flink-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From rtudoran <...@git.apache.org>
Subject [GitHub] flink pull request #3590: [FLINK-5654] - Add processing time OVER RANGE BETW...
Date Wed, 22 Mar 2017 12:38:22 GMT
Github user rtudoran commented on a diff in the pull request:

    https://github.com/apache/flink/pull/3590#discussion_r107402043
  
    --- Diff: flink-libraries/flink-table/src/main/scala/org/apache/flink/table/runtime/aggregate/ProcTimeBoundedProcessingOverProcessFunction.scala
---
    @@ -0,0 +1,141 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one
    + * or more contributor license agreements.  See the NOTICE file
    + * distributed with this work for additional information
    + * regarding copyright ownership.  The ASF licenses this file
    + * to you under the Apache License, Version 2.0 (the
    + * "License"); you may not use this file except in compliance
    + * with the License.  You may obtain a copy of the License at
    + *
    + *     http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +package org.apache.flink.table.runtime.aggregate
    +
    +import org.apache.flink.api.common.state.{ListState, ListStateDescriptor}
    +import org.apache.flink.api.java.typeutils.RowTypeInfo
    +import org.apache.flink.configuration.Configuration
    +import org.apache.flink.runtime.state.{FunctionInitializationContext, FunctionSnapshotContext}
    +import org.apache.flink.streaming.api.checkpoint.CheckpointedFunction
    +import org.apache.flink.streaming.api.functions.ProcessFunction
    +import org.apache.flink.table.functions.{Accumulator, AggregateFunction}
    +import org.apache.flink.types.Row
    +import org.apache.flink.util.{Collector, Preconditions}
    +import org.apache.flink.api.common.state.ValueState
    +import org.apache.flink.api.common.state.ValueStateDescriptor
    +import scala.util.control.Breaks._
    +
    +/**
    +  * Process Function used for the aggregate in partitioned bounded windows in
    +  * [[org.apache.flink.streaming.api.datastream.DataStream]]
    +  *
    +  * @param aggregates the list of all [[org.apache.flink.table.functions.AggregateFunction]]
    +  *                   used for this aggregation
    +  * @param aggFields  the position (in the input Row) of the input value for each aggregate
    +  * @param forwardedFieldCount Is used to indicate fields in the current element to forward
    +  * @param rowTypeInfo Is used to indicate the field schema
    +  * @param time_boundary Is used to indicate the processing time boundaries
    +  */
    +class ProcTimeBoundedProcessingOverProcessFunction(
    +    private val aggregates: Array[AggregateFunction[_]],
    +    private val aggFields: Array[Int],
    +    private val forwardedFieldCount: Int,
    +    private val rowTypeInfo: RowTypeInfo,
    +    private val time_boundary: Long)
    +  extends ProcessFunction[Row, Row] {
    +
    +  Preconditions.checkNotNull(aggregates)
    +  Preconditions.checkNotNull(aggFields)
    +  Preconditions.checkArgument(aggregates.length == aggFields.length)
    +
    +  private var accumulators: Row = _
    +  private var output: Row = _
    +  private var windowBuffer: ListState[Tuple2[Long,Row]] = null
    +  private var state: ValueState[Row] = _
    +
    +  
    +  override def open(config: Configuration) {
    +    output = new Row(forwardedFieldCount + aggregates.length)
    +    
    +    accumulators = new Row(aggregates.length)
    +    var i = 0
    +    while (i < aggregates.length) {
    +        accumulators.setField(i, aggregates(i).createAccumulator())
    +        i += 1
    +      } 
    +    
    +    // We keep the elements received in a list state 
    +    // together with the ingestion time in the operator
    +    val bufferDescriptor: ListStateDescriptor[Tuple2[Long,Row]] = 
    +    new ListStateDescriptor[Tuple2[Long,Row]]("windowBufferState", classOf[Tuple2[Long,Row]])
    +    windowBuffer = getRuntimeContext.getListState(bufferDescriptor)
    +
    +    val stateDescriptor: ValueStateDescriptor[Row] =
    +    new ValueStateDescriptor[Row]("overState", classOf[Row] , accumulators)      
    --- End diff --
    
    @fhueske  Fine for the correct usage of the type
    However, regarding not using this constructor and checking in the process function - i
think this gives less performance. Basically we add an if condition that will be checked for
every event that comes in the stream. Although an instruction is not big time wise - i guess
we still aim to build for high performance. My suggestion would be to keep using the deprecated
constructor (or alternatively to update the value directly...but definitely not put the check
in processFunction) What do you think?


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastructure@apache.org or file a JIRA ticket
with INFRA.
---

Mime
View raw message