flink-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From tillrohrmann <...@git.apache.org>
Subject [GitHub] flink pull request: [FLINK-1745] Add exact k-nearest-neighbours al...
Date Wed, 18 May 2016 13:36:08 GMT
Github user tillrohrmann commented on a diff in the pull request:

    https://github.com/apache/flink/pull/1220#discussion_r63702930
  
    --- Diff: flink-libraries/flink-ml/src/main/scala/org/apache/flink/ml/nn/KNN.scala ---
    @@ -0,0 +1,354 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one
    + * or more contributor license agreements.  See the NOTICE file
    + * distributed with this work for additional information
    + * regarding copyright ownership.  The ASF licenses this file
    + * to you under the Apache License, Version 2.0 (the
    + * "License"); you may not use this file except in compliance
    + * with the License.  You may obtain a copy of the License at
    + *
    + *     http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.flink.ml.nn
    +
    +import org.apache.flink.api.common.operators.Order
    +import org.apache.flink.api.common.typeinfo.TypeInformation
    +import org.apache.flink.api.scala.utils._
    +import org.apache.flink.api.scala._
    +import org.apache.flink.ml.common._
    +import org.apache.flink.ml.math.{Vector => FlinkVector, DenseVector}
    +import org.apache.flink.ml.metrics.distances.{SquaredEuclideanDistanceMetric, DistanceMetric,
    +EuclideanDistanceMetric}
    +import org.apache.flink.ml.pipeline.{FitOperation, PredictDataSetOperation, Predictor}
    +import org.apache.flink.util.Collector
    +import org.apache.flink.api.common.operators.base.CrossOperatorBase.CrossHint
    +
    +import scala.collection.immutable.Vector
    +import scala.collection.mutable
    +import scala.collection.mutable.ArrayBuffer
    +import scala.reflect.ClassTag
    +
    +/** Implements a k-nearest neighbor join.
    +  *
    +  * Calculates the `k`-nearest neighbor points in the training set for each point in
the test set.
    +  *
    +  * @example
    +  * {{{
    +  *       val trainingDS: DataSet[Vector] = ...
    +  *       val testingDS: DataSet[Vector] = ...
    +  *
    +  *       val knn = KNN()
    +  *         .setK(10)
    +  *         .setBlocks(5)
    +  *         .setDistanceMetric(EuclideanDistanceMetric())
    +  *
    +  *       knn.fit(trainingDS)
    +  *
    +  *       val predictionDS: DataSet[(Vector, Array[Vector])] = knn.predict(testingDS)
    +  * }}}
    +  *
    +  * =Parameters=
    +  *
    +  * - [[org.apache.flink.ml.nn.KNN.K]]
    +  * Sets the K which is the number of selected points as neighbors. (Default value: '''5''')
    +  *
    +  * - [[org.apache.flink.ml.nn.KNN.DistanceMetric]]
    +  * Sets the distance metric we use to calculate the distance between two points. If
no metric is
    +  * specified, then [[org.apache.flink.ml.metrics.distances.EuclideanDistanceMetric]]
is used.
    +  * (Default value: '''EuclideanDistanceMetric()''')
    +  *
    +  * - [[org.apache.flink.ml.nn.KNN.Blocks]]
    +  * Sets the number of blocks into which the input data will be split. This number should
be set
    +  * at least to the degree of parallelism. If no value is specified, then the parallelism
of the
    +  * input [[DataSet]] is used as the number of blocks. (Default value: '''None''')
    +  *
    +  * - [[org.apache.flink.ml.nn.KNN.UseQuadTreeParam]]
    +  * A boolean variable that whether or not to use a Quadtree to partition the training
set
    +  * to potentially simplify the KNN search.  If no value is specified, the code will
    +  * automatically decide whether or not to use a Quadtree.  Use of a Quadtree scales
well
    +  * with the number of training and testing points, though poorly with the dimension.
    +  * (Default value:  ```None```)
    +  *
    +  * - [[org.apache.flink.ml.nn.KNN.SizeHint]]
    +  * Specifies whether the training set or test set is small to optimize the cross
    +  * product operation needed for the KNN search.  If the training set is small
    +  * this should be `CrossHint.FIRST_IS_SMALL` and set to `CrossHint.SECOND_IS_SMALL`
    +  * if the test set is small.
    +  * (Default value:  ```None```)
    +  *
    +  */
    +
    +class KNN extends Predictor[KNN] {
    +
    +  import KNN._
    +
    +  var trainingSet: Option[DataSet[Block[FlinkVector]]] = None
    +
    +  /** Sets K
    +    * @param k the number of selected points as neighbors
    +    */
    +  def setK(k: Int): KNN = {
    +    require(k > 0, "K must be positive.")
    +    parameters.add(K, k)
    +    this
    +  }
    +
    +  /** Sets the distance metric
    +    * @param metric the distance metric to calculate distance between two points
    +    */
    +  def setDistanceMetric(metric: DistanceMetric): KNN = {
    +    parameters.add(DistanceMetric, metric)
    +    this
    +  }
    +
    +  /** Sets the number of data blocks/partitions
    +    * @param n the number of data blocks
    +    */
    +  def setBlocks(n: Int): KNN = {
    +    require(n > 0, "Number of blocks must be positive.")
    +    parameters.add(Blocks, n)
    +    this
    +  }
    +
    +  /**
    +   * Sets the Boolean variable that decides whether to use the QuadTree or not
    +   */
    +  def setUseQuadTree(useQuadTree: Boolean): KNN = {
    +    if (useQuadTree){
    +      require(parameters(DistanceMetric).isInstanceOf[SquaredEuclideanDistanceMetric]
||
    +        parameters(DistanceMetric).isInstanceOf[EuclideanDistanceMetric])
    +    }
    +    parameters.add(UseQuadTreeParam, useQuadTree)
    +    this
    +  }
    +
    +  /**
    +   * Parameter a user can specify if one of the training or test sets are small
    +   * @param sizeHint
    +   * @return
    +   */
    +  def setSizeHint(sizeHint: CrossHint): KNN = {
    +    parameters.add(SizeHint, sizeHint)
    +    this
    +  }
    +
    +}
    +
    +object KNN {
    +
    +  case object K extends Parameter[Int] {
    +    val defaultValue: Option[Int] = Some(5)
    +  }
    +
    +  case object DistanceMetric extends Parameter[DistanceMetric] {
    +    val defaultValue: Option[DistanceMetric] = Some(EuclideanDistanceMetric())
    +  }
    +
    +  case object Blocks extends Parameter[Int] {
    +    val defaultValue: Option[Int] = None
    +  }
    +
    +  case object UseQuadTreeParam extends Parameter[Boolean] {
    +    val defaultValue: Option[Boolean] = None
    +  }
    +
    +  case object SizeHint extends Parameter[CrossHint] {
    +    val defaultValue: Option[CrossHint] = None
    +  }
    +
    +  def apply(): KNN = {
    +    new KNN()
    +  }
    +
    +  /** [[FitOperation]] which trains a KNN based on the given training data set.
    +    * @tparam T Subtype of [[org.apache.flink.ml.math.Vector]]
    +    */
    +  implicit def fitKNN[T <: FlinkVector : TypeInformation] = new FitOperation[KNN,
T] {
    +    override def fit(
    +      instance: KNN,
    +      fitParameters: ParameterMap,
    +      input: DataSet[T]): Unit = {
    +      val resultParameters = instance.parameters ++ fitParameters
    +
    +      require(resultParameters.get(K).isDefined, "K is needed for calculation")
    +
    +      val blocks = resultParameters.get(Blocks).getOrElse(input.getParallelism)
    +      val partitioner = FlinkMLTools.ModuloKeyPartitioner
    +      val inputAsVector = input.asInstanceOf[DataSet[FlinkVector]]
    +
    +      instance.trainingSet = Some(FlinkMLTools.block(inputAsVector, blocks, Some(partitioner)))
    +    }
    +  }
    +
    +  /** [[PredictDataSetOperation]] which calculates k-nearest neighbors of the given testing
data
    +    * set.
    +    * @tparam T Subtype of [[Vector]]
    +    * @return The given testing data set with k-nearest neighbors
    +    */
    +  implicit def predictValues[T <: FlinkVector : ClassTag : TypeInformation] = {
    +    new PredictDataSetOperation[KNN, T, (FlinkVector, Array[FlinkVector])] {
    +      override def predictDataSet(
    +        instance: KNN,
    +        predictParameters: ParameterMap,
    +        input: DataSet[T]): DataSet[(FlinkVector,
    +        Array[FlinkVector])] = {
    +        val resultParameters = instance.parameters ++ predictParameters
    +
    +        instance.trainingSet match {
    +          case Some(trainingSet) =>
    +            val k = resultParameters.get(K).get
    +            val blocks = resultParameters.get(Blocks).getOrElse(input.getParallelism)
    +            val metric = resultParameters.get(DistanceMetric).get
    +            val partitioner = FlinkMLTools.ModuloKeyPartitioner
    +
    +            // attach unique id for each data
    +            val inputWithId: DataSet[(Long, T)] = input.zipWithUniqueId
    +
    +            // split data into multiple blocks
    +            val inputSplit = FlinkMLTools.block(inputWithId, blocks, Some(partitioner))
    +
    +            val sizeHint = resultParameters.get(SizeHint)
    +            val crossTuned = sizeHint match {
    +              case Some(hint) if hint == CrossHint.FIRST_IS_SMALL =>
    +                trainingSet.crossWithHuge(inputSplit)
    +              case Some(hint) if hint == CrossHint.SECOND_IS_SMALL =>
    +                trainingSet.crossWithTiny(inputSplit)
    +              case _ => trainingSet.cross(inputSplit)
    +            }
    +
    +            // join input and training set
    +            val crossed = crossTuned.mapPartition {
    +              (iter, out: Collector[(FlinkVector, FlinkVector, Long, Double)]) =>
{
    +                for ((training, testing) <- iter) {
    +                  val queue = mutable.PriorityQueue[(FlinkVector, FlinkVector, Long,
Double)]()(
    +                    Ordering.by(_._4))
    +
    +                  // use a quadtree if (4^dim)Ntest*log(Ntrain)
    +                  // < Ntest*Ntrain, and distance is Euclidean
    +                  val useQuadTree = resultParameters.get(UseQuadTreeParam).getOrElse(
    +                    training.values.head.size + math.log(math.log(training.values.length)
/
    +                      math.log(4.0)) < math.log(training.values.length) / math.log(4.0)
&&
    +                      (metric.isInstanceOf[EuclideanDistanceMetric] ||
    +                        metric.isInstanceOf[SquaredEuclideanDistanceMetric]))
    +
    +                  if (useQuadTree) {
    +                    knnQueryWithQuadTree(training.values, testing.values, k, metric,
queue, out)
    +                  } else {
    +                    knnQueryBasic(training.values, testing.values, k, metric, queue,
out)
    +                  }
    +                }
    +              }
    +            }
    +
    +            // group by input vector id and pick k nearest neighbor for each group
    +            val result = crossed.groupBy(2).sortGroup(3, Order.ASCENDING).reduceGroup
{
    +              (iter, out: Collector[(FlinkVector, Array[FlinkVector])]) => {
    +                if (iter.hasNext) {
    +                  val head = iter.next()
    +                  val key = head._2
    +                  val neighbors: ArrayBuffer[FlinkVector] = ArrayBuffer(head._1)
    +
    +                  for ((vector, _, _, _) <- iter.take(k - 1)) {
    +                    // we already took a first element
    +                    neighbors += vector
    +                  }
    +
    +                  out.collect(key, neighbors.toArray)
    +                }
    +              }
    +            }
    +
    +            result
    +          case None => throw new RuntimeException("The KNN model has not been trained."
+
    +            "Call first fit before calling the predict operation.")
    +
    +        }
    +      }
    +    }
    +  }
    +
    +  def knnQueryWithQuadTree[T <: FlinkVector](
    +    training: Vector[T],
    +    testing: Vector[(Long, T)],
    +    k: Int, metric: DistanceMetric,
    +    queue: mutable.PriorityQueue[(FlinkVector,
    +      FlinkVector, Long, Double)],
    +    out: Collector[(FlinkVector,
    +      FlinkVector, Long, Double)]) {
    +    /// find a bounding box
    +    val MinArr = Array.tabulate(training.head.size)(x => x)
    +    val MaxArr = Array.tabulate(training.head.size)(x => x)
    +
    +    val minVecTrain = MinArr.map(i => training.map(x => x(i)).min - 0.01)
    +    val minVecTest = MinArr.map(i => testing.map(x => x._2(i)).min - 0.01)
    +    val maxVecTrain = MaxArr.map(i => training.map(x => x(i)).max + 0.01)
    +    val maxVecTest = MaxArr.map(i => testing.map(x => x._2(i)).max + 0.01)
    +
    +    val MinVec = DenseVector(MinArr.map(i => Array(minVecTrain(i), minVecTest(i)).min))
    +    val MaxVec = DenseVector(MinArr.map(i => Array(maxVecTrain(i), maxVecTest(i)).max))
    --- End diff --
    
    I think it is more efficient to not create an array for a comparison. `math.max` and `math.min`
should do the job.


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastructure@apache.org or file a JIRA ticket
with INFRA.
---

Mime
View raw message