Hi Miguel,

the = LocalClusteringCoefficient algorithm returns a DataSet of type Result, which basically wraps a vertex id, its degree, and the nu= mber of triangles containing this vertex. The number 11 you see is indeed t= he degree of vertex 5113. The Re= sult type contains th= e method getLocalClusteringCoeff= icientScore() which allows you to= retrieve the clustering coefficient score for a vertex. The method simply = divides the numbers of triangles by the number of potential edges between n= eighbors.

I'm sorry that you this is not clear in t= he docs. We should definitely improve them to explain what is the output an= d how to retrieve the actual clustering coefficient values. I have opened a= JIRA for this [1].

Cheers,
-Vasia.

=

On 20 January 2017 at 19:31, Miguel Coimbra <miguel.e.coim= bra@gmail.com> wrote:
Hello,

In the documentation of the LocalClusteringCoefficient algorithm, it is said:
The local clustering coefficient measures the connectedness of eac= h vertex=E2=80=99s neighborhood.
Scores range from 0.0 (no edges between neighbors) to 1.0 (neighborhood is a clique).

However, upon ru= nning the algorithm (undirected version), I obtained values above 1.

The res= ult I got was this. As you can see, vertex 5113 has a score of 11:
(the= input edges for the graph are shown further below - around 35 edges= ):

(4907,(1,0))
(5= 113,(11,0))
(6008,(0,0))
(6064,(1,0))
(6065,(1,0))
(6107,(0= ,0))
(6192,(0,0))
(6252,(1,0))
(6279,(1,0))
(6465,(1,0))
(65= 45,(0,0))
(6707,(1,0))
(6715,(1,0))
(6774,(0,0))
(7088,(0,0))(7089,(1,0))
(7171,(0,0))
(7172,(1,0))
(7763,(0,0))
(7976,(1,= 0))
(8056,(1,0))
(9748,(1,0))
(10191,(1,0))
(10370,(1,0))
(1= 0371,(1,0))
(14310,(1,0))
(16785,(1,0))
(19801,(1,0))
(26284,(1= ,0))
(26562,(0,0))
(31724,(1,0))
(32443,(1,0))
(32938,(0,0))(33855,(1,0))
(37929,(0,0))

This was from a small isolated te= st with these edges:

5113=C2=A0=C2=A0=C2=A0 6008
5113=C2=A0=C2=A0=C2=A0 6774
5113=C2=A0= =C2=A0=C2=A0 32938
5113=C2=A0=C2=A0=C2=A0 6545
5113=C2=A0=C2=A0=C2=A0= 7088
5113=C2=A0=C2=A0=C2=A0 37929
5113=C2=A0=C2=A0=C2=A0 26562
51= 13=C2=A0=C2=A0=C2=A0 6107
5113=C2=A0=C2=A0=C2=A0 7171
5113=C2=A0=C2= =A0=C2=A0 6192
5113=C2=A0=C2=A0=C2=A0 7763
9748=C2=A0=C2=A0=C2=A0 511= 3
10191=C2=A0=C2=A0=C2=A0 5113
6064=C2=A0=C2=A0=C2=A0 5113
6065=C2= =A0=C2=A0=C2=A0 5113
6279=C2=A0=C2=A0=C2=A0 5113
4907=C2=A0=C2=A0=C2= =A0 5113
6465=C2=A0=C2=A0=C2=A0 5113
6707=C2=A0=C2=A0=C2=A0 5113
7= 089=C2=A0=C2=A0=C2=A0 5113
7172=C2=A0=C2=A0=C2=A0 5113
14310=C2=A0=C2= =A0=C2=A0 5113
6252=C2=A0=C2=A0=C2=A0 5113
33855=C2=A0=C2=A0=C2=A0 51= 13
7976=C2=A0=C2=A0=C2=A0 5113
26284=C2=A0=C2=A0=C2=A0 5113
8056= =C2=A0=C2=A0=C2=A0 5113
10371=C2=A0=C2=A0=C2=A0 5113
16785=C2=A0=C2= =A0=C2=A0 5113
19801=C2=A0=C2=A0=C2=A0 5113
6715=C2=A0=C2=A0=C2=A0 51= 13
31724=C2=A0=C2=A0=C2=A0 5113
32443=C2=A0=C2=A0=C2=A0 5113
10370= =C2=A0=C2=A0=C2=A0 5113

I am not sure what I may be doing wrong, but= is there perhaps some form of normalization lacking in my execution of: