flink-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Yukun Guo <gyk....@gmail.com>
Subject Re: Hourly top-k statistics of DataStream
Date Tue, 07 Jun 2016 02:33:07 GMT
My algorithm is roughly like this taking top-K words problem as an example
(the purpose of computing local “word count” is to deal with data
imbalance):

DataStream of words ->
timeWindow of 1h ->
converted to DataSet of words ->
random partitioning by rebalance ->
local “word count” using mapPartition ->
global “word count” using reduceGroup ->
rebalance ->
local top-K using mapPartition ->
global top-K using reduceGroup

Here is some (probably buggy) code to demonstrate the basic idea on DataSet:

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.GroupReduceFunction;
import org.apache.flink.api.common.functions.MapPartitionFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;

import java.util.Map;
import java.util.SortedMap;
import java.util.TreeMap;

public class WordCount {

  public static void main(String[] args) throws Exception {

    // set up the execution environment
    final ExecutionEnvironment env =
ExecutionEnvironment.getExecutionEnvironment();

    // get input data
    DataSet<String> text = env.fromElements(
        "14159265358979323846264338327950288419716939937510",
        "58209749445923078164062862089986280348253421170679",
        "82148086513282306647093844609550582231725359408128",
        "48111745028410270193852110555964462294895493038196",
        "44288109756659334461284756482337867831652712019091",
        "45648566923460348610454326648213393607260249141273",
        "72458700660631558817488152092096282925409171536436",
        "78925903600113305305488204665213841469519415116094",
        "33057270365759591953092186117381932611793105118548",
        "07446237996274956735188575272489122793818301194912",
        "98336733624406566430860213949463952247371907021798",
        "60943702770539217176293176752384674818467669405132",
        "00056812714526356082778577134275778960917363717872",
        "14684409012249534301465495853710507922796892589235",
        "42019956112129021960864034418159813629774771309960",
        "51870721134999999837297804995105973173281609631859",
        "50244594553469083026425223082533446850352619311881",
        "71010003137838752886587533208381420617177669147303",
        "59825349042875546873115956286388235378759375195778",
        "18577805321712268066130019278766111959092164201989"
    );

    DataSet<Tuple2<String, Integer>> counts = text
        // split up the lines in pairs (2-tuples) containing: (word,1)
        .flatMap(new LineSplitter())
        .rebalance()
        // local word count
        .mapPartition(new MapPartitionFunction<Tuple2<String,
Integer>, Tuple2<String, Integer>>() {
          @Override
          public void mapPartition(Iterable<Tuple2<String, Integer>> words,
                       Collector<Tuple2<String, Integer>> out) throws
Exception {
            SortedMap<String, Integer> m = new TreeMap<String, Integer>();
            for (Tuple2<String, Integer> w : words) {
              Integer current = m.get(w.f0);
              Integer updated = current == null ? w.f1 : current + w.f1;
              m.put(w.f0, updated);
            }

            for (Map.Entry<String, Integer> e : m.entrySet()) {
              out.collect(Tuple2.of(e.getKey(), e.getValue()));
            }
          }
        })
        // global word count
        .reduceGroup(new GroupReduceFunction<Tuple2<String, Integer>,
Tuple2<String, Integer>>() {
          @Override
          public void reduce(Iterable<Tuple2<String, Integer>> wordcounts,
                    Collector<Tuple2<String, Integer>> out) throws Exception {
            SortedMap<String, Integer> m = new TreeMap<String, Integer>();
            for (Tuple2<String, Integer> wc : wordcounts) {
              Integer current = m.get(wc.f0);
              Integer updated = current == null ? wc.f1 : current + wc.f1;
              m.put(wc.f0, updated);
            }

            for (Map.Entry<String, Integer> e : m.entrySet()) {
              out.collect(Tuple2.of(e.getKey(), e.getValue()));
            }
          }
        });

    DataSet<Tuple2<String, Integer>> topK = counts
        .rebalance()
        // local top-K
        .mapPartition(new MapPartitionFunction<Tuple2<String,
Integer>, Tuple2<String, Integer>>() {
          @Override
          public void mapPartition(Iterable<Tuple2<String, Integer>> wordcounts,
                       Collector<Tuple2<String, Integer>> out) throws
Exception {
            SortedMap<Integer, String> topKSoFar = new
TreeMap<Integer, String>();
            for (Tuple2<String, Integer> wc : wordcounts) {
              String w = wc.f0;
              Integer c = wc.f1;
              topKSoFar.put(c, w);
              if (topKSoFar.size() > 3) {
                topKSoFar.remove(topKSoFar.firstKey());
              }
            }

            for (Map.Entry<Integer, String> cw : topKSoFar.entrySet()) {
              out.collect(Tuple2.of(cw.getValue(), cw.getKey()));
            }
          }
        })
        // global top-K
        .reduceGroup(new GroupReduceFunction<Tuple2<String, Integer>,
Tuple2<String, Integer>>() {
          @Override
          public void reduce(Iterable<Tuple2<String, Integer>> topList,
                    Collector<Tuple2<String, Integer>> out) throws Exception {
            SortedMap<Integer, String> topKSoFar = new
TreeMap<Integer, String>();
            for (Tuple2<String, Integer> wc : topList) {
              String w = wc.f0;
              Integer c = wc.f1;
              topKSoFar.put(c, w);
              if (topKSoFar.size() > 3) {
                topKSoFar.remove(topKSoFar.firstKey());
              }
            }

            for (Map.Entry<Integer, String> cw : topKSoFar.entrySet()) {
              out.collect(Tuple2.of(cw.getValue(), cw.getKey()));
            }
          }
        });

    // execute and print result
    topK.print();

    env.setParallelism(4);
    env.execute();

  }


  public static final class LineSplitter implements
FlatMapFunction<String, Tuple2<String, Integer>> {
    @Override
    public void flatMap(String value, Collector<Tuple2<String, Integer>> out)
{
      String[] tokens = value.split("");

      for (String token : tokens) {
        if (token.length() > 0) {
          out.collect(new Tuple2<String, Integer>(token, 1));
        }
      }
    }
  }
}

Mime
View raw message