hadoop-mapreduce-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From manoj <manojm....@gmail.com>
Subject Re: Why would ApplicationManager request RAM more that defaut 1GB?
Date Thu, 24 Sep 2015 17:39:23 GMT
Hello IIya,

Looks like the Vmem usage is going above the above 2.1 of Pmem times thats
why the container is getting killed,

1.0 GB of 1 GB physical memory used; *3.4 GB of 2.1 GB virtual memory used*


By default Vmem is set to 2.1 times of the Pmem.
Looks like your job is taking 3.4GB!

You can change the ratio by setting in Yarn-site.xml:
yarn.nodemanager.vmem-pmem-ratio

You can optionally disable this check by setting following to false:

yarn.nodemanager.vmem-check-enabled


Thanks,
-Manoj

On Wed, Sep 23, 2015 at 12:36 AM, Ilya Karpov <i.karpov@cleverdata.ru>
wrote:

> Great thanks for your reply!
>
> >1. Which version of Hadoop/ YARN ?
> Hadoop(command: hadoop version):
> Hadoop 2.6.0-cdh5.4.5
> Subversion http://github.com/cloudera/hadoop -r
> ab14c89fe25e9fb3f9de4fb852c21365b7c5608b
> Compiled by jenkins on 2015-08-12T21:11Z
> Compiled with protoc 2.5.0
> From source with checksum d31cb7e46b8602edaf68d335b785ab
> This command was run using
> /opt/cloudera/parcels/CDH-5.4.5-1.cdh5.4.5.p0.7/jars/hadoop-common-2.6.0-cdh5.4.5.jar
> Yarn (command: yarn version) prints exactly the same.
>
> >2. From the logs is it getting killed due to over usage of Vmem or
> Physical memory ?
> Because of over usage of Physical memory. Last seconds of life:
> 2015-09-21 22:50:34,017 INFO
> org.apache.hadoop.yarn.server.nodemanager.containermanager.monitor.ContainersMonitorImpl:
> Memory usage of ProcessTree 13982 for container-id
> container_1442402147223_0165_01_000001: 1.0 GB of 1 GB physical memory
> used; 3.4 GB of 2.1 GB virtual memory used
> 2015-09-21 22:50:34,017 WARN
> org.apache.hadoop.yarn.server.nodemanager.containermanager.monitor.ContainersMonitorImpl:
> Process tree for container: container_1442402147223_0165_01_000001 has
> processes older than 1 iteration running over the configured limit.
> Limit=1073741824, current usage = 1074352128
> 2015-09-21 22:50:34,018 WARN
> org.apache.hadoop.yarn.server.nodemanager.containermanager.monitor.ContainersMonitorImpl:
> Container [pid=13982,containerID=container_1442402147223_0165_01_000001] is
> running beyond physical memory limits. Current usage: 1.0 GB of 1 GB
> physical memory used; 3.4 GB of 2.1 GB virtual memory used. Killing
> container.
> Dump of the process-tree for container_1442402147223_0165_01_000001 :
>         |- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS)
> SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE
>         |- 13994 13982 13982 13982 (java) 4285 714 3602911232 261607
> /opt/jdk1.8.0_60/bin/java -Dlog4j.configuration=container-log4j.properties
> -Dyarn.app.container.log.dir=/var/log/hadoop-yarn/contai
> ner/application_1442402147223_0165/container_1442402147223_0165_01_000001
> -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA
> -Djava.net.preferIPv4Stack=true -Xmx825955249 org.apache.had
> oop.mapreduce.v2.app.MRAppMaster
>         |- 13982 13980 13982 13982 (bash) 0 0 14020608 686 /bin/bash -c
> /opt/jdk1.8.0_60/bin/java -Dlog4j.configuration=container-log4j.properties
> -Dyarn.app.container.log.dir=/var/log/hadoop-yarn/container/application_1442402147223_0165/container_1442402147223_0165_01_000001
> -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA
> -Djava.net.preferIPv4Stack=true -Xmx825955249
> org.apache.hadoop.mapreduce.v2.app.MRAppMaster
> 1>/var/log/hadoop-yarn/container/application_1442402147223_0165/container_1442402147223_0165_01_000001/stdout
> 2>/var/log/hadoop-yarn/container/application_1442402147223_0165/container_1442402147223_0165_01_000001/stderr
>
> 2015-09-21 22:50:34,018 INFO
> org.apache.hadoop.yarn.server.nodemanager.containermanager.monitor.ContainersMonitorImpl:
> Removed ProcessTree with root 13982
> 2015-09-21 22:50:34,025 INFO
> org.apache.hadoop.yarn.server.nodemanager.containermanager.container.Container:
> Container container_1442402147223_0165_01_000001 transitioned from RUNNING
> to KILLING
> 2015-09-21 22:50:34,025 INFO
> org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch:
> Cleaning up container container_1442402147223_0165_01_000001
> 2015-09-21 22:50:34,075 WARN
> org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor: Exit
> code from container container_1442402147223_0165_01_000001 is : 143
>
> >3. Can you run " jmap -histo -F <PID of AM container>" and share the heap
> dump result?
> I’ll try to do it asap.
>
> >4. If possible can you pastebin the AM logs?
> yes,
> https://drive.google.com/file/d/0B1DPTV7TbcO0cEEwSDZyUnBWUEk/view?usp=sharing
>
>
>
>
> > 23 сент. 2015 г., в 7:21, Naganarasimha G R (Naga) <
> garlanaganarasimha@huawei.com> написал(а):
> >
> > Hi Ilya,
> >    In a normal case AM memory requirement should not be more than the
> default for small sized jobs, but seems to be something erroneous in your
> case, Would like to have more information :
> > 1. Which version of Hadoop/ YARN ?
> > 2. From the logs is it getting killed due to over usage of Vmem or
> Physical memory ?
> > 3. Can you run " jmap -histo -F <PID of AM container>" and share the
> heap dump result?
> > 4. If possible can you pastebin the AM logs?
> >
> > + Naga
> > ________________________________________
> > From: Ilya Karpov [i.karpov@cleverdata.ru]
> > Sent: Tuesday, September 22, 2015 21:06
> > To: user@hadoop.apache.org
> > Subject: Why would ApplicationManager request RAM more that defaut 1GB?
> >
> > Hi all,
> > can’t figure out subj.
> > On my hadoop cluster I have an issue when ApplicationMaster(AM) killed
> by NodeManager because AM tries to allocate more than default 1GB. MR
> application, that AM is in charge of, is a mapper only job(1(!) mapper, no
> reducers, downloads data from remote source). At the moment when AM killed,
> MR job is ok (uses about 70% of ram limit). MR job doesn't have any custom
> counters, distributes caches etc, just downloads data (by portions) via
> custom input format. To fix this issue, I raised memory limit for AM, but I
> want to know what is the reason of eating 1GB (!) for a trivial job like
> mine?
> >
>
>


-- 
--Manoj Kumar M

Mime
View raw message