flink-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From fhueske <...@git.apache.org>
Subject [GitHub] flink pull request #3641: [FLINK-5654] - Add processing time OVER RANGE BETW...
Date Wed, 29 Mar 2017 16:59:56 GMT
Github user fhueske commented on a diff in the pull request:

    https://github.com/apache/flink/pull/3641#discussion_r108730528
  
    --- Diff: flink-libraries/flink-table/src/test/scala/org/apache/flink/table/api/scala/stream/sql/SqlITCase.scala
---
    @@ -696,6 +713,205 @@ class SqlITCase extends StreamingWithStateTestBase {
           "6,8,Hello world,51,9,5,9,1")
         assertEquals(expected.sorted, StreamITCase.testResults.sorted)
       }
    +
    +  @Test
    +  def testAvgSumAggregatationPartition(): Unit = {
    +
    +    val env = StreamExecutionEnvironment.getExecutionEnvironment
    +    val tEnv = TableEnvironment.getTableEnvironment(env)
    +    env.setParallelism(1)
    +    StreamITCase.testResults = mutable.MutableList()
    +
    +    val sqlQuery = "SELECT a, AVG(c) OVER (PARTITION BY a ORDER BY procTime()" +
    +      "RANGE BETWEEN INTERVAL '10' SECOND PRECEDING AND CURRENT ROW) AS avgC," +
    +      "SUM(c) OVER (PARTITION BY a ORDER BY procTime()" +
    +      "RANGE BETWEEN INTERVAL '10' SECOND PRECEDING AND CURRENT ROW) as sumC FROM MyTable"
    +
    +    val t = StreamTestData.get5TupleDataStream(env)
    +      .toTable(tEnv).as('a, 'b, 'c, 'd, 'e)
    +
    +    tEnv.registerTable("MyTable", t)
    +
    +    val result = tEnv.sql(sqlQuery).toDataStream[Row]
    +    result.addSink(new StreamITCase.StringSink)
    +    env.execute()
    +
    +    val expected = mutable.MutableList(
    +      "1,0,0",
    +      "2,1,1",
    +      "2,1,3",
    +      "3,3,3",
    +      "3,3,7",
    +      "3,4,12",
    +      "4,6,13",
    +      "4,6,6",
    +      "4,7,21",
    +      "4,7,30",
    +      "5,10,10",
    +      "5,10,21",
    +      "5,11,33",
    +      "5,11,46",
    +      "5,12,60")
    +
    +    assertEquals(expected.sorted, StreamITCase.testResults.sorted)
    +  }
    +
    +  @Test
    +  def testAvgSumAggregatationNonPartition(): Unit = {
    +
    +    val env = StreamExecutionEnvironment.getExecutionEnvironment
    +    val tEnv = TableEnvironment.getTableEnvironment(env)
    +    env.setParallelism(1)
    +    StreamITCase.testResults = mutable.MutableList()
    +
    +    val sqlQuery = "SELECT a, Count(c) OVER (ORDER BY procTime()" +
    +      "RANGE BETWEEN INTERVAL '10' SECOND PRECEDING AND CURRENT ROW) AS avgC," +
    +      "MIN(c) OVER (ORDER BY procTime()" +
    +      "RANGE BETWEEN INTERVAL '10' SECOND PRECEDING AND CURRENT ROW) as sumC FROM MyTable"
    +
    +    val t = StreamTestData.get5TupleDataStream(env)
    +      .toTable(tEnv).as('a, 'b, 'c, 'd, 'e)
    +
    +    tEnv.registerTable("MyTable", t)
    +
    +    val result = tEnv.sql(sqlQuery).toDataStream[Row]
    +    result.addSink(new StreamITCase.StringSink)
    +    env.execute()
    +
    +    val expected = mutable.MutableList(
    +      "1,1,0",
    +      "2,2,0",
    +      "2,3,0",
    +      "3,4,0",
    +      "3,5,0",
    +      "3,6,0",
    +      "4,7,0",
    +      "4,8,0",
    +      "4,9,0",
    +      "4,10,0",
    +      "5,11,0",
    +      "5,12,0",
    +      "5,13,0",
    +      "5,14,0",
    +      "5,15,0")
    +
    +    assertEquals(expected.sorted, StreamITCase.testResults.sorted)
    +  }
    +
    +  
    +  @Test
    +  def testCountAggregatationProcTimeHarnessPartitioned(): Unit = {
    +    val env = StreamExecutionEnvironment.getExecutionEnvironment
    +    val tEnv = TableEnvironment.getTableEnvironment(env)
    +    env.setParallelism(1)
    +    
    +    val rT =  new RowTypeInfo(Array[TypeInformation[_]](
    +      INT_TYPE_INFO,
    +      LONG_TYPE_INFO,
    +      INT_TYPE_INFO,
    +      STRING_TYPE_INFO,
    +      LONG_TYPE_INFO),
    +      Array("a","b","c","d","e"))
    +    
    +    val rTA =  new RowTypeInfo(Array[TypeInformation[_]](
    +     LONG_TYPE_INFO), Array("count"))
    +      
    +    val processFunction = new KeyedProcessOperator[String,Row,Row](
    +      new ProcTimeBoundedProcessingOverProcessFunction(
    +        Array(new CountAggFunction),
    +        Array(1),
    +        5,
    +        rTA,
    +        1000,
    +        rT))
    +  
    +    val rInput:Row = new Row(5)
    +      rInput.setField(0, 1)
    +      rInput.setField(1, 11L)
    +      rInput.setField(2, 1)
    +      rInput.setField(3, "aaa")
    +      rInput.setField(4, 11L)
    +    
    +   val testHarness = new KeyedOneInputStreamOperatorTestHarness[String,Row,Row](
    +      processFunction, 
    +      new TupleRowSelector(3), 
    +      BasicTypeInfo.STRING_TYPE_INFO)
    +    
    +   testHarness.open();
    +
    +   testHarness.setProcessingTime(3)
    +
    +   // timestamp is ignored in processing time
    +    testHarness.processElement(new StreamRecord(rInput, 1001))
    +    testHarness.processElement(new StreamRecord(rInput, 2002))
    +    testHarness.processElement(new StreamRecord(rInput, 2003))
    +    testHarness.processElement(new StreamRecord(rInput, 2004))
    +   
    +    testHarness.setProcessingTime(1004)
    +  
    +    testHarness.processElement(new StreamRecord(rInput, 2005))
    +    testHarness.processElement(new StreamRecord(rInput, 2006))
    +  
    +    val result = testHarness.getOutput
    +    
    +    val expectedOutput = new ConcurrentLinkedQueue[Object]()
    +    
    +     val rOutput:Row = new Row(6)
    +      rOutput.setField(0, 1)
    +      rOutput.setField(1, 11L)
    +      rOutput.setField(2, 1)
    +      rOutput.setField(3, "aaa")
    +      rOutput.setField(4, 11L)
    +      rOutput.setField(5, 1L)   //count is 1
    +    expectedOutput.add(new StreamRecord(rOutput, 1001));
    --- End diff --
    
    please remove `;` (also in the following lines)


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastructure@apache.org or file a JIRA ticket
with INFRA.
---

Mime
View raw message