hadoop-common-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Apache Wiki <wikidi...@apache.org>
Subject [Lucene-hadoop Wiki] Trivial Update of "Hbase/ShellPlans" by udanax
Date Wed, 29 Aug 2007 02:00:57 GMT
Dear Wiki user,

You have subscribed to a wiki page or wiki category on "Lucene-hadoop Wiki" for change notification.

The following page has been changed by udanax:
http://wiki.apache.org/lucene-hadoop/Hbase/ShellPlans

------------------------------------------------------------------------------
  ||Table ||<99%>'''Table''' command loads specified table. [[BR]][[BR]]~-''Table('table_name');''-~
||
  ||Matrix ||<99%>'''Matrix''' command constructs the configuration of the logic matrix.[[BR]]'''Options'''
: features not yet. [[BR]][[BR]]~-''Matrix(table_name, columnfamily_name[, option]);''-~ ||
  ||Substitute ||<99%>'''Substitute''' expression to [A~Z][[BR]][[BR]]~-''A = Table('table_name');''-~
||
- ||IF...ELSE ||<99%>'''IF...ELSE''', Imposes conditions on the execution. [[BR]][[BR]]~-''IF
( boolean_expression )[[BR]]B = command_statements;[[BR]]ELSE[[BR]]B = command_statements;''-~||
+ ||IF...ELSE ||<99%>'''IF...ELSE''', Imposes conditions on the execution. [[BR]][[BR]]~-''IF
( boolean_expression )[[BR]]{{{    }}}B = command_statements;[[BR]]ELSE[[BR]]{{{    }}}B =
command_statements;''-~||
  ||Store ||<99%>'''Store''' command will store results to specified table. [[BR]][[BR]]~-''A
= Table('table_name'); [[BR]]B = A.Selection(condition_expression); [[BR]]Store B TO table(result_table)[or
file('result_file_name')];''-~ ||
  
  '''Type''' 'help;' for Hbase altools usage.
@@ -48, +48 @@

  
  == Relational Operators ==
  ||<bgcolor="#E5E5E5">'''Operator''' ||<bgcolor="#E5E5E5">'''Explanation''' ||
- ||Projection ||<99%>'''Projection''' of a relation ~+R+~, It makes a new relation
as the set that is obtained when all tuples(rows) in ~+R+~ are restricted to the set {columnfamily,,1,,,...,columnfamily,,n,,}.[[BR]][[BR]]~-''A
= Table('table_name');[[BR]]B = A.Projection(column-list); '''//π,,column-list,,(A)''' ''-~
||
+ ||Projection ||<99%>'''Projection''' of a relation ~+R+~, It makes a new relation
as the set that is obtained when all tuples(rows) in ~+R+~ are restricted to the set {columnfamily,,1,,,...,columnfamily,,n,,}.[[BR]][[BR]]~-''A
= Table('table_name');[[BR]]B = A.Projection(column-list);{{{    }}}'''//π,,column-list,,(A)'''
''-~ ||
- ||Selection ||<99%>'''Selection''' of a relation ~+R+~, It makes a new relation as
the set of specified tuples(rows) of the relation ~+R+~.[[BR]]'''Set Operations''' : ~-''OR,
AND, NOT''-~[[BR]][[BR]]~-''A = Table('table_name');[[BR]]B = A.Selection(condition_expression);
'''//σ,,condition,,(A)''' ''-~ ||
+ ||Selection ||<99%>'''Selection''' of a relation ~+R+~, It makes a new relation as
the set of specified tuples(rows) of the relation ~+R+~.[[BR]]'''Set Operations''' : ~-''OR,
AND, NOT''-~[[BR]][[BR]]~-''A = Table('table_name');[[BR]]B = A.Selection(condition_expression);{{{
   }}}'''//σ,,condition,,(A)''' ''-~ ||
- ||JOINs ||<99%>Table '''JOIN''' operations, linking and extracting data from two different
internal source.[[BR]]'''Operations''' : ~-''naturalJoin(), thetaJoin(), cartesianProduct()
''-~ [[BR]][[BR]]~-''R = Table('table_name1');[[BR]]S = Table('table_name2');[[BR]]C = R.naturalJoin(S);
'''//C = R▷◁S''' ''-~ ||
+ ||JOINs ||<99%>Table '''JOIN''' operations, linking and extracting data from two different
internal source.[[BR]]'''Operations''' : ~-''naturalJoin(), thetaJoin(), cartesianProduct()
''-~ [[BR]][[BR]]~-''R = Table('table_name1');[[BR]]S = Table('table_name2');[[BR]]C = R.naturalJoin(S);{{{
   }}}'''//C = R▷◁S''' ''-~ ||
- ||Group ||<99%>'''Group''' tuples by value of an attribute and apply aggregate function
independently to each group of tuples.[[BR]]'''Aggregate Functions''' : ~-''AVG(attribute),
SUM(attribute), COUNT(attribute), MIN(attribute), MAX(attribute)''-~[[BR]][[BR]]~-''A = Table('table_name');[[BR]]B
= A.Group(column-list); '''//γ,,column-list,,(A)''' ''-~ ||
+ ||Group ||<99%>'''Group''' tuples by value of an attribute and apply aggregate function
independently to each group of tuples.[[BR]]'''Aggregate Functions''' : ~-''AVG(attribute),
SUM(attribute), COUNT(attribute), MIN(attribute), MAX(attribute)''-~[[BR]][[BR]]~-''A = Table('table_name');[[BR]]B
= A.Group(column-list);{{{    }}}'''//γ,,column-list,,(A)''' ''-~ ||
- ||Sort ||<99%>'''Sort''' of tuples(rows) of R, ordered according to columnfamilies
on columnfamily-list.[[BR]][[BR]]~-''A = Table('table_name');[[BR]]B = Sort A by (column-list);
'''//τ,,column-list,,(A)''' ''-~ ||
+ ||Sort ||<99%>'''Sort''' of tuples(rows) of R, ordered according to columnfamilies
on columnfamily-list.[[BR]][[BR]]~-''A = Table('table_name');[[BR]]B = Sort A by (column-list);{{{
   }}}'''//τ,,column-list,,(A)''' ''-~ ||
  
  '''(ex. 1)''' Search the subject and the year of the movies which were produced by 'Fox'
company and where running time is more than 100 minutes.
  [[BR]]~-'''''π ,,title.year,, (σ ,,length > 100,, (movieLog_table) ∩ σ ,,studioName
= 'Fox',, (movieLog_table))'''''-~
@@ -90, +90 @@

  '''Note''' that matrix operations are the core of many linear systems.
  === Arithmetic Operators ===
  ||<bgcolor="#E5E5E5">'''Operator''' ||<bgcolor="#E5E5E5">'''Explanation''' ||
- ||Addition ||<99%>'''Adding''' entries with the same indices. [[BR]][[BR]]~-''A =
Matrix('table_name1','columnfamily_name1');[[BR]]B = Matrix('table_name2','columnfamily_name2');[[BR]]C
= A + B; '''// c,,ij,, = a,,ij,, + b,,ij,, (i : row key, j : column key)''' ''-~ ||
+ ||Addition ||<99%>'''Adding''' entries with the same indices. [[BR]][[BR]]~-''A =
Matrix('table_name1','columnfamily_name1');[[BR]]B = Matrix('table_name2','columnfamily_name2');[[BR]]C
= A + B;{{{    }}}'''// c,,ij,, = a,,ij,, + b,,ij,, (i : row key, j : column key)''' ''-~
||
- ||Subtraction ||<99%>'''Subtracting''' entries with the same indices.[[BR]][[BR]]~-''A
= Matrix('table_name1','columnfamily_name1');[[BR]]B = Matrix('table_name2','columnfamily_name2');[[BR]]C
= A - B; '''// c,,ij,, = a,,ij,, - b,,ij,, (i : row key, j : column key)''' ''-~ ||
+ ||Subtraction ||<99%>'''Subtracting''' entries with the same indices.[[BR]][[BR]]~-''A
= Matrix('table_name1','columnfamily_name1');[[BR]]B = Matrix('table_name2','columnfamily_name2');[[BR]]C
= A - B;{{{    }}}'''// c,,ij,, = a,,ij,, - b,,ij,, (i : row key, j : column key)''' ''-~
||
- ||Multiplication ||<99%>'''Multiplication''' of two matrices, Product C of two matrices
A and B.[[BR]][[BR]]~-''A = Matrix('table_name1','columnfamily_name1');[[BR]]B = Matrix('table_name2','columnfamily_name2');[[BR]]C
= A * B; '''//C = A · B''' ''-~ ||
+ ||Multiplication ||<99%>'''Multiplication''' of two matrices, Product C of two matrices
A and B.[[BR]][[BR]]~-''A = Matrix('table_name1','columnfamily_name1');[[BR]]B = Matrix('table_name2','columnfamily_name2');[[BR]]C
= A * B;{{{    }}}'''//C = A · B''' ''-~ ||
- ||Division ||<99%>'''Division''' is solving the matrix equation AX = B for X.[[BR]][[BR]]~-''A
= Matrix('table_name1','columnfamily_name1');[[BR]]B = Matrix('table_name2','columnfamily_name2');[[BR]]C
= A /[or \] B; '''// C = A / B''' ''-~||
+ ||Division ||<99%>'''Division''' is solving the matrix equation AX = B for X.[[BR]][[BR]]~-''A
= Matrix('table_name1','columnfamily_name1');[[BR]]B = Matrix('table_name2','columnfamily_name2');[[BR]]C
= A /[or \] B;{{{    }}}'''// C = A / B''' ''-~||
- ||Transpose ||<99%>'''Transpose''' of a Matrix, A matrix which is formed by turning
all the rows of a given matrix into columns and vice-versa.[[BR]][[BR]]~-''A = Matrix('table_name1','columnfamily_name1');[[BR]]B
= Transpose(A); '''// B = A'''' ''-~||
+ ||Transpose ||<99%>'''Transpose''' of a Matrix, A matrix which is formed by turning
all the rows of a given matrix into columns and vice-versa.[[BR]][[BR]]~-''A = Matrix('table_name1','columnfamily_name1');[[BR]]B
= Transpose(A);{{{    }}}'''// B = A'''' ''-~||
  
  
  '''(ex. 1)''' Matrix Addition
@@ -184, +184 @@

    * ~-''t'' : Row number of matrix X-~
    * ~-''d'' : Column number of matrix X-~
    * ~-''m'' : Rank of matrix X ( ≤ min(t,d) )-~
+ 
+ I made a new relation "t_table" using "relational operators" from raw data(web_table) as
described below :
+ [[BR]]''TODO: explain "theoritical way of manipulating table(web_table) using relational
operators"''
  
  ||Row Key ||<-6>Column Families ||
  ||<rowbgcolor="#ececec">term ||<-2> corpus: ||<-2>link: ||<-2>..
||

Mime
View raw message