[ https://issues.apache.org/jira/browse/FLINK7465?page=com.atlassian.jira.plugin.system.issuetabpanels:commenttabpanel&focusedCommentId=16136062#comment16136062
]
sunjincheng edited comment on FLINK7465 at 8/22/17 9:01 AM:

[~fhueske] I want add accuracy and maxElement as function parameter，the function signature
looks like:
{code}
countbf(accuracy:Double, maxKeyCount, col:Any)
{code}
That mean we configure the accuracy when the function is used. Is this make sense for you?
[~fhueske]
I think {{countmin}} is very useful in some certain cases. so does the {{HyperLogLog}} (cardinality
counting). After we complete the this JIRA. we can discuss these implementations.
[~jark] The de/serialize of bitArray if very important in the implementation. I think the
best way is do the de/serialization at check point or in {{open/close}} method, but currently
we can not access the {{RuntimeContext}} from {{FunctionContext}},we need do some change.
OR using DataView. Currently In my mind we have some choices as follows：
* de/serialization bitArray every call the {{accumulate}}(bitArray as member of ACC)
* de/serialization bitArray in check point.( bitArray as member of AGG)
* de/serialization bitArray in {{open/close}} .( bitArray as member of AGG)
What do you think? [~jark] [~fhueske]
was (Author: sunjincheng121):
[~fhueske] I want add accuracy and maxElement as function parameter，the function signature
looks like:
{code}
countbf(accuracy:Double, maxKeyCount, col:Any)
{code}
And we will use the following formula to calculate the bitarray size(bsize):
{code}
(maxKeyCount * Math.log(accuracy) / (Math.log(2) * Math.log(2)))
{code}
And we will use the following formula to calculate the cont of hash function:
{code}
Math.max(1, Math.round(bsize.asInstanceOf[Double] / maxKeyCount * Math.log(2)))
{code}
The formula same as the reference of the JIRA. description.
That mean we configure the accuracy when the function is used. Is this make sense for you?
[~fhueske]
I think {{countmin}} is very useful in some certain cases. so does the {{HyperLogLog}} (cardinality
counting). After we complete the this JIRA. we can discuss these implementations.
[~jark] The de/serialize of bitArray if very important in the implementation. I think the
best way is do the de/serialization at check point or in {{open/close}} method, but currently
we can not access the {{RuntimeContext}} from {{FunctionContext}},we need do some change.
OR using DataView. Currently In my mind we have some choices as follows：
* de/serialization bitArray every call the {{accumulate}}(bitArray as member of ACC)
* de/serialization bitArray in check point.( bitArray as member of AGG)
* de/serialization bitArray in {{open/close}} .( bitArray as member of AGG)
What do you think? [~jark] [~fhueske]
> Add buildin BloomFilterCount on TableAPI&SQL
> 
>
> Key: FLINK7465
> URL: https://issues.apache.org/jira/browse/FLINK7465
> Project: Flink
> Issue Type: Subtask
> Components: Table API & SQL
> Reporter: sunjincheng
> Assignee: sunjincheng
> Attachments: bloomfilter.png
>
>
> In this JIRA. use BloomFilter to implement counting functions.
> BloomFilter Algorithm description:
> An empty Bloom filter is a bit array of m bits, all set to 0. There must also be k different
hash functions defined, each of which maps or hashes some set element to one of the m array
positions, generating a uniform random distribution. Typically, k is a constant, much smaller
than m, which is proportional to the number of elements to be added; the precise choice of
k and the constant of proportionality of m are determined by the intended false positive rate
of the filter.
> To add an element, feed it to each of the k hash functions to get k array positions.
Set the bits at all these positions to 1.
> To query for an element (test whether it is in the set), feed it to each of the k hash
functions to get k array positions. If any of the bits at these positions is 0, the element
is definitely not in the set – if it were, then all the bits would have been set to 1 when
it was inserted. If all are 1, then either the element is in the set, or the bits have by
chance been set to 1 during the insertion of other elements, resulting in a false positive.
> An example of a Bloom filter, representing the set {x, y, z}. The colored arrows show
the positions in the bit array that each set element is mapped to. The element w is not in
the set {x, y, z}, because it hashes to one bitarray position containing 0. For this figure,
m = 18 and k = 3. The sketch as follows:
> !bloomfilter.png!
> Reference:
> 1. https://en.wikipedia.org/wiki/Bloom_filter
> 2. https://github.com/apache/hive/blob/master/storageapi/src/java/org/apache/hive/common/util/BloomFilter.java
> Hi [~fhueske] [~twalthr] I appreciated if you can give me some advice. :)

This message was sent by Atlassian JIRA
(v6.4.14#64029)
