can safely ignore the "nonstandard use of escape in a string literal"
warning and related messages.)
    +
    +5. Query the external table:
    +
    +    ``` sql
    +    postgres=# SELECT location, total_sales FROM salesinfo_hivercprofile;
    +    ```
    +
    +    ``` shell
    +       location    | total_sales
    +    ---------------+-------------
    +     Prague        |     4875.33
    +     Rome          |     1557.39
    +     Bangalore     |     8936.99
    +     Beijing       |    11600.67
    +     ...
    +    ```
    +
    +## <a id="topic_dbb_nz3_ts"></a>Accessing Parquet-Format Hive Tables
    +
    +The PXF `Hive` profile supports both non-partitioned and partitioned Hive tables that
use the Parquet storage format in HDFS. Simply map the table columns using equivalent HAWQ
data types. For example, if a Hive table is created using:
    +
    +``` sql
    +hive> CREATE TABLE hive_parquet_table (fname string, lname string, custid int, acctbalance
double)
    +        STORED AS parquet;
     ```
     
    +Define the HAWQ external table using:
    +
     ``` sql
    -postgres=# CREATE EXTERNAL TABLE hivetest(id int, newid int)
    -LOCATION ('pxf://namenode:51200/inventory.accessories?PROFILE=Hive')
    -FORMAT 'custom' (formatter='pxfwritable_import');
    +postgres=# CREATE EXTERNAL TABLE pxf_parquet_table (fname text, lname text, custid int,
acctbalance double precision)
    +    LOCATION ('pxf://namenode:51200/hive-db-name.hive_parquet_table?profile=Hive')
    +    FORMAT 'CUSTOM' (formatter='pxfwritable_import');
     ```
     
    +## <a id="profileperf"></a>Profile Performance Considerations
     
    -Use HiveRC and HiveText to query RC and Text formats respectively. The HiveRC and HiveText
profiles are faster than the generic Hive profile. When using the HiveRC and HiveText profiles,
you must specify a DELIMITER option in the LOCATION clause. See [Using Profiles to Read and
Write Data](ReadWritePXF.html#readingandwritingdatawithpxf) for more information on profiles.
    +The `HiveRC` and `HiveText` profiles are faster than the generic `Hive` profile.
     
    +?? MORE HERE. ??
     
    -### <a id="topic_b4v_g3n_25"></a>Hive Complex Types
    +## <a id="complex_dt_example"></a>Complex Data Type Example
     
    -PXF tables support Hive data types that are not primitive types. The supported Hive complex
data types are array, struct, map, and union. This Hive `CREATE TABLE` statement, for example,
creates a table with each of these complex data types:
    +This example will employ the array and map complex types, specifically an array of integers
and a string key/value pair map.
     
    -``` sql
    -hive> CREATE TABLE sales_collections (
    -  item STRING,
    -  price FLOAT,
    -  properties ARRAY<STRING>,
    -  hash MAP<STRING,FLOAT>,
    -  delivery_address STRUCT<street:STRING, city:STRING, state:STRING, zip:INT>,
    -  others UNIONTYPE<FLOAT, BOOLEAN, STRING>
    -)  
    -ROW FORMAT DELIMITED FIELDS
    -TERMINATED BY '\001' COLLECTION ITEMS TERMINATED BY '\002' MAP KEYS TERMINATED BY '\003'
LINES TERMINATED BY '\n' STORED AS TEXTFILE;
    -hive> LOAD DATA LOCAL INPATH '/local/path/<some data file>' INTO TABLE sales_collection;
    -```
    +The example data set includes fields with the following names and data types:
    +
    +- index - int
    +- name - string
    +- intarray - array of integers
    +- propmap - map of string key and value pairs
    +
    +When specifying an array field in a Hive table, you must identify the terminator for
each item in the collection. Similarly, the map key termination character must also be specified.
    +
    +1. Create a text file from which you will load the data set:
    +
    +    ```
    +    $ vi /tmp/pxf_hive_complex.txt
    +    ```
    +
    +2. Add the following data to `pxf_hive_complex.txt`.  The data uses a comma `,` to separate
field values, the percent symbol `%` to separate collection items, and a `:` to terminate
map key values:
    +
    +    ```
    +    3,Prague,1%2%3,zone:euro%status:up
    +    89,Rome,4%5%6,zone:euro
    +    400,Bangalore,7%8%9,zone:apac%status:pending
    +    183,Beijing,0%1%2,zone:apac
    +    94,Sacramento,3%4%5,zone:noam%status:down
    +    101,Paris,6%7%8,zone:euro%status:up
    +    56,Frankfurt,9%0%1,zone:euro
    +    202,Jakarta,2%3%4,zone:apac%status:up
    +    313,Sydney,5%6%7,zone:apac%status:pending
    +    76,Atlanta,8%9%0,zone:noam%status:down
    +    ```
    +
    +3. Create a Hive table to represent this data:
    +
    +    ``` shell
    +    $ HADOOP_USER_NAME=hdfs hive
    +    ```
    +
    +    ``` sql
    +    hive> CREATE TABLE table_complextypes( index int, name string, intarray ARRAY<int>,
propmap MAP<string, string>)
    +             ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
    +             COLLECTION ITEMS TERMINATED BY '%'
    +             MAP KEYS TERMINATED BY ':'
    +             STORED AS TEXTFILE;
    +    ```
    +
    +    Notice that:
    +
    +    - `FIELDS TERMINATED BY` identifies a comma as the field terminator.
    +    - The `COLLECTION ITEMS TERMINATED BY` subclause specifies the percent sign as the
collection items (array item, map key/value pair) terminator.
    +    - `MAP KEYS TERMINATED BY` identifies a colon as the terminator for map keys.
    +
    +4. Load the `pxf_hive_complex.txt` sample data file into the `table_complextypes` table
you just created:
    +
    +    ``` sql
    +    hive> LOAD DATA local INPATH '/tmp/pxf_hive_complex.txt' INTO TABLE table_complextypes;
    +    ```
    +
    +5. Perform a query on Hive table `table_complextypes` to verify the data was loaded successfully:
    +
    +    ``` sql
    +    hive> SELECT * FROM table_complextypes;
    +    ```
    +
    +    ``` shell
    +    3	Prague	[1,2,3]	{"zone":"euro","status":"up"}
    +    89	Rome	[4,5,6]	{"zone":"euro"}
    +    400	Bangalore	[7,8,9]	{"zone":"apac","status":"pending"}
    +    ...
    +    ```
    +
    +6. Use the PXF `Hive` profile to create a queryable HAWQ external table representing
the Hive `table_complextypes`:
     
    -You can use HAWQ functions or application code to extract the components of the complex
data columns as needed.
    +    ``` sql
    +    postgres=# CREATE EXTERNAL TABLE complextypes_hiveprofile(index int, name text, intarray
text, propmap text)
    +                 LOCATION ('pxf://namenode:51200/table_complextypes?PROFILE=Hive')
    +               FORMAT 'CUSTOM' (formatter='pxfwritable_import');
    +    ```
    +
    +    Notice that the integer array and map complex types are mapped to type text.
    +
    +7. Query the external table:
    +
    +    ``` sql
    +    postgres=# SELECT * FROM complextypes_hiveprofile;
    +    ```
    +
    +    ``` shell     
    +     index |    name    | intarray |              propmap
    +    -------+------------+----------+------------------------------------
    +         3 | Prague     | [1,2,3]  | {"zone":"euro","status":"up"}
    +        89 | Rome       | [4,5,6]  | {"zone":"euro"}
    +       400 | Bangalore  | [7,8,9]  | {"zone":"apac","status":"pending"}
    +       183 | Beijing    | [0,1,2]  | {"zone":"apac"}
    +        94 | Sacramento | [3,4,5]  | {"zone":"noam","status":"down"}
    +       101 | Paris      | [6,7,8]  | {"zone":"euro","status":"up"}
    +        56 | Frankfurt  | [9,0,1]  | {"zone":"euro"}
    +       202 | Jakarta    | [2,3,4]  | {"zone":"apac","status":"up"}
    +       313 | Sydney     | [5,6,7]  | {"zone":"apac","status":"pending"}
    +        76 | Atlanta    | [8,9,0]  | {"zone":"noam","status":"down"}
    +    (10 rows)
    +    ```
    +
    +    `intarray` and `propmap` are each text strings.
     
     ## <a id="hcatalog"></a>Using PXF and HCatalog to Query Hive
    --- End diff --
    
    I'm wondering if we should put this method first, since it seems so much more convenient
than the others?


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastructure@apache.org or file a JIRA ticket
with INFRA.
---

Mime
View raw message