flink-user-zh mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Jingsong Li <jingsongl...@gmail.com>
Subject Re: Flink SQL1.10 大表join如何优化?
Date Mon, 23 Mar 2020 01:59:09 GMT
在[1]里的“configuration:”配table.exec.resource.default-parallelism

[1]
https://ci.apache.org/projects/flink/flink-docs-master/dev/table/sqlClient.html#environment-files

On Mon, Mar 23, 2020 at 9:48 AM 111 <xinghalo@163.com> wrote:

> Hi jingsong:
> 这里的并发是系统自动生产的,前面两张表都是通过sql-gateway,在一个session中创建出来的。所以到这里并行度都是1了...
>
>
> | |
> xinghalo
> |
> |
> xinghalo@163.com
> |
> 签名由网易邮箱大师定制
>
>
> 在2020年03月23日 09:33,Jingsong Li<jingsonglee0@gmail.com> 写道:
> Hi,
>
> 看起来你的Join SQL是有Key等值条件的,所以它可以做分布式的Join。
> 但是你的并发为1,一般来说我们分布式的计算都不会设成1,不然就是单机运算了。
>
> 就像Kurt所说, 修改你的并发:
> table.exec.resource.default-parallelism,比如设为50或100试试。
>
> Best,
> Jingsong Lee
>
> On Sun, Mar 22, 2020 at 10:08 AM Kurt Young <ykt836@gmail.com> wrote:
>
> 你的plan里除了source之外,其他所有节点都是在单并发运行,这对两张1000多万的表join来说是不够的,你可以尝试加大并发。
>
> Best,
> Kurt
>
>
> On Sat, Mar 21, 2020 at 1:30 PM 111 <xinghalo@163.com> wrote:
>
> Hi:
> 看了下源代码,了解了下Hybrid hash join。大致了解了瓶颈点:
> Hybrid hash
> join,会把build表(也就是我的右表)通过hash映射成map,并按照某种规则进行分区存储(有的在内存,超过的放入磁盘)。
> 目前看磁盘上的那部分join应该是整个任务的瓶颈。
> 具体调优方法,还在探索中...也许有什么配置可以控制build表内存存储的大小.
> 在2020年03月21日 11:01,111<xinghalo@163.com> 写道:
> Hi, wu:
> 好的,我这边观察下gc情况。
> 另外,我的sql里面有关联条件的,只是第一个表1400多万条,第二张表1000多万条。
> | select
>
>
> wte.external_user_id,
>
> wte.union_id,
>
> mr.fk_member_id as member_id
>
> from a wte
>
> left join b mr
>
> on wte.union_id = mr.relation_code
>
> where wte.ods_date = '${today}'
>
> limit 10;
>
> |
> 我在ui里面可以看到任务也在正常运行,只是每秒输入700条左右,每秒输出1700,所以对比总量来说十分缓慢。
>
>
> 目前不太清楚性能的瓶颈点和优化的方向:
> 1
> 网络传输太慢,导致两表不能及时join?这里不知道如何排查,Metrics里面有个netty的相关指标,看不出什么;其他的指标除了hashjoin
> in和out缓慢变化,其他的都没有什么变化。
> 2 并行度过低,导致单点slot需要执行两个千万级表的关联?可否动态修改或者配置probe表的并行度?
> 3 JVM内存问题?详情见附件,观察内存还是很充足的,貌似垃圾回收有点频繁,是否有必要修改jvm配置?
> 4 taskmanager的日志不太理解….到build phase就停住了,是日志卡主了
还是 此时正在进行build的网络传输?
> |
> 2020-03-21 09:23:14,732 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 4 ms for 32768 segments
> 2020-03-21 09:23:14,738 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 4 ms for 32768 segments
> 2020-03-21 09:23:14,744 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 4 ms for 32768 segments
> 2020-03-21 09:23:14,750 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 4 ms for 32768 segments
> 2020-03-21 09:23:14,756 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 4 ms for 32768 segments
> 2020-03-21 09:23:14,762 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 4 ms for 32768 segments
> 2020-03-21 09:23:14,772 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 4 ms for 32768 segments
> 2020-03-21 09:23:14,779 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 4 ms for 32768 segments
> 2020-03-21 09:23:16,357 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 14 ms for 65536 segments
> 2020-03-21 09:23:16,453 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 10 ms for 65536 segments
> 2020-03-21 09:23:16,478 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 9 ms for 65536 segments
> 2020-03-21 09:23:16,494 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 9 ms for 65536 segments
> 2020-03-21 09:23:16,509 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 10 ms for 65536 segments
> 2020-03-21 09:23:16,522 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 9 ms for 65536 segments
> 2020-03-21 09:23:16,539 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 9 ms for 65536 segments
> 2020-03-21 09:23:16,554 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 10 ms for 65536 segments
> 2020-03-21 09:23:16,574 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 9 ms for 65536 segments
> 2020-03-21 09:23:16,598 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 9 ms for 65536 segments
> 2020-03-21 09:23:16,611 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 10 ms for 65536 segments
> 2020-03-21 09:23:20,157 INFO
> org.apache.flink.table.runtime.hashtable.BinaryHashBucketArea  - The
> rehash
> take 213 ms for 131072 segments
> 2020-03-21 09:23:21,579 INFO
> org.apache.flink.table.runtime.operators.join.HashJoinOperator  - Finish
> build phase.
> |
>
>
>
>
> 在2020年03月21日 10:31,Jark Wu<imjark@gmail.com> 写道:
> Hi,
>
> 看起来你的 join 没有等值关联条件,导致只能单并发运行。你可以观察下这个
join 节点的 gc 情况,看看是不是 full gc
> 导致运行缓慢。
> 关于 batch join,Jingsong 比我更熟悉一些调优手段,也许他能提供一些思路,cc
@Jingsong Li
> <jingsonglee0@gmail.com>
>
> Best,
> Jark
>
> On Fri, 20 Mar 2020 at 17:56, 111 <xinghalo@163.com> wrote:
>
>
>
> 图片好像挂了:
>
>
>
>
>
>
> https://picabstract-preview-ftn.weiyun.com/ftn_pic_abs_v3/93a8ac1299f8edd31aa93d69bd591dcc5b768e2c6f2d7a32ff3ac244040b1cac3e8afffd0daf92c4703c276fa1202361?pictype=scale&from=30113&version=3.3.3.3&uin=23603357&fname=F74D73D5-810B-4AE7-888C-E65BF787E490.png&size=750
>
>
> 在2020年03月20日 17:52,111<xinghalo@163.com> 写道:
> 您好:
> 我有两张表数据量都是1000多万条,需要针对两张表做join。
> 提交任务后,发现join十分缓慢,请问有什么调优的思路?
> 需要调整managed memory吗?
>
> 目前每个TaskManager申请的总内存是2g,每个taskManager上面有4个slot。taskmanager的metrics如下:
> | {
> "id":"container_e40_1555496777286_675191_01_000107",
> "path":"akka.tcp://flink@hnode9:33156/user/taskmanager_0",
> "dataPort":39423,
> "timeSinceLastHeartbeat":1584697728127,
> "slotsNumber":4,
> "freeSlots":3,
> "hardware":{
> "cpuCores":32,
> "physicalMemory":135355260928,
> "freeMemory":749731840,
> "managedMemory":732828804
> },
> "metrics":{
> "heapUsed":261623760,
> "heapCommitted":781189120,
> "heapMax":781189120,
> "nonHeapUsed":100441328,
> "nonHeapCommitted":102957056,
> "nonHeapMax":1426063360,
> "directCount":5662,
> "directUsed":191911352,
> "directMax":191911350,
> "mappedCount":0,
> "mappedUsed":0,
> "mappedMax":0,
> "memorySegmentsAvailable":5582,
> "memorySegmentsTotal":5591,
> "garbageCollectors":[
> {
> "name":"PS_Scavenge",
> "count":5734,
> "time":19767
> },
> {
> "name":"PS_MarkSweep",
> "count":7,
> "time":893
> }
> ]
> }
> } |
>
>
>
>
>
>
>
>
>
> --
> Best, Jingsong Lee
>


-- 
Best, Jingsong Lee
Mime
  • Unnamed multipart/alternative (inline, None, 0 bytes)
View raw message