hadoop-mapreduce-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Owen O'Malley (JIRA)" <j...@apache.org>
Subject [jira] Commented: (MAPREDUCE-1623) Apply audience and stability annotations to classes in mapred package
Date Fri, 30 Apr 2010 18:16:56 GMT

    [ https://issues.apache.org/jira/browse/MAPREDUCE-1623?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=12862781#action_12862781
] 

Owen O'Malley commented on MAPREDUCE-1623:
------------------------------------------

o.a.h.mapreduce:

  public, evolving: Cluster, ClusterMetrics, Job, JobCounter, JobPriority, JobStatus, MarkableIterator,
MarkableIteratorInterface,QueueAclsInfo, QueueInfo, QueueState, TaskCounter, TaskReport, TaskTrackerInfo,
TaskType

  public,stable: Mapper, Reducer, Counter, CounterGroup, Counters, ID, InputFormat, InputSplit,
JobContext, JobCounter, JobID, MapContext, Mapper, OutputCommitter, OutputFormat, Partitioner,
RecordReader, RecordWriter, ReduceContext, Reducer, TaskAttemptContext, TaskAttemptID, TaskID,
TaskInputOutputContext

  private: JobACL, JobSubmissionFiles, JobSubmitter, MRConfig, StatusReporter, TaskCompletionEvent,
TaskReport

o.a.h.mapreduce.map:
  public, stable: InverseMapper, TokenCounterMapper

o.a..h.mapreduce.lib.output:
  public, stable: NullOutputFormat

o.a.h.mapreduce.lib.partition:
  public, stable: BinaryPartitioner, HashPartitioner, InputSampler, TotalOrderPartitioner

o.a.h.mapreduce.lib.reduce:
  public, stable: IntSumReducer, LongSumReducer

o.a.h.mapred:
  public, stable: Counters, ClusterStatus, FileInputFormat, FileOutputCommitter, FileOutputFormat,
FileSplit, ID, InputFormat, InputSplit, IsolationRunner, JobClient, JobConf, JobConfigurable,
JobID, JobPriority, MapRunnable, MapRunner, Mapper, MultiFileInputFormat, MultiFileSplit,
OutputCollector, OutputCommitter, OutputFormat, Partitioner, RecordReader, RecordWriter, Reducer,
Reporter, RunningJob, SequenceFileAsBinaryInputFormat, SequenceFileAsBinaryOutputFormat,SequenceFileAsTextInputFormat,
SequenceFileAsTextRecordReader, SequenceFileInputFilter, SequenceFileInputFormat, SequenceFileOutputFormat,
SequenceFileRecordReader, TaskAttemptID, TaskID, TextInputFormat, TextOutputFormat

o.a.h.mapred.lib:
  public, stable: BinaryPartitioner, Chain, ChainMapper, ChainReducer, CombineFileInputFormat,
CombineFileRecordReader, CombineFileSplit, DelegatingInputFormat, DelegationMapper, FieldSelectionMapReduce,
FilterOutputFormat, HashPartitioner, IdentityMapper, IdentityReducer, InputSampler, InverseMapper,
KeyFieldBasedComparator, KeyFieldBasedPartitioner, LazyOutputFormat, LongSumReducer, MultipleInputs,
MultipleOutputFormat, MultipleSequenceFileOutputFormat, MultipleTextOutputFormat, MultithreadedMapRunner,
NLineInputFormat, NullOutputFormat, RegexMapper, TaggedInputSplit, TokenCountMapper, TotalOrderPartitioner

> Apply audience and stability annotations to classes in mapred package
> ---------------------------------------------------------------------
>
>                 Key: MAPREDUCE-1623
>                 URL: https://issues.apache.org/jira/browse/MAPREDUCE-1623
>             Project: Hadoop Map/Reduce
>          Issue Type: Sub-task
>          Components: documentation
>            Reporter: Tom White
>            Assignee: Tom White
>            Priority: Blocker
>             Fix For: 0.22.0
>
>         Attachments: M1623-1.patch, MAPREDUCE-1623.patch, MAPREDUCE-1623.patch, MAPREDUCE-1623.patch,
MAPREDUCE-1623.patch, MAPREDUCE-1623.patch, MAPREDUCE-1623.patch, MAPREDUCE-1623.patch
>
>
> There are lots of implementation classes in org.apache.hadoop.mapred which makes it difficult
to see the user-level MapReduce API classes in the Javadoc. (See http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hadoop/mapred/package-summary.html
for example.) By marking these implementation classes with the InterfaceAudience.Private annotation
we can exclude them from user Javadoc (using HADOOP-6658).
> Later work will move the implementation classes into o.a.h.mapreduce.server and related
packages (see MAPREDUCE-561), but applying the annotations is a good first step. 

-- 
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.


Mime
View raw message