flink-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From fhue...@apache.org
Subject [2/4] flink git commit: [FLNK-XXXX] [docs] Restructured Table API / SQL docs
Date Tue, 23 May 2017 15:43:40 GMT
http://git-wip-us.apache.org/repos/asf/flink/blob/e5f24713/docs/dev/table/udfs.md
----------------------------------------------------------------------
diff --git a/docs/dev/table/udfs.md b/docs/dev/table/udfs.md
new file mode 100644
index 0000000..55f58b6
--- /dev/null
+++ b/docs/dev/table/udfs.md
@@ -0,0 +1,362 @@
+---
+title: "User-defined Functions"
+nav-parent_id: tableapi
+nav-pos: 50
+---
+<!--
+Licensed to the Apache Software Foundation (ASF) under one
+or more contributor license agreements.  See the NOTICE file
+distributed with this work for additional information
+regarding copyright ownership.  The ASF licenses this file
+to you under the Apache License, Version 2.0 (the
+"License"); you may not use this file except in compliance
+with the License.  You may obtain a copy of the License at
+
+  http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing,
+software distributed under the License is distributed on an
+"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+KIND, either express or implied.  See the License for the
+specific language governing permissions and limitations
+under the License.
+-->
+
+User-defined functions are an important feature, because they significantly extend the expressiveness
of queries.
+
+**TODO**
+
+* This will be replaced by the TOC
+{:toc}
+
+Register User-Defined Functions
+-------------------------------
+
+**TODO**
+
+{% top %}
+
+Scalar Functions
+----------------
+
+If a required scalar function is not contained in the built-in functions, it is possible
to define custom, user-defined scalar functions for both the Table API and SQL. A user-defined
scalar functions maps zero, one, or multiple scalar values to a new scalar value.
+
+In order to define a scalar function one has to extend the base class `ScalarFunction` in
`org.apache.flink.table.functions` and implement (one or more) evaluation methods. The behavior
of a scalar function is determined by the evaluation method. An evaluation method must be
declared publicly and named `eval`. The parameter types and return type of the evaluation
method also determine the parameter and return types of the scalar function. Evaluation methods
can also be overloaded by implementing multiple methods named `eval`.
+
+The following example shows how to define your own hash code function, register it in the
TableEnvironment, and call it in a query. Note that you can configure your scalar function
via a constructor before it is registered:
+
+<div class="codetabs" markdown="1">
+<div data-lang="java" markdown="1">
+{% highlight java %}
+public class HashCode extends ScalarFunction {
+  private int factor = 12;
+  
+  public HashCode(int factor) {
+      this.factor = factor;
+  }
+  
+  public int eval(String s) {
+      return s.hashCode() * factor;
+  }
+}
+
+BatchTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env);
+
+// register the function
+tableEnv.registerFunction("hashCode", new HashCode(10));
+
+// use the function in Java Table API
+myTable.select("string, string.hashCode(), hashCode(string)");
+
+// use the function in SQL API
+tableEnv.sql("SELECT string, HASHCODE(string) FROM MyTable");
+{% endhighlight %}
+</div>
+
+<div data-lang="scala" markdown="1">
+{% highlight scala %}
+// must be defined in static/object context
+class HashCode(factor: Int) extends ScalarFunction {
+  def eval(s: String): Int = {
+    s.hashCode() * factor
+  }
+}
+
+val tableEnv = TableEnvironment.getTableEnvironment(env)
+
+// use the function in Scala Table API
+val hashCode = new HashCode(10)
+myTable.select('string, hashCode('string))
+
+// register and use the function in SQL
+tableEnv.registerFunction("hashCode", new HashCode(10))
+tableEnv.sql("SELECT string, HASHCODE(string) FROM MyTable");
+{% endhighlight %}
+</div>
+</div>
+
+By default the result type of an evaluation method is determined by Flink's type extraction
facilities. This is sufficient for basic types or simple POJOs but might be wrong for more
complex, custom, or composite types. In these cases `TypeInformation` of the result type can
be manually defined by overriding `ScalarFunction#getResultType()`.
+
+Internally, the Table API and SQL code generation works with primitive values as much as
possible. If a user-defined scalar function should not introduce much overhead through object
creation/casting during runtime, it is recommended to declare parameters and result types
as primitive types instead of their boxed classes. `Types.DATE` and `Types.TIME` can also
be represented as `int`. `Types.TIMESTAMP` can be represented as `long`.
+
+The following example shows an advanced example which takes the internal timestamp representation
and also returns the internal timestamp representation as a long value. By overriding `ScalarFunction#getResultType()`
we define that the returned long value should be interpreted as a `Types.TIMESTAMP` by the
code generation.
+
+<div class="codetabs" markdown="1">
+<div data-lang="java" markdown="1">
+{% highlight java %}
+public static class TimestampModifier extends ScalarFunction {
+  public long eval(long t) {
+    return t % 1000;
+  }
+
+  public TypeInformation<?> getResultType(signature: Class<?>[]) {
+    return Types.TIMESTAMP;
+  }
+}
+{% endhighlight %}
+</div>
+
+<div data-lang="scala" markdown="1">
+{% highlight scala %}
+object TimestampModifier extends ScalarFunction {
+  def eval(t: Long): Long = {
+    t % 1000
+  }
+
+  override def getResultType(signature: Array[Class[_]]): TypeInformation[_] = {
+    Types.TIMESTAMP
+  }
+}
+{% endhighlight %}
+</div>
+</div>
+
+{% top %}
+
+Table Functions
+---------------
+
+Similar to a user-defined scalar function, a user-defined table function takes zero, one,
or multiple scalar values as input parameters. However in contrast to a scalar function, it
can return an arbitrary number of rows as output instead of a single value. The returned rows
may consist of one or more columns. 
+
+In order to define a table function one has to extend the base class `TableFunction` in `org.apache.flink.table.functions`
and implement (one or more) evaluation methods. The behavior of a table function is determined
by its evaluation methods. An evaluation method must be declared `public` and named `eval`.
The `TableFunction` can be overloaded by implementing multiple methods named `eval`. The parameter
types of the evaluation methods determine all valid parameters of the table function. The
type of the returned table is determined by the generic type of `TableFunction`. Evaluation
methods emit output rows using the protected `collect(T)` method.
+
+In the Table API, a table function is used with `.join(Expression)` or `.leftOuterJoin(Expression)`
for Scala users and `.join(String)` or `.leftOuterJoin(String)` for Java users. The `join`
operator (cross) joins each row from the outer table (table on the left of the operator) with
all rows produced by the table-valued function (which is on the right side of the operator).
The `leftOuterJoin` operator joins each row from the outer table (table on the left of the
operator) with all rows produced by the table-valued function (which is on the right side
of the operator) and preserves outer rows for which the table function returns an empty table.
In SQL use `LATERAL TABLE(<TableFunction>)` with CROSS JOIN and LEFT JOIN with an ON
TRUE join condition (see examples below).
+
+The following example shows how to define table-valued function, register it in the TableEnvironment,
and call it in a query. Note that you can configure your table function via a constructor
before it is registered: 
+
+<div class="codetabs" markdown="1">
+<div data-lang="java" markdown="1">
+{% highlight java %}
+// The generic type "Tuple2<String, Integer>" determines the schema of the returned
table as (String, Integer).
+public class Split extends TableFunction<Tuple2<String, Integer>> {
+    private String separator = " ";
+    
+    public Split(String separator) {
+        this.separator = separator;
+    }
+    
+    public void eval(String str) {
+        for (String s : str.split(separator)) {
+            // use collect(...) to emit a row
+            collect(new Tuple2<String, Integer>(s, s.length()));
+        }
+    }
+}
+
+BatchTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env);
+Table myTable = ...         // table schema: [a: String]
+
+// Register the function.
+tableEnv.registerFunction("split", new Split("#"));
+
+// Use the table function in the Java Table API. "as" specifies the field names of the table.
+myTable.join("split(a) as (word, length)").select("a, word, length");
+myTable.leftOuterJoin("split(a) as (word, length)").select("a, word, length");
+
+// Use the table function in SQL with LATERAL and TABLE keywords.
+// CROSS JOIN a table function (equivalent to "join" in Table API).
+tableEnv.sql("SELECT a, word, length FROM MyTable, LATERAL TABLE(split(a)) as T(word, length)");
+// LEFT JOIN a table function (equivalent to "leftOuterJoin" in Table API).
+tableEnv.sql("SELECT a, word, length FROM MyTable LEFT JOIN LATERAL TABLE(split(a)) as T(word,
length) ON TRUE");
+{% endhighlight %}
+</div>
+
+<div data-lang="scala" markdown="1">
+{% highlight scala %}
+// The generic type "(String, Int)" determines the schema of the returned table as (String,
Integer).
+class Split(separator: String) extends TableFunction[(String, Int)] {
+  def eval(str: String): Unit = {
+    // use collect(...) to emit a row.
+    str.split(separator).foreach(x -> collect((x, x.length))
+  }
+}
+
+val tableEnv = TableEnvironment.getTableEnvironment(env)
+val myTable = ...         // table schema: [a: String]
+
+// Use the table function in the Scala Table API (Note: No registration required in Scala
Table API).
+val split = new Split("#")
+// "as" specifies the field names of the generated table.
+myTable.join(split('a) as ('word, 'length)).select('a, 'word, 'length);
+myTable.leftOuterJoin(split('a) as ('word, 'length)).select('a, 'word, 'length);
+
+// Register the table function to use it in SQL queries.
+tableEnv.registerFunction("split", new Split("#"))
+
+// Use the table function in SQL with LATERAL and TABLE keywords.
+// CROSS JOIN a table function (equivalent to "join" in Table API)
+tableEnv.sql("SELECT a, word, length FROM MyTable, LATERAL TABLE(split(a)) as T(word, length)");
+// LEFT JOIN a table function (equivalent to "leftOuterJoin" in Table API)
+tableEnv.sql("SELECT a, word, length FROM MyTable LEFT JOIN TABLE(split(a)) as T(word, length)
ON TRUE");
+{% endhighlight %}
+**IMPORTANT:** Do not implement TableFunction as a Scala object. Scala object is a singleton
and will cause concurrency issues.
+</div>
+</div>
+
+Please note that POJO types do not have a deterministic field order. Therefore, you cannot
rename the fields of POJO returned by a table function using `AS`.
+
+By default the result type of a `TableFunction` is determined by Flinkā€™s automatic type
extraction facilities. This works well for basic types and simple POJOs but might be wrong
for more complex, custom, or composite types. In such a case, the type of the result can be
manually specified by overriding `TableFunction#getResultType()` which returns its `TypeInformation`.
+
+The following example shows an example of a `TableFunction` that returns a `Row` type which
requires explicit type information. We define that the returned table type should be `RowTypeInfo(String,
Integer)` by overriding `TableFunction#getResultType()`.
+
+<div class="codetabs" markdown="1">
+<div data-lang="java" markdown="1">
+{% highlight java %}
+public class CustomTypeSplit extends TableFunction<Row> {
+    public void eval(String str) {
+        for (String s : str.split(" ")) {
+            Row row = new Row(2);
+            row.setField(0, s);
+            row.setField(1, s.length);
+            collect(row);
+        }
+    }
+
+    @Override
+    public TypeInformation<Row> getResultType() {
+        return new RowTypeInfo(new TypeInformation[]{
+               			BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.INT_TYPE_INFO});
+    }
+}
+{% endhighlight %}
+</div>
+
+<div data-lang="scala" markdown="1">
+{% highlight scala %}
+class CustomTypeSplit extends TableFunction[Row] {
+  def eval(str: String): Unit = {
+    str.split(" ").foreach({ s =>
+      val row = new Row(2)
+      row.setField(0, s)
+      row.setField(1, s.length)
+      collect(row)
+    })
+  }
+
+  override def getResultType: TypeInformation[Row] = {
+    new RowTypeInfo(Seq(BasicTypeInfo.STRING_TYPE_INFO,
+                        BasicTypeInfo.INT_TYPE_INFO))
+  }
+}
+{% endhighlight %}
+</div>
+</div>
+
+{% top %}
+
+Aggregation Functions
+---------------------
+
+**TODO**
+
+{% top %}
+
+Integrating UDFs with the Runtime
+---------------------------------
+
+Sometimes it might be necessary for a user-defined function to get global runtime information
or do some setup/clean-up work before the actual work. User-defined functions provide `open()`
and `close()` methods that can be overriden and provide similar functionality as the methods
in `RichFunction` of DataSet or DataStream API.
+
+The `open()` method is called once before the evaluation method. The `close()` method after
the last call to the evaluation method.
+
+The `open()` method provides a `FunctionContext` that contains information about the context
in which user-defined functions are executed, such as the metric group, the distributed cache
files, or the global job parameters.
+
+The following information can be obtained by calling the corresponding methods of `FunctionContext`:
+
+| Method                                | Description                                   
        |
+| :------------------------------------ | :-----------------------------------------------------
|
+| `getMetricGroup()`                    | Metric group for this parallel subtask.       
        |
+| `getCachedFile(name)`                 | Local temporary file copy of a distributed cache
file. |
+| `getJobParameter(name, defaultValue)` | Global job parameter value associated with given
key.  |
+
+The following example snippet shows how to use `FunctionContext` in a scalar function for
accessing a global job parameter:
+
+<div class="codetabs" markdown="1">
+<div data-lang="java" markdown="1">
+{% highlight java %}
+public class HashCode extends ScalarFunction {
+
+    private int factor = 0;
+
+    @Override
+    public void open(FunctionContext context) throws Exception {
+        // access "hashcode_factor" parameter
+        // "12" would be the default value if parameter does not exist
+        factor = Integer.valueOf(context.getJobParameter("hashcode_factor", "12")); 
+    }
+
+    public int eval(String s) {
+        return s.hashCode() * factor;
+    }
+}
+
+ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
+BatchTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env);
+
+// set job parameter
+Configuration conf = new Configuration();
+conf.setString("hashcode_factor", "31");
+env.getConfig().setGlobalJobParameters(conf);
+
+// register the function
+tableEnv.registerFunction("hashCode", new HashCode());
+
+// use the function in Java Table API
+myTable.select("string, string.hashCode(), hashCode(string)");
+
+// use the function in SQL
+tableEnv.sql("SELECT string, HASHCODE(string) FROM MyTable");
+{% endhighlight %}
+</div>
+
+<div data-lang="scala" markdown="1">
+{% highlight scala %}
+object hashCode extends ScalarFunction {
+
+  var hashcode_factor = 12;
+
+  override def open(context: FunctionContext): Unit = {
+    // access "hashcode_factor" parameter
+    // "12" would be the default value if parameter does not exist
+    hashcode_factor = context.getJobParameter("hashcode_factor", "12").toInt
+  }
+
+  def eval(s: String): Int = {
+    s.hashCode() * hashcode_factor
+  }
+}
+
+val tableEnv = TableEnvironment.getTableEnvironment(env)
+
+// use the function in Scala Table API
+myTable.select('string, hashCode('string))
+
+// register and use the function in SQL
+tableEnv.registerFunction("hashCode", hashCode)
+tableEnv.sql("SELECT string, HASHCODE(string) FROM MyTable");
+{% endhighlight %}
+
+</div>
+</div>
+
+{% top %}
+

http://git-wip-us.apache.org/repos/asf/flink/blob/e5f24713/docs/dev/tableApi.md
----------------------------------------------------------------------
diff --git a/docs/dev/tableApi.md b/docs/dev/tableApi.md
new file mode 100644
index 0000000..c1c02f1
--- /dev/null
+++ b/docs/dev/tableApi.md
@@ -0,0 +1,81 @@
+---
+title: "Table API & SQL"
+nav-id: tableapi
+nav-parent_id: dev
+is_beta: true
+nav-show_overview: true
+nav-pos: 35
+---
+<!--
+Licensed to the Apache Software Foundation (ASF) under one
+or more contributor license agreements.  See the NOTICE file
+distributed with this work for additional information
+regarding copyright ownership.  The ASF licenses this file
+to you under the Apache License, Version 2.0 (the
+"License"); you may not use this file except in compliance
+with the License.  You may obtain a copy of the License at
+
+  http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing,
+software distributed under the License is distributed on an
+"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+KIND, either express or implied.  See the License for the
+specific language governing permissions and limitations
+under the License.
+-->
+
+**Table API and SQL are experimental features**
+
+The Table API is a SQL-like expression language for relational stream and batch processing
that can be easily embedded in Flink's DataSet and DataStream APIs (Java and Scala).
+The Table API and SQL interface operate on a relational `Table` abstraction, which can be
created from external data sources, or existing DataSets and DataStreams. With the Table API,
you can apply relational operators such as selection, aggregation, and joins on `Table`s.
+
+`Table`s can also be queried with regular SQL, as long as they are registered (see [Registering
Tables](#registering-tables)). The Table API and SQL offer equivalent functionality and can
be mixed in the same program. When a `Table` is converted back into a `DataSet` or `DataStream`,
the logical plan, which was defined by relational operators and SQL queries, is optimized
using [Apache Calcite](https://calcite.apache.org/) and transformed into a `DataSet` or `DataStream`
program.
+
+**TODO: Check, update, and add**
+
+* What are the Table API / SQL
+  * Relational APIs
+  * Unified APIs for batch and streaming
+    * Semantics are the same
+    * But not all operations can be efficiently mapped to streams
+  * Table API: language-integrated queries (LINQ) in Scala and Java
+  * SQL: Standard SQL
+
+**Please notice: Not all operations are supported by all four combinations of Stream/Batch
and TableAPI/SQL.**
+
+* This will be replaced by the TOC
+{:toc}
+
+Setup
+-----
+
+The Table API and SQL are part of the *flink-table* Maven project.
+The following dependency must be added to your project in order to use the Table API and
SQL:
+
+{% highlight xml %}
+<dependency>
+  <groupId>org.apache.flink</groupId>
+  <artifactId>flink-table{{ site.scala_version_suffix }}</artifactId>
+  <version>{{site.version }}</version>
+</dependency>
+{% endhighlight %}
+
+*Note: The Table API is currently not part of the binary distribution. See linking with it
for cluster execution [here]({{ site.baseurl }}/dev/linking.html).*
+
+**TODO: Rework and add:**
+* Project dependencies (flink-table + flink-scala or flink-streaming-scala)
+* Copy `./opt/flink-table.jar` to `./lib`
+
+{% top %}
+
+Where to go next?
+-----------------
+
+* [Concepts & Common API]({{ site.baseurl }}/dev/table/common.html): Share concepts and
API of the Table API and SQL.
+* [Table API]({{ site.baseurl }}/dev/table/tableapi.html): Supported Operations and API for
the Table API
+* [SQL]({{ site.baseurl }}/dev/table/sql.html): Supported Operations and Syntax for SQL
+* [Table Sources & Sinks]({{ site.baseurl }}/dev/table/sourceSinks.html): Ingestion and
emission of tables.
+* [User-Defined Functions]({{ site.baseurl }}/dev/table/udfs.html): Defintion and usage of
user-defined functions.
+
+{% top %}
\ No newline at end of file


Mime
View raw message