flink-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Shiti Saxena <ssaxena....@gmail.com>
Subject Re: Help with Flink experimental Table API
Date Tue, 16 Jun 2015 08:23:53 GMT
Can we use 0(false) and 1(true)?

On Tue, Jun 16, 2015 at 1:32 PM, Aljoscha Krettek <aljoscha@apache.org>
wrote:

> One more thing, it would be good if the TupleSerializer didn't write a
> boolean for every field. A single integer could be used where one bit
> specifies if a given field is null or not. (Maybe we should also add this
> to the RowSerializer in the future.)
>
> On Tue, 16 Jun 2015 at 07:30 Aljoscha Krettek <aljoscha@apache.org> wrote:
>
>> I think you can work on it. By the way, there are actually two
>> serializers. For Scala, CaseClassSerializer is responsible for tuples as
>> well. In Java, TupleSerializer is responsible for, well, Tuples.
>>
>> On Tue, 16 Jun 2015 at 06:25 Shiti Saxena <ssaxena.ece@gmail.com> wrote:
>>
>>> Hi,
>>>
>>> Can I work on the issue with TupleSerializer or is someone working on it?
>>>
>>> On Mon, Jun 15, 2015 at 11:20 AM, Aljoscha Krettek <aljoscha@apache.org>
>>> wrote:
>>>
>>>> Hi,
>>>> the reason why this doesn't work is that the TupleSerializer cannot
>>>> deal with null values:
>>>>
>>>> @Test
>>>> def testAggregationWithNull(): Unit = {
>>>>
>>>>  val env = ExecutionEnvironment.getExecutionEnvironment
>>>>  val table = env.fromElements[(Integer, String)](
>>>>  (123, "a"), (234, "b"), (345, "c"), (null, "d")).toTable
>>>>
>>>>  val total = table.select('_1.sum).collect().head.productElement(0)
>>>>  assertEquals(total, 702)
>>>> }
>>>>
>>>> it would have to modified in a similar way to the PojoSerializer and RowSerializer.
You could either leave the tests as they are now in you pull request or also modify the TupleSerializer.
Both seem fine to me.
>>>>
>>>> Cheers,
>>>>
>>>> Aljoscha
>>>>
>>>>
>>>> On Sun, 14 Jun 2015 at 20:28 Shiti Saxena <ssaxena.ece@gmail.com> wrote:
>>>>
>>>> Hi,
>>>>>
>>>>> Re-writing the test in the following manner works. But I am not sure
>>>>> if this is the correct way.
>>>>>
>>>>> def testAggregationWithNull(): Unit = {
>>>>>
>>>>>     val env = ExecutionEnvironment.getExecutionEnvironment
>>>>>     val dataSet = env.fromElements[(Integer, String)]((123, "a"),
>>>>> (234, "b"), (345, "c"), (0, "d"))
>>>>>
>>>>>     implicit val rowInfo: TypeInformation[Row] = new RowTypeInfo(
>>>>>       Seq(BasicTypeInfo.INT_TYPE_INFO,
>>>>> BasicTypeInfo.STRING_TYPE_INFO), Seq("id", "name"))
>>>>>
>>>>>     val rowDataSet = dataSet.map {
>>>>>       entry =>
>>>>>         val row = new Row(2)
>>>>>         val amount = if(entry._1<100) null else entry._1
>>>>>         row.setField(0, amount)
>>>>>         row.setField(1, entry._2)
>>>>>         row
>>>>>     }
>>>>>
>>>>>     val total =
>>>>> rowDataSet.toTable.select('id.sum).collect().head.productElement(0)
>>>>>     assertEquals(total, 702)
>>>>>   }
>>>>>
>>>>>
>>>>>
>>>>> On Sun, Jun 14, 2015 at 11:42 PM, Shiti Saxena <ssaxena.ece@gmail.com>
>>>>> wrote:
>>>>>
>>>>>> Hi,
>>>>>>
>>>>>> For
>>>>>>
>>>>>> val table = env.fromElements[(Integer, String)]((123, "a"), (234,
>>>>>> "b"), (345, "c"), (null, "d")).toTable
>>>>>>
>>>>>> I get the following error,
>>>>>>
>>>>>> Error translating node 'Data Source "at
>>>>>> org.apache.flink.api.scala.ExecutionEnvironment.fromElements(ExecutionEnvironment.scala:505)
>>>>>> (org.apache.flink.api.java.io.CollectionInputFormat)" : NONE [[
>>>>>> GlobalProperties [partitioning=RANDOM_PARTITIONED] ]] [[ LocalProperties
>>>>>> [ordering=null, grouped=null, unique=null] ]]': null
>>>>>> org.apache.flink.optimizer.CompilerException: Error translating node
>>>>>> 'Data Source "at
>>>>>> org.apache.flink.api.scala.ExecutionEnvironment.fromElements(ExecutionEnvironment.scala:505)
>>>>>> (org.apache.flink.api.java.io.CollectionInputFormat)" : NONE [[
>>>>>> GlobalProperties [partitioning=RANDOM_PARTITIONED] ]] [[ LocalProperties
>>>>>> [ordering=null, grouped=null, unique=null] ]]': null
>>>>>> at
>>>>>> org.apache.flink.optimizer.plantranslate.JobGraphGenerator.preVisit(JobGraphGenerator.java:360)
>>>>>> at
>>>>>> org.apache.flink.optimizer.plantranslate.JobGraphGenerator.preVisit(JobGraphGenerator.java:103)
>>>>>> at
>>>>>> org.apache.flink.optimizer.plan.SourcePlanNode.accept(SourcePlanNode.java:87)
>>>>>> at
>>>>>> org.apache.flink.optimizer.plan.SingleInputPlanNode.accept(SingleInputPlanNode.java:199)
>>>>>> at
>>>>>> org.apache.flink.optimizer.plan.SingleInputPlanNode.accept(SingleInputPlanNode.java:199)
>>>>>> at
>>>>>> org.apache.flink.optimizer.plan.SingleInputPlanNode.accept(SingleInputPlanNode.java:199)
>>>>>> at
>>>>>> org.apache.flink.optimizer.plan.SingleInputPlanNode.accept(SingleInputPlanNode.java:199)
>>>>>> at
>>>>>> org.apache.flink.optimizer.plan.SingleInputPlanNode.accept(SingleInputPlanNode.java:199)
>>>>>> at
>>>>>> org.apache.flink.optimizer.plan.SingleInputPlanNode.accept(SingleInputPlanNode.java:199)
>>>>>> at
>>>>>> org.apache.flink.optimizer.plan.OptimizedPlan.accept(OptimizedPlan.java:127)
>>>>>> at
>>>>>> org.apache.flink.optimizer.plantranslate.JobGraphGenerator.compileJobGraph(JobGraphGenerator.java:170)
>>>>>> at
>>>>>> org.apache.flink.test.util.TestEnvironment.execute(TestEnvironment.java:52)
>>>>>> at
>>>>>> org.apache.flink.api.java.ExecutionEnvironment.execute(ExecutionEnvironment.java:789)
>>>>>> at
>>>>>> org.apache.flink.api.scala.ExecutionEnvironment.execute(ExecutionEnvironment.scala:576)
>>>>>> at org.apache.flink.api.scala.DataSet.collect(DataSet.scala:544)
>>>>>> at
>>>>>> org.apache.flink.api.scala.table.test.AggregationsITCase.testAggregationWithNull(AggregationsITCase.scala:135)
>>>>>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>>>> at
>>>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>>>>>> at
>>>>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>>>> at java.lang.reflect.Method.invoke(Method.java:606)
>>>>>> at
>>>>>> org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:47)
>>>>>> at
>>>>>> org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12)
>>>>>> at
>>>>>> org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:44)
>>>>>> at
>>>>>> org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17)
>>>>>> at
>>>>>> org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26)
>>>>>> at
>>>>>> org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27)
>>>>>> at
>>>>>> org.junit.rules.ExternalResource$1.evaluate(ExternalResource.java:48)
>>>>>> at org.junit.rules.RunRules.evaluate(RunRules.java:20)
>>>>>> at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:271)
>>>>>> at
>>>>>> org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:70)
>>>>>> at
>>>>>> org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50)
>>>>>> at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238)
>>>>>> at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63)
>>>>>> at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236)
>>>>>> at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53)
>>>>>> at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229)
>>>>>> at org.junit.runners.ParentRunner.run(ParentRunner.java:309)
>>>>>> at org.junit.runners.Suite.runChild(Suite.java:127)
>>>>>> at org.junit.runners.Suite.runChild(Suite.java:26)
>>>>>> at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238)
>>>>>> at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63)
>>>>>> at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236)
>>>>>> at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53)
>>>>>> at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229)
>>>>>> at
>>>>>> org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26)
>>>>>> at
>>>>>> org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27)
>>>>>> at org.junit.runners.ParentRunner.run(ParentRunner.java:309)
>>>>>> at org.junit.runner.JUnitCore.run(JUnitCore.java:160)
>>>>>> at
>>>>>> com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:78)
>>>>>> at
>>>>>> com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:212)
>>>>>> at
>>>>>> com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:68)
>>>>>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>>>> at
>>>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>>>>>> at
>>>>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>>>> at java.lang.reflect.Method.invoke(Method.java:606)
>>>>>> at
>>>>>> com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)
>>>>>> Caused by: java.lang.NullPointerException
>>>>>> at
>>>>>> org.apache.flink.api.common.typeutils.base.IntSerializer.serialize(IntSerializer.java:63)
>>>>>> at
>>>>>> org.apache.flink.api.common.typeutils.base.IntSerializer.serialize(IntSerializer.java:27)
>>>>>> at
>>>>>> org.apache.flink.api.scala.typeutils.CaseClassSerializer.serialize(CaseClassSerializer.scala:89)
>>>>>> at
>>>>>> org.apache.flink.api.scala.typeutils.CaseClassSerializer.serialize(CaseClassSerializer.scala:29)
>>>>>> at org.apache.flink.api.java.io
>>>>>> .CollectionInputFormat.writeObject(CollectionInputFormat.java:88)
>>>>>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>>>> at
>>>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>>>>>> at
>>>>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>>>> at java.lang.reflect.Method.invoke(Method.java:606)
>>>>>> at
>>>>>> java.io.ObjectStreamClass.invokeWriteObject(ObjectStreamClass.java:988)
>>>>>> at
>>>>>> java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1493)
>>>>>> at
>>>>>> java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1429)
>>>>>> at
>>>>>> java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1175)
>>>>>> at
>>>>>> java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1541)
>>>>>> at
>>>>>> java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1506)
>>>>>> at
>>>>>> java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1429)
>>>>>> at
>>>>>> java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1175)
>>>>>> at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:347)
>>>>>> at
>>>>>> org.apache.flink.util.InstantiationUtil.serializeObject(InstantiationUtil.java:314)
>>>>>> at
>>>>>> org.apache.flink.util.InstantiationUtil.writeObjectToConfig(InstantiationUtil.java:268)
>>>>>> at
>>>>>> org.apache.flink.runtime.operators.util.TaskConfig.setStubWrapper(TaskConfig.java:273)
>>>>>> at
>>>>>> org.apache.flink.optimizer.plantranslate.JobGraphGenerator.createDataSourceVertex(JobGraphGenerator.java:853)
>>>>>> at
>>>>>> org.apache.flink.optimizer.plantranslate.JobGraphGenerator.preVisit(JobGraphGenerator.java:260)
>>>>>> ... 55 more
>>>>>>
>>>>>>
>>>>>> Does this mean that the collect method is being called before doing
>>>>>> the aggregation? Is this because base serializers do not handle null
values
>>>>>> like POJOSerializer? And is that why fromCollection does not support
>>>>>> collections with null values?
>>>>>>
>>>>>> Or I could write the test using a file load if thats alright.
>>>>>>
>>>>>>
>>>>>> On Sun, Jun 14, 2015 at 11:11 PM, Aljoscha Krettek <
>>>>>> aljoscha@apache.org> wrote:
>>>>>>
>>>>>>> Hi,
>>>>>>> sorry, my mail client sent before I was done.
>>>>>>>
>>>>>>> I think the problem is that the Scala compiler derives a wrong
type
>>>>>>> for this statement:
>>>>>>> val table = env.fromElements((123, "a"), (234, "b"), (345, "c"),
>>>>>>> (null, "d")).toTable
>>>>>>>
>>>>>>> Because of the null value it derives (Any, String) as the type
if
>>>>>>> you do it like this, I think it should work:
>>>>>>> val table = env.fromElements[(Integer, String)]((123, "a"), (234,
>>>>>>> "b"), (345, "c"), (null, "d")).toTable
>>>>>>>
>>>>>>> I used Integer instead of Int because Scala will complain that
null
>>>>>>> is not a valid value for Int otherwise.
>>>>>>>
>>>>>>> Cheers,
>>>>>>> Aljoscha
>>>>>>>
>>>>>>>
>>>>>>> On Sun, 14 Jun 2015 at 19:34 Aljoscha Krettek <aljoscha@apache.org>
>>>>>>> wrote:
>>>>>>>
>>>>>>>> Hi,
>>>>>>>> I think the problem is that the Scala compiler derives a
wrong type
>>>>>>>> for this statement:
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>> On Sun, 14 Jun 2015 at 18:28 Shiti Saxena <ssaxena.ece@gmail.com>
>>>>>>>> wrote:
>>>>>>>>
>>>>>>>>> Hi Aljoscha,
>>>>>>>>>
>>>>>>>>> I created the issue FLINK-2210
>>>>>>>>> <https://issues.apache.org/jira/browse/FLINK-2210>
for aggregate
>>>>>>>>> on null. I made changes to ExpressionAggregateFunction
to handle ignore
>>>>>>>>> null values. But I am unable to create a Table with null
values in tests.
>>>>>>>>>
>>>>>>>>> The code I used is,
>>>>>>>>>
>>>>>>>>> def testAggregationWithNull(): Unit = {
>>>>>>>>>
>>>>>>>>>     val env = ExecutionEnvironment.getExecutionEnvironment
>>>>>>>>>     val table = env.fromElements((123, "a"), (234, "b"),
(345,
>>>>>>>>> "c"), (null, "d")).toTable
>>>>>>>>>
>>>>>>>>>     val total =
>>>>>>>>> table.select('_1.sum).collect().head.productElement(0)
>>>>>>>>>     assertEquals(total, 702)
>>>>>>>>>   }
>>>>>>>>>
>>>>>>>>> and the error i get is,
>>>>>>>>>
>>>>>>>>> org.apache.flink.api.table.ExpressionException: Invalid
expression
>>>>>>>>> "('_1).sum": Unsupported type GenericType<java.lang.Object>
for aggregation
>>>>>>>>> ('_1).sum. Only numeric data types supported.
>>>>>>>>> at
>>>>>>>>> org.apache.flink.api.table.expressions.analysis.TypeCheck.apply(TypeCheck.scala:50)
>>>>>>>>> at
>>>>>>>>> org.apache.flink.api.table.expressions.analysis.TypeCheck.apply(TypeCheck.scala:31)
>>>>>>>>> at
>>>>>>>>> org.apache.flink.api.table.trees.Analyzer$$anonfun$analyze$1.apply(Analyzer.scala:34)
>>>>>>>>> at
>>>>>>>>> org.apache.flink.api.table.trees.Analyzer$$anonfun$analyze$1.apply(Analyzer.scala:31)
>>>>>>>>> at scala.collection.immutable.List.foreach(List.scala:318)
>>>>>>>>> at
>>>>>>>>> org.apache.flink.api.table.trees.Analyzer.analyze(Analyzer.scala:31)
>>>>>>>>> at
>>>>>>>>> org.apache.flink.api.table.Table$$anonfun$1.apply(Table.scala:59)
>>>>>>>>> at
>>>>>>>>> org.apache.flink.api.table.Table$$anonfun$1.apply(Table.scala:59)
>>>>>>>>> at
>>>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>>>>>>>>> at
>>>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>>>>>>>>> at
>>>>>>>>> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
>>>>>>>>> at
>>>>>>>>> scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34)
>>>>>>>>> at
>>>>>>>>> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
>>>>>>>>> at scala.collection.AbstractTraversable.map(Traversable.scala:105)
>>>>>>>>> at org.apache.flink.api.table.Table.select(Table.scala:59)
>>>>>>>>> at
>>>>>>>>> org.apache.flink.api.scala.table.test.AggregationsITCase.testAggregationWithNull(AggregationsITCase.scala:135)
>>>>>>>>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native
Method)
>>>>>>>>> at
>>>>>>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>>>>>>>>> at
>>>>>>>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>>>>>>> at
>>>>>>>>> org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:47)
>>>>>>>>> at
>>>>>>>>> org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12)
>>>>>>>>> at
>>>>>>>>> org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:44)
>>>>>>>>> at
>>>>>>>>> org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17)
>>>>>>>>> at
>>>>>>>>> org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26)
>>>>>>>>> at
>>>>>>>>> org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27)
>>>>>>>>> at
>>>>>>>>> org.junit.rules.ExternalResource$1.evaluate(ExternalResource.java:48)
>>>>>>>>> at org.junit.rules.RunRules.evaluate(RunRules.java:20)
>>>>>>>>> at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:271)
>>>>>>>>> at
>>>>>>>>> org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:70)
>>>>>>>>> at
>>>>>>>>> org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50)
>>>>>>>>> at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238)
>>>>>>>>> at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63)
>>>>>>>>> at
>>>>>>>>> org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236)
>>>>>>>>> at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53)
>>>>>>>>> at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229)
>>>>>>>>> at org.junit.runners.ParentRunner.run(ParentRunner.java:309)
>>>>>>>>> at org.junit.runners.Suite.runChild(Suite.java:127)
>>>>>>>>> at org.junit.runners.Suite.runChild(Suite.java:26)
>>>>>>>>> at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238)
>>>>>>>>> at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63)
>>>>>>>>> at
>>>>>>>>> org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236)
>>>>>>>>> at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53)
>>>>>>>>> at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229)
>>>>>>>>> at
>>>>>>>>> org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26)
>>>>>>>>> at
>>>>>>>>> org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27)
>>>>>>>>> at org.junit.runners.ParentRunner.run(ParentRunner.java:309)
>>>>>>>>> at org.junit.runner.JUnitCore.run(JUnitCore.java:160)
>>>>>>>>> at
>>>>>>>>> com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:78)
>>>>>>>>> at
>>>>>>>>> com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:212)
>>>>>>>>> at
>>>>>>>>> com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:68)
>>>>>>>>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native
Method)
>>>>>>>>> at
>>>>>>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>>>>>>>>> at
>>>>>>>>> com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> The ExecutionEnvironment.fromCollection method also throws
an
>>>>>>>>> error when the collection contains a null.
>>>>>>>>>
>>>>>>>>> Could you please point out what I am doing wrong? How
do we create
>>>>>>>>> a Table with null values?
>>>>>>>>>
>>>>>>>>> In our application, we load a file and transform each
line into a
>>>>>>>>> Row resulting in a DataSet[Row]. This DataSet[Row] is
then converted into
>>>>>>>>> Table. Should I use the same approach for the test case?
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> Thanks,
>>>>>>>>> Shiti
>>>>>>>>>
>>>>>>>>>
>>>>>>>>>
>>>>>>>>>
>>>>>>>>>
>>>>>>>>>
>>>>>>>>>
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> On Sun, Jun 14, 2015 at 4:10 PM, Shiti Saxena <
>>>>>>>>> ssaxena.ece@gmail.com> wrote:
>>>>>>>>>
>>>>>>>>>> I'll do the fix
>>>>>>>>>>
>>>>>>>>>> On Sun, Jun 14, 2015 at 12:42 AM, Aljoscha Krettek
<
>>>>>>>>>> aljoscha@apache.org> wrote:
>>>>>>>>>>
>>>>>>>>>>> I merged your PR for the RowSerializer. Teaching
the aggregators
>>>>>>>>>>> to deal with null values should be a very simple
fix in
>>>>>>>>>>> ExpressionAggregateFunction.scala. There it is
simply always aggregating
>>>>>>>>>>> the values without checking whether they are
null. If you want you can also
>>>>>>>>>>> fix that or I can quickly fix it.
>>>>>>>>>>>
>>>>>>>>>>> On Thu, 11 Jun 2015 at 10:40 Aljoscha Krettek
<
>>>>>>>>>>> aljoscha@apache.org> wrote:
>>>>>>>>>>>
>>>>>>>>>>>> Cool, good to hear.
>>>>>>>>>>>>
>>>>>>>>>>>> The PojoSerializer already handles null fields.
The
>>>>>>>>>>>> RowSerializer can be modified in pretty much
the same way. So you should
>>>>>>>>>>>> start by looking at the copy()/serialize()/deserialize()
methods of
>>>>>>>>>>>> PojoSerializer and then modify RowSerializer
in a similar way.
>>>>>>>>>>>>
>>>>>>>>>>>> You can also send me a private mail if you
want more in-depth
>>>>>>>>>>>> explanations.
>>>>>>>>>>>>
>>>>>>>>>>>> On Thu, 11 Jun 2015 at 09:33 Till Rohrmann
<
>>>>>>>>>>>> trohrmann@apache.org> wrote:
>>>>>>>>>>>>
>>>>>>>>>>>>> Hi Shiti,
>>>>>>>>>>>>>
>>>>>>>>>>>>> here is the issue [1].
>>>>>>>>>>>>>
>>>>>>>>>>>>> Cheers,
>>>>>>>>>>>>> Till
>>>>>>>>>>>>>
>>>>>>>>>>>>> [1] https://issues.apache.org/jira/browse/FLINK-2203
>>>>>>>>>>>>>
>>>>>>>>>>>>> On Thu, Jun 11, 2015 at 8:42 AM Shiti
Saxena <
>>>>>>>>>>>>> ssaxena.ece@gmail.com> wrote:
>>>>>>>>>>>>>
>>>>>>>>>>>>>> Hi Aljoscha,
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> Could you please point me to the
JIRA tickets? If you could
>>>>>>>>>>>>>> provide some guidance on how to resolve
these, I will work on them and
>>>>>>>>>>>>>> raise a pull-request.
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> Thanks,
>>>>>>>>>>>>>> Shiti
>>>>>>>>>>>>>>
>>>>>>>>>>>>>> On Thu, Jun 11, 2015 at 11:31 AM,
Aljoscha Krettek <
>>>>>>>>>>>>>> aljoscha@apache.org> wrote:
>>>>>>>>>>>>>>
>>>>>>>>>>>>>>> Hi,
>>>>>>>>>>>>>>> yes, I think the problem is that
the RowSerializer does not
>>>>>>>>>>>>>>> support null-values. I think
we can add support for this, I will open a
>>>>>>>>>>>>>>> Jira issue.
>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>> Another problem I then see is
that the aggregations can not
>>>>>>>>>>>>>>> properly deal with null-values.
This would need separate support.
>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>> Regards,
>>>>>>>>>>>>>>> Aljoscha
>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>> On Thu, 11 Jun 2015 at 06:41
Shiti Saxena <
>>>>>>>>>>>>>>> ssaxena.ece@gmail.com> wrote:
>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> Hi,
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> In our project, we are using
the Flink Table API and are
>>>>>>>>>>>>>>>> facing the following issues,
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> We load data from a CSV file
and create a DataSet[Row]. The
>>>>>>>>>>>>>>>> CSV file can also have invalid
entries in some of the fields which we
>>>>>>>>>>>>>>>> replace with null when building
the DataSet[Row].
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> This DataSet[Row] is later
on transformed to Table whenever
>>>>>>>>>>>>>>>> required and specific operation
such as select or aggregate, etc are
>>>>>>>>>>>>>>>> performed.
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> When a null value is encountered,
we get a null pointer
>>>>>>>>>>>>>>>> exception and the whole job
fails. (We can see this by calling collect on
>>>>>>>>>>>>>>>> the resulting DataSet).
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> The error message is similar
to,
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> Job execution failed.
>>>>>>>>>>>>>>>> org.apache.flink.runtime.client.JobExecutionException:
Job
>>>>>>>>>>>>>>>> execution failed.
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> org.apache.flink.runtime.jobmanager.JobManager$$anonfun$receiveWithLogMessages$1.applyOrElse(JobManager.scala:315)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.apply(ActorLogMessages.scala:43)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.apply(ActorLogMessages.scala:29)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> scala.PartialFunction$class.applyOrElse(PartialFunction.scala:118)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> org.apache.flink.runtime.ActorLogMessages$$anon$1.applyOrElse(ActorLogMessages.scala:29)
>>>>>>>>>>>>>>>> at akka.actor.Actor$class.aroundReceive(Actor.scala:465)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> org.apache.flink.runtime.jobmanager.JobManager.aroundReceive(JobManager.scala:94)
>>>>>>>>>>>>>>>> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
>>>>>>>>>>>>>>>> at akka.actor.ActorCell.invoke(ActorCell.scala:487)
>>>>>>>>>>>>>>>> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:254)
>>>>>>>>>>>>>>>> at akka.dispatch.Mailbox.run(Mailbox.scala:221)
>>>>>>>>>>>>>>>> at akka.dispatch.Mailbox.exec(Mailbox.scala:231)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
>>>>>>>>>>>>>>>> Caused by: java.lang.NullPointerException
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> org.apache.flink.api.common.typeutils.base.IntSerializer.serialize(IntSerializer.java:63)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> org.apache.flink.api.common.typeutils.base.IntSerializer.serialize(IntSerializer.java:27)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> org.apache.flink.api.table.typeinfo.RowSerializer.serialize(RowSerializer.scala:80)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> org.apache.flink.api.table.typeinfo.RowSerializer.serialize(RowSerializer.scala:28)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> org.apache.flink.runtime.plugable.SerializationDelegate.write(SerializationDelegate.java:51)
>>>>>>>>>>>>>>>> at org.apache.flink.runtime.io
>>>>>>>>>>>>>>>> .network.api.serialization.SpanningRecordSerializer.addRecord(SpanningRecordSerializer.java:76)
>>>>>>>>>>>>>>>> at org.apache.flink.runtime.io
>>>>>>>>>>>>>>>> .network.api.writer.RecordWriter.emit(RecordWriter.java:83)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> org.apache.flink.runtime.operators.shipping.OutputCollector.collect(OutputCollector.java:65)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> org.apache.flink.runtime.operators.chaining.ChainedMapDriver.collect(ChainedMapDriver.java:78)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> org.apache.flink.runtime.operators.chaining.ChainedMapDriver.collect(ChainedMapDriver.java:78)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> org.apache.flink.runtime.operators.DataSourceTask.invoke(DataSourceTask.java:177)
>>>>>>>>>>>>>>>> at
>>>>>>>>>>>>>>>> org.apache.flink.runtime.taskmanager.Task.run(Task.java:559)
>>>>>>>>>>>>>>>> at java.lang.Thread.run(Thread.java:724)
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> Could this be because the
RowSerializer does not support
>>>>>>>>>>>>>>>> null values? (Similar to
Flink-629
>>>>>>>>>>>>>>>> <https://issues.apache.org/jira/browse/FLINK-629>
)
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> Currently, to overcome this
issue, we are ignoring all the
>>>>>>>>>>>>>>>> rows which may have null
values. For example, we have a method cleanData
>>>>>>>>>>>>>>>> defined as,
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> def cleanData(table:Table,
>>>>>>>>>>>>>>>> relevantColumns:Seq[String]):Table
= {
>>>>>>>>>>>>>>>>     val whereClause: String
= relevantColumns.map{
>>>>>>>>>>>>>>>>         cName=>
>>>>>>>>>>>>>>>>             s"$cName.isNotNull"
>>>>>>>>>>>>>>>>     }.mkString(" &&
")
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>     val result :Table =
>>>>>>>>>>>>>>>> table.select(relevantColumns.mkString(",")).where(whereClause)
>>>>>>>>>>>>>>>>     result
>>>>>>>>>>>>>>>> }
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> Before operating on any Table,
we use this method and then
>>>>>>>>>>>>>>>> continue with task.
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> Is this the right way to
handle this? If not please let me
>>>>>>>>>>>>>>>> know how to go about it.
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>> Thanks,
>>>>>>>>>>>>>>>> Shiti
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>
>>>>>>>>>>
>>>>>>>>>
>>>>>>
>>>>>
>>>

Mime
View raw message