flink-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From fhue...@apache.org
Subject flink git commit: [FLINK-5655] [table] Add event-time OVER RANGE BETWEEN x PRECEDING aggregation to SQL.
Date Thu, 30 Mar 2017 07:53:41 GMT
Repository: flink
Updated Branches:
  refs/heads/master ca681101f -> d4665a00a


[FLINK-5655] [table] Add event-time OVER RANGE BETWEEN x PRECEDING aggregation to SQL.

This closes #3629.


Project: http://git-wip-us.apache.org/repos/asf/flink/repo
Commit: http://git-wip-us.apache.org/repos/asf/flink/commit/d4665a00
Tree: http://git-wip-us.apache.org/repos/asf/flink/tree/d4665a00
Diff: http://git-wip-us.apache.org/repos/asf/flink/diff/d4665a00

Branch: refs/heads/master
Commit: d4665a00a4262f89b166895f73a54daab2f25e1c
Parents: ca68110
Author: 金竹 <jincheng.sunjc@alibaba-inc.com>
Authored: Tue Mar 28 12:36:03 2017 +0800
Committer: Fabian Hueske <fhueske@apache.org>
Committed: Thu Mar 30 09:25:17 2017 +0200

----------------------------------------------------------------------
 .../datastream/DataStreamOverAggregate.scala    |  17 +-
 .../table/runtime/aggregate/AggregateUtil.scala |  34 ++-
 .../RangeClauseBoundedOverProcessFunction.scala | 221 +++++++++++++++++++
 .../table/api/scala/stream/sql/SqlITCase.scala  | 144 ++++++++++++
 .../scala/stream/sql/WindowAggregateTest.scala  |  55 +++++
 5 files changed, 455 insertions(+), 16 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/flink/blob/d4665a00/flink-libraries/flink-table/src/main/scala/org/apache/flink/table/plan/nodes/datastream/DataStreamOverAggregate.scala
----------------------------------------------------------------------
diff --git a/flink-libraries/flink-table/src/main/scala/org/apache/flink/table/plan/nodes/datastream/DataStreamOverAggregate.scala
b/flink-libraries/flink-table/src/main/scala/org/apache/flink/table/plan/nodes/datastream/DataStreamOverAggregate.scala
index 01e5a9a..7b744f1 100644
--- a/flink-libraries/flink-table/src/main/scala/org/apache/flink/table/plan/nodes/datastream/DataStreamOverAggregate.scala
+++ b/flink-libraries/flink-table/src/main/scala/org/apache/flink/table/plan/nodes/datastream/DataStreamOverAggregate.scala
@@ -139,11 +139,16 @@ class DataStreamOverAggregate(
           // bounded OVER window
           if (overWindow.isRows) {
             // ROWS clause bounded OVER window
-            createRowsClauseBoundedAndCurrentRowOverWindow(inputDS, isRowTimeType = true)
+            createBoundedAndCurrentRowOverWindow(
+              inputDS,
+              isRangeClause = false,
+              isRowTimeType = true)
           } else {
             // RANGE clause bounded OVER window
-            throw new TableException(
-              "row-time OVER RANGE PRECEDING window is not supported yet.")
+            createBoundedAndCurrentRowOverWindow(
+              inputDS,
+              isRangeClause = true,
+              isRowTimeType = true)
           }
         } else {
           throw new TableException(
@@ -195,8 +200,9 @@ class DataStreamOverAggregate(
     result
   }
 
-  def createRowsClauseBoundedAndCurrentRowOverWindow(
+  def createBoundedAndCurrentRowOverWindow(
     inputDS: DataStream[Row],
+    isRangeClause: Boolean = false,
     isRowTimeType: Boolean = false): DataStream[Row] = {
 
     val overWindow: Group = logicWindow.groups.get(0)
@@ -209,10 +215,11 @@ class DataStreamOverAggregate(
     // get the output types
     val rowTypeInfo = FlinkTypeFactory.toInternalRowTypeInfo(getRowType).asInstanceOf[RowTypeInfo]
 
-    val processFunction = AggregateUtil.createRowsClauseBoundedOverProcessFunction(
+    val processFunction = AggregateUtil.createBoundedOverProcessFunction(
       namedAggregates,
       inputType,
       precedingOffset,
+      isRangeClause,
       isRowTimeType
     )
     val result: DataStream[Row] =

http://git-wip-us.apache.org/repos/asf/flink/blob/d4665a00/flink-libraries/flink-table/src/main/scala/org/apache/flink/table/runtime/aggregate/AggregateUtil.scala
----------------------------------------------------------------------
diff --git a/flink-libraries/flink-table/src/main/scala/org/apache/flink/table/runtime/aggregate/AggregateUtil.scala
b/flink-libraries/flink-table/src/main/scala/org/apache/flink/table/runtime/aggregate/AggregateUtil.scala
index fdac692..cbb2e53 100644
--- a/flink-libraries/flink-table/src/main/scala/org/apache/flink/table/runtime/aggregate/AggregateUtil.scala
+++ b/flink-libraries/flink-table/src/main/scala/org/apache/flink/table/runtime/aggregate/AggregateUtil.scala
@@ -91,20 +91,21 @@ object AggregateUtil {
   }
 
   /**
-    * Create an [[org.apache.flink.streaming.api.functions.ProcessFunction]] for ROWS clause
+    * Create an [[org.apache.flink.streaming.api.functions.ProcessFunction]] for
     * bounded OVER window to evaluate final aggregate value.
     *
     * @param namedAggregates List of calls to aggregate functions and their output field
names
     * @param inputType       Input row type
-    * @param inputFields     All input fields
     * @param precedingOffset the preceding offset
+    * @param isRangeClause   It is a tag that indicates whether the OVER clause is rangeClause
     * @param isRowTimeType   It is a tag that indicates whether the time type is rowTimeType
     * @return [[org.apache.flink.streaming.api.functions.ProcessFunction]]
     */
-  private[flink] def createRowsClauseBoundedOverProcessFunction(
+  private[flink] def createBoundedOverProcessFunction(
     namedAggregates: Seq[CalcitePair[AggregateCall, String]],
     inputType: RelDataType,
     precedingOffset: Long,
+    isRangeClause: Boolean,
     isRowTimeType: Boolean): ProcessFunction[Row, Row] = {
 
     val (aggFields, aggregates) =
@@ -117,14 +118,25 @@ object AggregateUtil {
     val inputRowType = FlinkTypeFactory.toInternalRowTypeInfo(inputType).asInstanceOf[RowTypeInfo]
 
     if (isRowTimeType) {
-      new RowsClauseBoundedOverProcessFunction(
-        aggregates,
-        aggFields,
-        inputType.getFieldCount,
-        aggregationStateType,
-        inputRowType,
-        precedingOffset
-      )
+      if (isRangeClause) {
+        new RangeClauseBoundedOverProcessFunction(
+          aggregates,
+          aggFields,
+          inputType.getFieldCount,
+          aggregationStateType,
+          inputRowType,
+          precedingOffset
+        )
+      } else {
+        new RowsClauseBoundedOverProcessFunction(
+          aggregates,
+          aggFields,
+          inputType.getFieldCount,
+          aggregationStateType,
+          inputRowType,
+          precedingOffset
+        )
+      }
     } else {
       throw TableException(
         "Bounded partitioned proc-time OVER aggregation is not supported yet.")

http://git-wip-us.apache.org/repos/asf/flink/blob/d4665a00/flink-libraries/flink-table/src/main/scala/org/apache/flink/table/runtime/aggregate/RangeClauseBoundedOverProcessFunction.scala
----------------------------------------------------------------------
diff --git a/flink-libraries/flink-table/src/main/scala/org/apache/flink/table/runtime/aggregate/RangeClauseBoundedOverProcessFunction.scala
b/flink-libraries/flink-table/src/main/scala/org/apache/flink/table/runtime/aggregate/RangeClauseBoundedOverProcessFunction.scala
new file mode 100644
index 0000000..0c8555b
--- /dev/null
+++ b/flink-libraries/flink-table/src/main/scala/org/apache/flink/table/runtime/aggregate/RangeClauseBoundedOverProcessFunction.scala
@@ -0,0 +1,221 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.flink.table.runtime.aggregate
+
+import java.util.{List => JList, ArrayList => JArrayList}
+
+import org.apache.flink.api.common.state._
+import org.apache.flink.api.common.typeinfo.{BasicTypeInfo, TypeInformation}
+import org.apache.flink.api.java.typeutils.{ListTypeInfo, RowTypeInfo}
+import org.apache.flink.configuration.Configuration
+import org.apache.flink.streaming.api.functions.ProcessFunction
+import org.apache.flink.table.functions.{Accumulator, AggregateFunction}
+import org.apache.flink.types.Row
+import org.apache.flink.util.{Collector, Preconditions}
+
+/**
+ * Process Function for RANGE clause event-time bounded OVER window
+ *
+ * @param aggregates           the list of all [[AggregateFunction]] used for this aggregation
+ * @param aggFields            the position (in the input Row) of the input value for each
aggregate
+ * @param forwardedFieldCount  the count of forwarded fields.
+ * @param aggregationStateType the row type info of aggregation
+ * @param inputRowType         the row type info of input row
+ * @param precedingOffset      the preceding offset
+ */
+class RangeClauseBoundedOverProcessFunction(
+    private val aggregates: Array[AggregateFunction[_]],
+    private val aggFields: Array[Int],
+    private val forwardedFieldCount: Int,
+    private val aggregationStateType: RowTypeInfo,
+    private val inputRowType: RowTypeInfo,
+    private val precedingOffset: Long)
+  extends ProcessFunction[Row, Row] {
+
+  Preconditions.checkNotNull(aggregates)
+  Preconditions.checkNotNull(aggFields)
+  Preconditions.checkArgument(aggregates.length == aggFields.length)
+  Preconditions.checkNotNull(forwardedFieldCount)
+  Preconditions.checkNotNull(aggregationStateType)
+  Preconditions.checkNotNull(precedingOffset)
+
+  private var output: Row = _
+
+  // the state which keeps the last triggering timestamp
+  private var lastTriggeringTsState: ValueState[Long] = _
+
+  // the state which used to materialize the accumulator for incremental calculation
+  private var accumulatorState: ValueState[Row] = _
+
+  // the state which keeps all the data that are not expired.
+  // The first element (as the mapState key) of the tuple is the time stamp. Per each time
stamp,
+  // the second element of tuple is a list that contains the entire data of all the rows
belonging
+  // to this time stamp.
+  private var dataState: MapState[Long, JList[Row]] = _
+
+  override def open(config: Configuration) {
+
+    output = new Row(forwardedFieldCount + aggregates.length)
+
+    val lastTriggeringTsDescriptor: ValueStateDescriptor[Long] =
+      new ValueStateDescriptor[Long]("lastTriggeringTsState", classOf[Long])
+    lastTriggeringTsState = getRuntimeContext.getState(lastTriggeringTsDescriptor)
+
+    val accumulatorStateDescriptor =
+      new ValueStateDescriptor[Row]("accumulatorState", aggregationStateType)
+    accumulatorState = getRuntimeContext.getState(accumulatorStateDescriptor)
+
+    val keyTypeInformation: TypeInformation[Long] =
+      BasicTypeInfo.LONG_TYPE_INFO.asInstanceOf[TypeInformation[Long]]
+    val valueTypeInformation: TypeInformation[JList[Row]] = new ListTypeInfo[Row](inputRowType)
+
+    val mapStateDescriptor: MapStateDescriptor[Long, JList[Row]] =
+      new MapStateDescriptor[Long, JList[Row]](
+        "dataState",
+        keyTypeInformation,
+        valueTypeInformation)
+
+    dataState = getRuntimeContext.getMapState(mapStateDescriptor)
+
+  }
+
+  override def processElement(
+    input: Row,
+    ctx: ProcessFunction[Row, Row]#Context,
+    out: Collector[Row]): Unit = {
+
+    // triggering timestamp for trigger calculation
+    val triggeringTs = ctx.timestamp
+
+    val lastTriggeringTs = lastTriggeringTsState.value
+
+    // check if the data is expired, if not, save the data and register event time timer
+    if (triggeringTs > lastTriggeringTs) {
+      val data = dataState.get(triggeringTs)
+      if (null != data) {
+        data.add(input)
+        dataState.put(triggeringTs, data)
+      } else {
+        val data = new JArrayList[Row]
+        data.add(input)
+        dataState.put(triggeringTs, data)
+        // register event time timer
+        ctx.timerService.registerEventTimeTimer(triggeringTs)
+      }
+    }
+  }
+
+  override def onTimer(
+    timestamp: Long,
+    ctx: ProcessFunction[Row, Row]#OnTimerContext,
+    out: Collector[Row]): Unit = {
+    // gets all window data from state for the calculation
+    val inputs: JList[Row] = dataState.get(timestamp)
+
+    if (null != inputs) {
+
+      var accumulators = accumulatorState.value
+      var dataListIndex = 0
+      var aggregatesIndex = 0
+
+      // initialize when first run or failover recovery per key
+      if (null == accumulators) {
+        accumulators = new Row(aggregates.length)
+        aggregatesIndex = 0
+        while (aggregatesIndex < aggregates.length) {
+          accumulators.setField(aggregatesIndex, aggregates(aggregatesIndex).createAccumulator())
+          aggregatesIndex += 1
+        }
+      }
+
+      // keep up timestamps of retract data
+      val retractTsList: JList[Long] = new JArrayList[Long]
+
+      // do retraction
+      val dataTimestampIt = dataState.keys.iterator
+      while (dataTimestampIt.hasNext) {
+        val dataTs: Long = dataTimestampIt.next()
+        val offset = timestamp - dataTs
+        if (offset > precedingOffset) {
+          val retractDataList = dataState.get(dataTs)
+          dataListIndex = 0
+          while (dataListIndex < retractDataList.size()) {
+            aggregatesIndex = 0
+            while (aggregatesIndex < aggregates.length) {
+              val accumulator = accumulators.getField(aggregatesIndex).asInstanceOf[Accumulator]
+              aggregates(aggregatesIndex)
+                .retract(accumulator, retractDataList.get(dataListIndex)
+                .getField(aggFields(aggregatesIndex)))
+              aggregatesIndex += 1
+            }
+            dataListIndex += 1
+          }
+          retractTsList.add(dataTs)
+        }
+      }
+
+      // do accumulation
+      dataListIndex = 0
+      while (dataListIndex < inputs.size()) {
+        // accumulate current row
+        aggregatesIndex = 0
+        while (aggregatesIndex < aggregates.length) {
+          val accumulator = accumulators.getField(aggregatesIndex).asInstanceOf[Accumulator]
+          aggregates(aggregatesIndex).accumulate(accumulator, inputs.get(dataListIndex)
+            .getField(aggFields(aggregatesIndex)))
+          aggregatesIndex += 1
+        }
+        dataListIndex += 1
+      }
+
+      // set aggregate in output row
+      aggregatesIndex = 0
+      while (aggregatesIndex < aggregates.length) {
+        val index = forwardedFieldCount + aggregatesIndex
+        val accumulator = accumulators.getField(aggregatesIndex).asInstanceOf[Accumulator]
+        output.setField(index, aggregates(aggregatesIndex).getValue(accumulator))
+        aggregatesIndex += 1
+      }
+
+      // copy forwarded fields to output row and emit output row
+      dataListIndex = 0
+      while (dataListIndex < inputs.size()) {
+        aggregatesIndex = 0
+        while (aggregatesIndex < forwardedFieldCount) {
+          output.setField(aggregatesIndex, inputs.get(dataListIndex).getField(aggregatesIndex))
+          aggregatesIndex += 1
+        }
+        out.collect(output)
+        dataListIndex += 1
+      }
+
+      // remove the data that has been retracted
+      dataListIndex = 0
+      while (dataListIndex < retractTsList.size) {
+        dataState.remove(retractTsList.get(dataListIndex))
+        dataListIndex += 1
+      }
+
+      // update state
+      accumulatorState.update(accumulators)
+      lastTriggeringTsState.update(timestamp)
+    }
+  }
+}
+
+

http://git-wip-us.apache.org/repos/asf/flink/blob/d4665a00/flink-libraries/flink-table/src/test/scala/org/apache/flink/table/api/scala/stream/sql/SqlITCase.scala
----------------------------------------------------------------------
diff --git a/flink-libraries/flink-table/src/test/scala/org/apache/flink/table/api/scala/stream/sql/SqlITCase.scala
b/flink-libraries/flink-table/src/test/scala/org/apache/flink/table/api/scala/stream/sql/SqlITCase.scala
index 80ff42a..b8285a1 100644
--- a/flink-libraries/flink-table/src/test/scala/org/apache/flink/table/api/scala/stream/sql/SqlITCase.scala
+++ b/flink-libraries/flink-table/src/test/scala/org/apache/flink/table/api/scala/stream/sql/SqlITCase.scala
@@ -411,6 +411,150 @@ class SqlITCase extends StreamingWithStateTestBase {
     assertEquals(expected.sorted, StreamITCase.testResults.sorted)
   }
 
+  @Test
+  def testBoundPartitionedEventTimeWindowWithRange(): Unit = {
+    val data = Seq(
+      Left((1500L, (1L, 15, "Hello"))),
+      Left((1600L, (1L, 16, "Hello"))),
+      Left((1000L, (1L, 1, "Hello"))),
+      Left((2000L, (2L, 2, "Hello"))),
+      Right(1000L),
+      Left((2000L, (2L, 2, "Hello"))),
+      Left((2000L, (2L, 3, "Hello"))),
+      Left((3000L, (3L, 3, "Hello"))),
+      Right(2000L),
+      Left((4000L, (4L, 4, "Hello"))),
+      Right(3000L),
+      Left((5000L, (5L, 5, "Hello"))),
+      Right(5000L),
+      Left((6000L, (6L, 6, "Hello"))),
+      Left((6500L, (6L, 65, "Hello"))),
+      Right(7000L),
+      Left((9000L, (6L, 9, "Hello"))),
+      Left((9500L, (6L, 18, "Hello"))),
+      Left((9000L, (6L, 9, "Hello"))),
+      Right(10000L),
+      Left((10000L, (7L, 7, "Hello World"))),
+      Left((11000L, (7L, 17, "Hello World"))),
+      Left((11000L, (7L, 77, "Hello World"))),
+      Right(12000L),
+      Left((14000L, (7L, 18, "Hello World"))),
+      Right(14000L),
+      Left((15000L, (8L, 8, "Hello World"))),
+      Right(17000L),
+      Left((20000L, (20L, 20, "Hello World"))),
+      Right(19000L))
+
+    val env = StreamExecutionEnvironment.getExecutionEnvironment
+    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
+    env.setStateBackend(getStateBackend)
+    val tEnv = TableEnvironment.getTableEnvironment(env)
+    StreamITCase.clear
+
+    val t1 = env
+      .addSource[(Long, Int, String)](new EventTimeSourceFunction[(Long, Int, String)](data))
+      .toTable(tEnv).as('a, 'b, 'c)
+
+    tEnv.registerTable("T1", t1)
+
+    val sqlQuery = "SELECT " +
+      "c, b, " +
+      "count(a) OVER (PARTITION BY c ORDER BY RowTime() RANGE BETWEEN INTERVAL '1' SECOND
" +
+      "preceding AND CURRENT ROW)" +
+      ", sum(a) OVER (PARTITION BY c ORDER BY RowTime() RANGE BETWEEN INTERVAL '1' SECOND
" +
+      " preceding AND CURRENT ROW)" +
+      " from T1"
+
+    val result = tEnv.sql(sqlQuery).toDataStream[Row]
+    result.addSink(new StreamITCase.StringSink)
+    env.execute()
+
+    val expected = mutable.MutableList(
+      "Hello,1,1,1", "Hello,15,2,2", "Hello,16,3,3",
+      "Hello,2,6,9", "Hello,3,6,9","Hello,2,6,9",
+      "Hello,3,4,9",
+      "Hello,4,2,7",
+      "Hello,5,2,9",
+      "Hello,6,2,11","Hello,65,2,12",
+      "Hello,9,2,12","Hello,9,2,12","Hello,18,3,18",
+      "Hello World,7,1,7", "Hello World,17,3,21", "Hello World,77,3,21", "Hello World,18,1,7",
+      "Hello World,8,2,15",
+      "Hello World,20,1,20")
+    assertEquals(expected.sorted, StreamITCase.testResults.sorted)
+  }
+
+  @Test
+  def testBoundNonPartitionedEventTimeWindowWithRange(): Unit = {
+    val data = Seq(
+      Left((1500L, (1L, 15, "Hello"))),
+      Left((1600L, (1L, 16, "Hello"))),
+      Left((1000L, (1L, 1, "Hello"))),
+      Left((2000L, (2L, 2, "Hello"))),
+      Right(1000L),
+      Left((2000L, (2L, 2, "Hello"))),
+      Left((2000L, (2L, 3, "Hello"))),
+      Left((3000L, (3L, 3, "Hello"))),
+      Right(2000L),
+      Left((4000L, (4L, 4, "Hello"))),
+      Right(3000L),
+      Left((5000L, (5L, 5, "Hello"))),
+      Right(5000L),
+      Left((6000L, (6L, 6, "Hello"))),
+      Left((6500L, (6L, 65, "Hello"))),
+      Right(7000L),
+      Left((9000L, (6L, 9, "Hello"))),
+      Left((9500L, (6L, 18, "Hello"))),
+      Left((9000L, (6L, 9, "Hello"))),
+      Right(10000L),
+      Left((10000L, (7L, 7, "Hello World"))),
+      Left((11000L, (7L, 17, "Hello World"))),
+      Left((11000L, (7L, 77, "Hello World"))),
+      Right(12000L),
+      Left((14000L, (7L, 18, "Hello World"))),
+      Right(14000L),
+      Left((15000L, (8L, 8, "Hello World"))),
+      Right(17000L),
+      Left((20000L, (20L, 20, "Hello World"))),
+      Right(19000L))
+
+    val env = StreamExecutionEnvironment.getExecutionEnvironment
+    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
+    env.setStateBackend(getStateBackend)
+    val tEnv = TableEnvironment.getTableEnvironment(env)
+    StreamITCase.clear
+
+    val t1 = env
+      .addSource[(Long, Int, String)](new EventTimeSourceFunction[(Long, Int, String)](data))
+      .toTable(tEnv).as('a, 'b, 'c)
+
+    tEnv.registerTable("T1", t1)
+
+    val sqlQuery = "SELECT " +
+      "c, b, " +
+      "count(a) OVER (ORDER BY RowTime() RANGE BETWEEN INTERVAL '1' SECOND " +
+      "preceding AND CURRENT ROW)" +
+      ", sum(a) OVER (ORDER BY RowTime() RANGE BETWEEN INTERVAL '1' SECOND " +
+      " preceding AND CURRENT ROW)" +
+      " from T1"
+
+    val result = tEnv.sql(sqlQuery).toDataStream[Row]
+    result.addSink(new StreamITCase.StringSink)
+    env.execute()
+
+    val expected = mutable.MutableList(
+      "Hello,1,1,1", "Hello,15,2,2", "Hello,16,3,3",
+      "Hello,2,6,9", "Hello,3,6,9","Hello,2,6,9",
+      "Hello,3,4,9",
+      "Hello,4,2,7",
+      "Hello,5,2,9",
+      "Hello,6,2,11","Hello,65,2,12",
+      "Hello,9,2,12","Hello,9,2,12","Hello,18,3,18",
+      "Hello World,7,4,25", "Hello World,17,3,21", "Hello World,77,3,21", "Hello World,18,1,7",
+      "Hello World,8,2,15",
+      "Hello World,20,1,20")
+    assertEquals(expected.sorted, StreamITCase.testResults.sorted)
+  }
+
   /**
     *  All aggregates must be computed on the same window.
     */

http://git-wip-us.apache.org/repos/asf/flink/blob/d4665a00/flink-libraries/flink-table/src/test/scala/org/apache/flink/table/api/scala/stream/sql/WindowAggregateTest.scala
----------------------------------------------------------------------
diff --git a/flink-libraries/flink-table/src/test/scala/org/apache/flink/table/api/scala/stream/sql/WindowAggregateTest.scala
b/flink-libraries/flink-table/src/test/scala/org/apache/flink/table/api/scala/stream/sql/WindowAggregateTest.scala
index 7b8b2df..45d204a 100644
--- a/flink-libraries/flink-table/src/test/scala/org/apache/flink/table/api/scala/stream/sql/WindowAggregateTest.scala
+++ b/flink-libraries/flink-table/src/test/scala/org/apache/flink/table/api/scala/stream/sql/WindowAggregateTest.scala
@@ -350,4 +350,59 @@ class WindowAggregateTest extends TableTestBase {
     streamUtil.verifySql(sql, expected)
   }
 
+  @Test
+  def testBoundPartitionedRowTimeWindowWithRange() = {
+    val sql = "SELECT " +
+      "c, " +
+      "count(a) OVER (PARTITION BY c ORDER BY RowTime() " +
+      "RANGE BETWEEN INTERVAL '1' SECOND  preceding AND CURRENT ROW) as cnt1 " +
+      "from MyTable"
+
+    val expected =
+      unaryNode(
+        "DataStreamCalc",
+        unaryNode(
+          "DataStreamOverAggregate",
+          unaryNode(
+            "DataStreamCalc",
+            streamTableNode(0),
+            term("select", "a", "c", "ROWTIME() AS $2")
+          ),
+          term("partitionBy", "c"),
+          term("orderBy", "ROWTIME"),
+          term("range", "BETWEEN 1000 PRECEDING AND CURRENT ROW"),
+          term("select", "a", "c", "ROWTIME", "COUNT(a) AS w0$o0")
+        ),
+        term("select", "c", "w0$o0 AS $1")
+      )
+    streamUtil.verifySql(sql, expected)
+  }
+
+  @Test
+  def testBoundNonPartitionedRowTimeWindowWithRange() = {
+    val sql = "SELECT " +
+      "c, " +
+      "count(a) OVER (ORDER BY RowTime() " +
+      "RANGE BETWEEN INTERVAL '1' SECOND  preceding AND CURRENT ROW) as cnt1 " +
+      "from MyTable"
+
+    val expected =
+      unaryNode(
+        "DataStreamCalc",
+        unaryNode(
+          "DataStreamOverAggregate",
+          unaryNode(
+            "DataStreamCalc",
+            streamTableNode(0),
+            term("select", "a", "c", "ROWTIME() AS $2")
+          ),
+          term("orderBy", "ROWTIME"),
+          term("range", "BETWEEN 1000 PRECEDING AND CURRENT ROW"),
+          term("select", "a", "c", "ROWTIME", "COUNT(a) AS w0$o0")
+        ),
+        term("select", "c", "w0$o0 AS $1")
+      )
+    streamUtil.verifySql(sql, expected)
+  }
+
 }


Mime
View raw message