flex-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From ha...@apache.org
Subject [06/21] git commit: [flex-asjs] [refs/heads/develop] - Initial rename of graphics classes
Date Mon, 25 Jul 2016 10:09:24 GMT
http://git-wip-us.apache.org/repos/asf/flex-asjs/blob/7d529524/frameworks/projects/Graphics/src/main/flex/org/apache/flex/core/graphics/utils/MatrixUtil.as
----------------------------------------------------------------------
diff --git a/frameworks/projects/Graphics/src/main/flex/org/apache/flex/core/graphics/utils/MatrixUtil.as b/frameworks/projects/Graphics/src/main/flex/org/apache/flex/core/graphics/utils/MatrixUtil.as
deleted file mode 100644
index 04c2c13..0000000
--- a/frameworks/projects/Graphics/src/main/flex/org/apache/flex/core/graphics/utils/MatrixUtil.as
+++ /dev/null
@@ -1,1605 +0,0 @@
-////////////////////////////////////////////////////////////////////////////////
-//
-//  Licensed to the Apache Software Foundation (ASF) under one or more
-//  contributor license agreements.  See the NOTICE file distributed with
-//  this work for additional information regarding copyright ownership.
-//  The ASF licenses this file to You under the Apache License, Version 2.0
-//  (the "License"); you may not use this file except in compliance with
-//  the License.  You may obtain a copy of the License at
-//
-//      http://www.apache.org/licenses/LICENSE-2.0
-//
-//  Unless required by applicable law or agreed to in writing, software
-//  distributed under the License is distributed on an "AS IS" BASIS,
-//  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-//  See the License for the specific language governing permissions and
-//  limitations under the License.
-//
-////////////////////////////////////////////////////////////////////////////////
-
-package org.apache.flex.core.graphics.utils
-{
-	
-	import flash.display.DisplayObject;
-	import flash.geom.Matrix;
-	import flash.geom.Matrix3D;
-	import flash.geom.PerspectiveProjection;
-	import flash.geom.Point;
-	import flash.geom.Rectangle;
-	import flash.geom.Utils3D;
-	import flash.geom.Vector3D;
-	import flash.system.ApplicationDomain;
-	
-	/**
-	 *  @private
-	 *  The MatrixUtil class is for internal use only.
-	 *  Class for matrix and geometric related math routines.
-	 */
-	public final class MatrixUtil
-	{
-		
-		private static const RADIANS_PER_DEGREES:Number = Math.PI / 180;
-		private static var SOLUTION_TOLERANCE:Number = 0.1;
-		private static var MIN_MAX_TOLERANCE:Number = 0.1;
-		
-		private static var staticPoint:Point = new Point();
-		
-		// For use in getConcatenatedMatrix function
-		private static var fakeDollarParent:QName;
-		private static var uiComponentClass:Class;
-		private static var uiMovieClipClass:Class;
-		private static var usesMarshalling:Object;
-		private static var lastModuleFactory:Object;
-		private static var computedMatrixProperty:QName;
-		private static var $transformProperty:QName;
-		
-		//--------------------------------------------------------------------------
-		//
-		//  Class methods
-		//
-		//--------------------------------------------------------------------------
-		
-		/**
-		 *  Returns rotation value clamped between -180 and 180 degreeds.
-		 *  This mimicks the Flash player behavior. 
-		 */
-		public static function clampRotation(value:Number):Number
-		{
-			// Flash player doesn't handle values larger than 2^15 - 1 (FP-749).
-			if (value > 180 || value < -180)
-			{
-				value = value % 360;
-				
-				if (value > 180)
-					value = value - 360;
-				else if (value < -180)
-					value = value + 360;
-			}
-			return value;
-		}
-		
-		/**
-		 *  Returns a static Point object with the result.
-		 *  If matrix is null, point is untransformed. 
-		 */
-		public static function transformPoint(x:Number, y:Number, m:Matrix):Point
-		{
-			if (!m)
-			{
-				staticPoint.x = x;
-				staticPoint.y = y;
-				return staticPoint;
-			}
-			
-			staticPoint.x = m.a * x + m.c * y + m.tx;
-			staticPoint.y = m.b * x + m.d * y + m.ty;
-			return staticPoint;
-		}
-		
-		public static function composeMatrix(x:Number = 0,
-											 y:Number = 0,
-											 scaleX:Number = 1,
-											 scaleY:Number = 1,
-											 rotation:Number = 0,
-											 transformX:Number = 0,
-											 transformY:Number = 0):Matrix
-		{
-			var m:Matrix = new Matrix();
-			m.translate(-transformX, -transformY);
-			m.scale(scaleX, scaleY);
-			if (rotation != 0) 
-				m.rotate(rotation / 180 * Math.PI);
-			m.translate(transformX + x, transformY + y);
-			return m;
-		}
-		
-		/**
-		 *  Decompose a matrix into its component scale, rotation, and translation parts.
-		 *  The Vector of Numbers passed in the components parameter will be 
-		 *  populated by this function with the component parts. 
-		 * 
-		 *  @param components Vector which holds the component scale, rotation 
-		 *  and translation values.
-		 *  x = components[0]
-		 *  y = components[1]
-		 *  rotation = components[2]
-		 *  scaleX = components[3]
-		 *  scaleY = components[4]
-		 * 
-		 *  @param matrix The matrix to decompose
-		 *  @param transformX The x value of the transform center
-		 *  @param transformY The y value of the transform center
-		 */	
-		public static function decomposeMatrix(components:Vector.<Number>,
-											   matrix:Matrix,
-											   transformX:Number = 0,
-											   transformY:Number = 0):void
-		{
-			// else decompose matrix.  Don't use MatrixDecompose(), it can return erronous values
-			//   when negative scales (and therefore skews) are in use.
-			var Ux:Number;
-			var Uy:Number;
-			var Vx:Number;
-			var Vy:Number;
-			
-			Ux = matrix.a;
-			Uy = matrix.b;
-			components[3] = Math.sqrt(Ux*Ux + Uy*Uy);
-			
-			Vx = matrix.c;
-			Vy = matrix.d;
-			components[4] = Math.sqrt(Vx*Vx + Vy*Vy );
-			
-			// sign of the matrix determinant will tell us if the space is inverted by a 180 degree skew or not.
-			var determinant:Number = Ux*Vy - Uy*Vx;
-			if (determinant < 0) // if so, choose y-axis scale as the skewed one.  Unfortunately, its impossible to tell if it originally was the y or x axis that had the negative scale/skew.
-			{
-				components[4] = -(components[4]);
-				Vx = -Vx;
-				Vy = -Vy;
-			}
-			
-			components[2] = Math.atan2( Uy, Ux ) / RADIANS_PER_DEGREES;
-			
-			if (transformX != 0 || transformY != 0)     
-			{
-				var postTransformCenter:Point = matrix.transformPoint(new Point(transformX,transformY));
-				components[0] = postTransformCenter.x - transformX;
-				components[1] = postTransformCenter.y - transformY;
-			}
-			else
-			{
-				components[0] = matrix.tx;
-				components[1] = matrix.ty;
-			}
-		}
-		
-		/**
-		 *  @return Returns the union of <code>rect</code> and
-		 *  <code>Rectangle(left, top, right - left, bottom - top)</code>.
-		 *  Note that if rect is non-null, it will be updated to reflect the return value.
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */
-		public static function rectUnion(left:Number, top:Number, right:Number, bottom:Number,
-										 rect:Rectangle):Rectangle
-		{
-			if (!rect)
-				return new Rectangle(left, top, right - left, bottom - top);
-			
-			var minX:Number = Math.min(rect.left,   left);
-			var minY:Number = Math.min(rect.top,    top);
-			var maxX:Number = Math.max(rect.right,  right);
-			var maxY:Number = Math.max(rect.bottom, bottom);
-			
-			rect.x      = minX;
-			rect.y      = minY;
-			rect.width  = maxX - minX;
-			rect.height = maxY - minY;
-			return rect;
-		}
-		
-		/**
-		 *  Calculates the bounding box of a post-transformed ellipse.
-		 *   
-		 *  @param cx The x coordinate of the ellipse's center
-		 *  @param cy The y coordinate of the ellipse's center
-		 *  @param rx The horizontal radius of the ellipse
-		 *  @param ry The vertical radius of the ellipse
-		 *  @param matrix The transformation matrix.
-		 *  @param rect If non-null, rect will be updated to the union of rect and
-		 *  the segment bounding box.
-		 *  @return Returns the union of the passed in rect with the
-		 *  bounding box of the the post-transformed ellipse.
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */ 
-		public static function getEllipseBoundingBox(cx:Number, cy:Number,
-													 rx:Number, ry:Number,
-													 matrix:Matrix,
-													 rect:Rectangle = null):Rectangle
-		{
-			var a:Number = matrix.a;
-			var b:Number = matrix.b;
-			var c:Number = matrix.c;
-			var d:Number = matrix.d;
-			
-			// Ellipse can be represented by the following parametric equations:         
-			//
-			// (1) x = cx + rx * cos(t)
-			// (2) y = cy + ry * sin(t)
-			//
-			// After applying transformation with matrix m(a, c, b, d) we get:
-			//
-			// (3) x = a * cx + a * cos(t) * rx + c * cy + c * sin(t) * ry + m.tx
-			// (4) y = b * cx + b * cos(t) * rx + d * cy + d * sin(t) * ry + m.ty
-			//
-			// In (3) and (4) x and y are functions of a parameter t. To find the extremums we need
-			// to find where dx/dt and dy/dt reach zero:
-			//
-			// (5) dx/dt = - a * sin(t) * rx + c * cos(t) * ry
-			// (6) dy/dt = - b * sin(t) * rx + d * cos(t) * ry
-			// (7) dx/dt = 0 <=> sin(t) / cos(t) = (c * ry) / (a * rx);   
-			// (8) dy/dt = 0 <=> sin(t) / cos(t) = (d * ry) / (b * rx);
-			
-			if (rx == 0 && ry == 0)
-			{
-				var pt:Point = new Point(cx, cy);
-				pt = matrix.transformPoint(pt);
-				return rectUnion(pt.x, pt.y, pt.x, pt.y, rect);
-			}
-			
-			var t:Number;
-			var t1:Number;
-			
-			if (a * rx == 0)
-				t = Math.PI / 2;
-			else
-				t = Math.atan((c * ry) / (a * rx));
-			
-			if (b * rx == 0)
-				t1 = Math.PI / 2;
-			else
-				t1 = Math.atan((d * ry) / (b * rx));            
-			
-			var x1:Number = a * Math.cos(t) * rx + c * Math.sin(t) * ry;             
-			var x2:Number = -x1;
-			x1 += a * cx + c * cy + matrix.tx;
-			x2 += a * cx + c * cy + matrix.tx;
-			
-			var y1:Number = b * Math.cos(t1) * rx + d * Math.sin(t1) * ry;             
-			var y2:Number = -y1;
-			y1 += b * cx + d * cy + matrix.ty;
-			y2 += b * cx + d * cy + matrix.ty;
-			
-			return rectUnion(Math.min(x1, x2), Math.min(y1, y2), Math.max(x1, x2), Math.max(y1, y2), rect); 
-		}
-		
-		/**
-		 *  @param x0 x coordinate of the first control point
-		 *  @param y0 y coordinate of the first control point
-		 *  @param x1 x coordinate of the second control point
-		 *  @param y1 y coordinate of the second control point
-		 *  @param x2 x coordinate of the third control point
-		 *  @param y2 y coordinate of the third control point
-		 *  @param sx The pre-transform scale factor for x coordinates.
-		 *  @param sy The pre-transform scale factor for y coordinates.
-		 *  @param matrix The transformation matrix. Can be null for identity transformation.
-		 *  @param rect If non-null, rect will be updated to the union of rect and
-		 *  the segment bounding box.
-		 *  @return Returns the union of the post-transformed quadratic
-		 *  bezier segment's axis aligned bounding box and the passed in rect.
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */	
-		static public function getQBezierSegmentBBox(x0:Number, y0:Number,
-													 x1:Number, y1:Number,
-													 x2:Number, y2:Number,
-													 sx:Number, sy:Number,
-													 matrix:Matrix,
-													 rect:Rectangle):Rectangle
-		{
-			var pt:Point;
-			pt = MatrixUtil.transformPoint(x0 * sx, y0 * sy, matrix);
-			x0 = pt.x;
-			y0 = pt.y;
-			
-			pt = MatrixUtil.transformPoint(x1 * sx, y1 * sy, matrix);
-			x1 = pt.x;
-			y1 = pt.y;
-			
-			pt = MatrixUtil.transformPoint(x2 * sx, y2 * sy, matrix);
-			x2 = pt.x;
-			y2 = pt.y;
-			
-			var minX:Number = Math.min(x0, x2);
-			var maxX:Number = Math.max(x0, x2);
-			
-			var minY:Number = Math.min(y0, y2);
-			var maxY:Number = Math.max(y0, y2);
-			
-			var txDiv:Number = x0 - 2 * x1 + x2;
-			if (txDiv != 0)
-			{
-				var tx:Number = (x0 - x1) / txDiv;
-				if (0 <= tx && tx <= 1)
-				{
-					var x:Number = (1 - tx) * (1 - tx) * x0 + 2 * tx * (1 - tx) * x1 + tx * tx * x2;
-					minX = Math.min(x, minX);
-					maxX = Math.max(x, maxX);
-				}  
-			}
-			
-			var tyDiv:Number = y0 - 2 * y1 + y2;
-			if (tyDiv != 0)
-			{
-				var ty:Number = (y0 - y1) / tyDiv;
-				if (0 <= ty && ty <= 1)
-				{
-					var y:Number = (1 - ty) * (1 - ty) * y0 + 2 * ty * (1 - ty) * y1 + ty * ty * y2;
-					minY = Math.min(y, minY);
-					maxY = Math.max(y, maxY);
-				}  
-			}
-			
-			return rectUnion(minX, minY, maxX, maxY, rect);
-		}
-		
-		/**
-		 *  @param width The width of the bounds to be transformed.
-		 *  @param height The height of the bounds to be transformed.
-		 *  @param matrix The transfomration matrix. 
-		 *  
-		 *  @param vec If vec is non-null it will be set to the vector from the
-		 *  transformed bounds top left to the untransformed bounds top left
-		 *  in the coordinate space defined by <code>matrix</code>.
-		 *  This is useful if you want to align the transformed bounds to x,y
-		 *  by modifying the object's position. Moving the object by
-		 *  <code>x + vec.x</code> and <code>y + vec.y</code> respectively
-		 *  will offset the transformed bounds top left corner by x,y.
-		 *
-		 *  @return Returns the transformed bounds. Note that the Point object returned will be reused
-		 *  by other MatrixUtil methods.
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */
-		public static function transformSize(width:Number, height:Number, matrix:Matrix):Point
-		{
-			const a:Number = matrix.a;
-			const b:Number = matrix.b;
-			const c:Number = matrix.c;
-			const d:Number = matrix.d;
-			
-			// transform point (0,0)
-			var x1:Number = 0;
-			var y1:Number = 0;
-			
-			// transform point (width, 0)
-			var x2:Number = width * a;
-			var y2:Number = width * b;
-			
-			// transform point (0, height)
-			var x3:Number = height * c;
-			var y3:Number = height * d;
-			
-			// transform point (width, height)
-			var x4:Number = x2 + x3;
-			var y4:Number = y2 + y3;
-			
-			var minX:Number = Math.min(Math.min(x1, x2), Math.min(x3, x4));
-			var maxX:Number = Math.max(Math.max(x1, x2), Math.max(x3, x4));
-			var minY:Number = Math.min(Math.min(y1, y2), Math.min(y3, y4));
-			var maxY:Number = Math.max(Math.max(y1, y2), Math.max(y3, y4));
-			
-			staticPoint.x = maxX - minX;
-			staticPoint.y = maxY - minY;
-			return staticPoint;
-		}
-		
-		/**
-		 *  @param width The width of the bounds to be transformed.
-		 *  @param height The height of the bounds to be transformed.
-		 *  @param matrix The transfomration matrix.
-		 *  
-		 *  @param topleft If topLeft is non-null it will be used as the origin of the bounds
-		 *  rectangle to be transformed.  On return, it will be set to the top left of the rectangle
-		 *  after transformation.
-		 *
-		 *  @return Returns the transformed width and height. Note that the Point object returned will be reused
-		 *  by other MatrixUtil methods.
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */
-		public static function transformBounds(width:Number, height:Number, matrix:Matrix, topLeft:Point = null):Point
-		{
-			const a:Number = matrix.a;
-			const b:Number = matrix.b;
-			const c:Number = matrix.c;
-			const d:Number = matrix.d;
-			
-			// transform point (0,0)
-			var x1:Number = 0;
-			var y1:Number = 0;
-			
-			// transform point (width, 0)
-			var x2:Number = width * a;
-			var y2:Number = width * b;
-			
-			// transform point (0, height)
-			var x3:Number = height * c;
-			var y3:Number = height * d;
-			
-			// transform point (width, height)
-			var x4:Number = x2 + x3;
-			var y4:Number = y2 + y3;
-			
-			var minX:Number = Math.min(Math.min(x1, x2), Math.min(x3, x4));
-			var maxX:Number = Math.max(Math.max(x1, x2), Math.max(x3, x4));
-			var minY:Number = Math.min(Math.min(y1, y2), Math.min(y3, y4));
-			var maxY:Number = Math.max(Math.max(y1, y2), Math.max(y3, y4));
-			
-			staticPoint.x = maxX - minX;
-			staticPoint.y = maxY - minY;
-			
-			if (topLeft)
-			{
-				const tx:Number = matrix.tx;
-				const ty:Number = matrix.ty;
-				const x:Number = topLeft.x;
-				const y:Number = topLeft.y;
-				
-				topLeft.x = minX + a * x + b * y + tx;
-				topLeft.y = minY + c * x + d * y + ty;
-			}
-			return staticPoint;
-		}
-		
-		/**
-		 *  Returns the axis aligned bounding box <code>bounds</code> transformed
-		 *  with <code>matrix</code> and then projected with <code>projection</code>.
-		 * 
-		 *  @param bounds The bounds, in child coordinates, to be transformed and projected.
-		 *  @param matrix <p>The transformation matrix. Note that the method will clobber the
-		 *  original matrix values.</p>
-		 *  @param projection The projection.
-		 *  @return Returns the <code>bounds</code> parameter that has been updated with the
-		 *  transformed and projected bounds.
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */
-		public static function projectBounds(bounds:Rectangle,
-											 matrix:Matrix3D, 
-											 projection:PerspectiveProjection):Rectangle
-		{
-			// Setup the matrix
-			var centerX:Number = projection.projectionCenter.x;
-			var centerY:Number = projection.projectionCenter.y;
-			matrix.appendTranslation(-centerX, -centerY, projection.focalLength);
-			matrix.append(projection.toMatrix3D());
-			
-			// Project the corner points
-			var pt1:Vector3D = new Vector3D(bounds.left, bounds.top, 0); 
-			var pt2:Vector3D = new Vector3D(bounds.right, bounds.top, 0) 
-			var pt3:Vector3D = new Vector3D(bounds.left, bounds.bottom, 0);
-			var pt4:Vector3D = new Vector3D(bounds.right, bounds.bottom, 0);
-			pt1 = Utils3D.projectVector(matrix, pt1);
-			pt2 = Utils3D.projectVector(matrix, pt2);
-			pt3 = Utils3D.projectVector(matrix, pt3);
-			pt4 = Utils3D.projectVector(matrix, pt4);
-			
-			// Find the bounding box in 2D
-			var maxX:Number = Math.max(Math.max(pt1.x, pt2.x), Math.max(pt3.x, pt4.x));
-			var minX:Number = Math.min(Math.min(pt1.x, pt2.x), Math.min(pt3.x, pt4.x));
-			var maxY:Number = Math.max(Math.max(pt1.y, pt2.y), Math.max(pt3.y, pt4.y));
-			var minY:Number = Math.min(Math.min(pt1.y, pt2.y), Math.min(pt3.y, pt4.y));
-			
-			// Add back the projection center
-			bounds.x = minX + centerX;
-			bounds.y = minY + centerY;
-			bounds.width = maxX - minX;
-			bounds.height = maxY - minY;
-			return bounds;
-		}
-		
-		/**
-		 *  @param matrix
-		 *  @return Returns true when <code>pt == matrix.DeltaTransformPoint(pt)</code>
-		 *  for any <code>pt:Point</code> (<code>matrix</code> is identity matrix,
-		 *  when disregarding the translation part).   
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */
-		public static function isDeltaIdentity(matrix:Matrix):Boolean
-		{
-			return (matrix.a == 1 && matrix.d == 1 &&
-				matrix.b == 0 && matrix.c == 0);
-		}
-		
-		/**
-		 *  <code>fitBounds</code> Calculates a size (x,y) for a bounding box (0,0,x,y)
-		 *  such that the bounding box transformed with <code>matrix</code> will fit
-		 *  into (0,0,width,height).
-		 *  
-		 *  @param width This is the width of the bounding box that calculated size
-		 *  needs to fit in.
-		 * 
-		 *  @param height This is the height of the bounding box that the calculated
-		 *  size needs to fit in.
-		 * 
-		 *  @param matrix This defines the transformations that the function will take
-		 *  into account when calculating the size. The bounding box (0,0,x,y) of the
-		 *  calculated size (x,y) transformed with <code>matrix</code> will fit in the
-		 *  specified <code>width</code> and <code>height</code>.
-		 * 
-		 *  @param explicitWidth Explicit width for the calculated size. The function
-		 *  will first try to find a solution using this width.
-		 * 
-		 *  @param explicitHeight Preferred height for the calculated size. The function
-		 *  will first try to find a solution using this height.
-		 * 
-		 *  @param preferredWidth Preferred width for the calculated size. If possible
-		 *  the function will set the calculated size width to this value.
-		 * 
-		 *  @param preferredHeight Preferred height for the calculated size. If possible
-		 *  the function will set the calculated size height to this value.
-		 * 
-		 *  @param minWidth The minimum allowed value for the calculated size width.
-		 * 
-		 *  @param minHeight The minimum allowed value for the calculated size height.
-		 * 
-		 *  @param maxWidth The maximum allowed value for the calculated size width.
-		 * 
-		 *  @param maxHeight The maximum allowed value for the calculated size height.
-		 * 
-		 *  @return Returns the size (x,y) such that the bounding box (0,0,x,y) will
-		 *  fit into (0,0,width,height) after transformation with <code>matrix</code>.
-		 *  Returns null if there is no possible solution.
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */ 
-		public static function fitBounds(width:Number, height:Number, matrix:Matrix,
-										 explicitWidth:Number, explicitHeight:Number,
-										 preferredWidth:Number, preferredHeight:Number,
-										 minWidth:Number, minHeight:Number,
-										 maxWidth:Number, maxHeight:Number):Point
-		{
-			if (isNaN(width) && isNaN(height))
-				return new Point(preferredWidth, preferredHeight);
-			
-			// Allow for precision errors by including tolerance for certain values.
-			const newMinWidth:Number = (minWidth < MIN_MAX_TOLERANCE) ? 0 : minWidth - MIN_MAX_TOLERANCE;
-			const newMinHeight:Number = (minHeight < MIN_MAX_TOLERANCE) ? 0 : minHeight - MIN_MAX_TOLERANCE;
-			const newMaxWidth:Number = maxWidth + MIN_MAX_TOLERANCE;
-			const newMaxHeight:Number = maxHeight + MIN_MAX_TOLERANCE;
-			
-			var actualSize:Point;
-			
-			if (!isNaN(width) && !isNaN(height))
-			{
-				actualSize = calcUBoundsToFitTBounds(width, height, matrix,
-					newMinWidth, newMinHeight, 
-					newMaxWidth, newMaxHeight); 
-				
-				// If we couldn't fit in both dimensions, try to fit only one and
-				// don't stick out of the other
-				if (!actualSize)
-				{
-					var actualSize1:Point;
-					actualSize1 = fitTBoundsWidth(width, matrix,
-						explicitWidth, explicitHeight,
-						preferredWidth, preferredHeight,
-						newMinWidth, newMinHeight, 
-						newMaxWidth, newMaxHeight);
-					
-					// If we fit the width, but not the height.
-					if (actualSize1)
-					{
-						var fitHeight:Number = transformSize(actualSize1.x, actualSize1.y, matrix).y;
-						if (fitHeight - SOLUTION_TOLERANCE > height)
-							actualSize1 = null;
-					}
-					
-					var actualSize2:Point
-					actualSize2 = fitTBoundsHeight(height, matrix,
-						explicitWidth, explicitHeight,
-						preferredWidth, preferredHeight,
-						newMinWidth, newMinHeight, 
-						newMaxWidth, newMaxHeight); 
-					
-					// If we fit the height, but not the width
-					if (actualSize2)
-					{
-						var fitWidth:Number = transformSize(actualSize2.x, actualSize2.y, matrix).x;
-						if (fitWidth - SOLUTION_TOLERANCE > width)
-							actualSize2 = null;
-					}
-					
-					if (actualSize1 && actualSize2)
-					{
-						// Pick a solution
-						actualSize = ((actualSize1.x * actualSize1.y) > (actualSize2.x * actualSize2.y)) ? actualSize1 : actualSize2;
-					}
-					else if (actualSize1)
-					{
-						actualSize = actualSize1;
-					}
-					else
-					{
-						actualSize = actualSize2;
-					}
-				}
-				return actualSize;
-			}
-			else if (!isNaN(width))
-			{
-				return fitTBoundsWidth(width, matrix,
-					explicitWidth, explicitHeight,
-					preferredWidth, preferredHeight,
-					newMinWidth, newMinHeight, 
-					newMaxWidth, newMaxHeight); 
-			}
-			else
-			{
-				return fitTBoundsHeight(height, matrix,
-					explicitWidth, explicitHeight,
-					preferredWidth, preferredHeight,
-					newMinWidth, newMinHeight, 
-					newMaxWidth, newMaxHeight); 
-			}
-		}
-		
-		/**
-		 *  @private
-		 * 
-		 *  <code>fitTBoundsWidth</code> Calculates a size (x,y) for a bounding box (0,0,x,y)
-		 *  such that the bounding box transformed with <code>matrix</code> will fit
-		 *  into the specified width.
-		 *  
-		 *  @param width This is the width of the bounding box that calculated size
-		 *  needs to fit in.
-		 * 
-		 *  @param matrix This defines the transformations that the function will take
-		 *  into account when calculating the size. The bounding box (0,0,x,y) of the
-		 *  calculated size (x,y) transformed with <code>matrix</code> will fit in the
-		 *  specified <code>width</code> and <code>height</code>.
-		 * 
-		 *  @param explicitWidth Explicit width for the calculated size. The function
-		 *  will first try to find a solution using this width.
-		 * 
-		 *  @param explicitHeight Preferred height for the calculated size. The function
-		 *  will first try to find a solution using this height.
-		 * 
-		 *  @param preferredWidth Preferred width for the calculated size. If possible
-		 *  the function will set the calculated size width to this value.
-		 * 
-		 *  @param preferredHeight Preferred height for the calculated size. If possible
-		 *  the function will set the calculated size height to this value.
-		 * 
-		 *  @param minWidth The minimum allowed value for the calculated size width.
-		 * 
-		 *  @param minHeight The minimum allowed value for the calculated size height.
-		 * 
-		 *  @param maxWidth The maximum allowed value for the calculated size width.
-		 * 
-		 *  @param maxHeight The maximum allowed value for the calculated size height.
-		 * 
-		 *  @return Returns the size (x,y) such that the bounding box (0,0,x,y) will
-		 *  fit into (0,0,width,height) after transformation with <code>matrix</code>.
-		 *  Returns null if there is no possible solution.
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */    
-		private static function fitTBoundsWidth(width:Number, matrix:Matrix,
-												explicitWidth:Number, explicitHeight:Number,
-												preferredWidth:Number, preferredHeight:Number,
-												minWidth:Number, minHeight:Number,
-												maxWidth:Number, maxHeight:Number):Point
-		{
-			var actualSize:Point;
-			
-			// cases 1 and 2: only explicit width or explicit height is specified,
-			// so we try to find a solution with that hard constraint.
-			if (!isNaN(explicitWidth) && isNaN(explicitHeight))
-			{
-				actualSize = calcUBoundsToFitTBoundsWidth(width, matrix,
-					explicitWidth, preferredHeight, 
-					explicitWidth, minHeight, 
-					explicitWidth, maxHeight);
-				
-				if (actualSize)
-					return actualSize;
-			}
-			else if (isNaN(explicitWidth) && !isNaN(explicitHeight))
-			{
-				actualSize = calcUBoundsToFitTBoundsWidth(width, matrix,
-					preferredWidth, explicitHeight, 
-					minWidth, explicitHeight, 
-					maxWidth, explicitHeight);
-				if (actualSize)
-					return actualSize;
-			}
-			
-			// case 3: default case. When explicitWidth, explicitHeight are both set
-			// or not set, we use the preferred size since calcUBoundsToFitTBoundsWidth
-			// will just pick one.
-			actualSize = calcUBoundsToFitTBoundsWidth(width, matrix,
-				preferredWidth, preferredHeight, 
-				minWidth, minHeight, 
-				maxWidth, maxHeight);
-			
-			return actualSize;
-		}
-		
-		/**
-		 *  @private
-		 * 
-		 *  <code>fitTBoundsWidth</code> Calculates a size (x,y) for a bounding box (0,0,x,y)
-		 *  such that the bounding box transformed with <code>matrix</code> will fit
-		 *  into the specified height.
-		 *  
-		 *  @param height This is the height of the bounding box that the calculated
-		 *  size needs to fit in.
-		 * 
-		 *  @param matrix This defines the transformations that the function will take
-		 *  into account when calculating the size. The bounding box (0,0,x,y) of the
-		 *  calculated size (x,y) transformed with <code>matrix</code> will fit in the
-		 *  specified <code>width</code> and <code>height</code>.
-		 * 
-		 *  @param explicitWidth Explicit width for the calculated size. The function
-		 *  will first try to find a solution using this width.
-		 * 
-		 *  @param explicitHeight Preferred height for the calculated size. The function
-		 *  will first try to find a solution using this height.
-		 * 
-		 *  @param preferredWidth Preferred width for the calculated size. If possible
-		 *  the function will set the calculated size width to this value.
-		 * 
-		 *  @param preferredHeight Preferred height for the calculated size. If possible
-		 *  the function will set the calculated size height to this value.
-		 * 
-		 *  @param minWidth The minimum allowed value for the calculated size width.
-		 * 
-		 *  @param minHeight The minimum allowed value for the calculated size height.
-		 * 
-		 *  @param maxWidth The maximum allowed value for the calculated size width.
-		 * 
-		 *  @param maxHeight The maximum allowed value for the calculated size height.
-		 * 
-		 *  @return Returns the size (x,y) such that the bounding box (0,0,x,y) will
-		 *  fit into (0,0,width,height) after transformation with <code>matrix</code>.
-		 *  Returns null if there is no possible solution.
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */    
-		private static function fitTBoundsHeight(height:Number, matrix:Matrix,
-												 explicitWidth:Number, explicitHeight:Number,
-												 preferredWidth:Number, preferredHeight:Number,
-												 minWidth:Number, minHeight:Number,
-												 maxWidth:Number, maxHeight:Number):Point
-		{
-			var actualSize:Point;
-			
-			// cases 1 and 2: only explicit width or explicit height is specified,
-			// so we try to find a solution with that hard constraint.
-			if (!isNaN(explicitWidth) && isNaN(explicitHeight))
-			{
-				actualSize = calcUBoundsToFitTBoundsHeight(height, matrix,
-					explicitWidth, preferredHeight, 
-					explicitWidth, minHeight, 
-					explicitWidth, maxHeight);
-				
-				if (actualSize)
-					return actualSize;
-			}
-			else if (isNaN(explicitWidth) && !isNaN(explicitHeight))
-			{
-				actualSize = calcUBoundsToFitTBoundsHeight(height, matrix,
-					preferredWidth, explicitHeight, 
-					minWidth, explicitHeight, 
-					maxWidth, explicitHeight);
-				if (actualSize)
-					return actualSize;
-			}
-			
-			// case 3: default case. When explicitWidth, explicitHeight are both set
-			// or not set, we use the preferred size since calcUBoundsToFitTBoundsWidth
-			// will just pick one.
-			actualSize = calcUBoundsToFitTBoundsHeight(height, matrix,
-				preferredWidth, preferredHeight, 
-				minWidth, minHeight, 
-				maxWidth, maxHeight);
-			
-			return actualSize;
-		}
-		
-		/**
-		 *  Calculates (x,y) such that the bounding box (0,0,x,y) transformed
-		 *  with <code>matrix</code> will have bounding box with
-		 *  height equal to <code>h</code>.
-		 *  x and y are restricted by <code>minX</code>, <code>maxX</code> and
-		 *  <code>minY</code>, <code>maxY</code>.
-		 *
-		 *  If possible x will be set to <code>preferredX</code> or
-		 *  y will be set to <code>preferredY</code>.
-		 *  
-		 *  When there are multiple solutions, the function picks the one that
-		 *  minimizes the bounding box area of transformed (0,0,x,y).
-		 * 
-		 *  The functon assumes <code>minX >= 0</code> and <code>minY >= 0</code>
-		 *  (solution components x and y are non-negative).
-		 *  
-		 *  @return Returns Point(x,y) or null if no solution exists. 
-		 * 
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */        
-		static public function calcUBoundsToFitTBoundsHeight(h:Number,
-															 matrix:Matrix,
-															 preferredX:Number,
-															 preferredY:Number,
-															 minX:Number,
-															 minY:Number,
-															 maxX:Number, 
-															 maxY:Number):Point
-		{
-			// Untransformed bounds size is (x,y). The corners of the untransformed
-			// bounding box are p1(0,0) p2(x,0) p3(0,y) p4(x,y).
-			// Matrix is | a c tx |
-			//           | b d ty |
-			//
-			// After transfomation with the matrix those four points are:
-			// t1 = (0, 0)              = matrix.deltaTransformPoint(p1)
-			// t2 = (ax, bx)            = matrix.deltaTransformPoint(p2)
-			// t3 = (cy, dy)            = matrix.deltaTransformPoint(p3)
-			// t4 = (ax + cy, cx + dy)  = matrix.deltaTransformPoint(p4)
-			//
-			// The transformed bounds bounding box dimensions are (w,h):
-			// (1) w = max( t1.x, t2.x, t3.x, t4.x ) - min( t1.x, t2.x, t3.x, t4.x)
-			// (2) h = max( t1.y, t2.y, t3.y, t4.y ) - min( t1.y, t2.y, t3.y, t4.y)
-			//
-			// Looking at all the possible cases for min and max functions above,
-			// we can construct and solve simple linear systems for x and y.
-			// For example in the case of
-			// t1.x <= t2.x <= t3.x <= t4.x
-			// our first equation is
-			// (1) w = t4.x - t1.x <==> w = ax + cy
-			//
-			// To minimize the cases we're looking at we can take advantage of
-			// the limits we have: x >= 0, y >= 0;
-			// Taking into account these limits we deduce that:
-			// a*c >= 0  gives us (1) w = abs( t4.x - t1.x ) = abs( ax + cy )
-			// a*c <  0  gives us (1) w = abs( t2.x - t3.x ) = abs( ax - cy )
-			// b*d >= 0  gives us (2) h = abs( t4.y - t1.y ) = abs( bx + dy )
-			// b*d <  0  gives us (2) h = abs( t2.y - t3.y ) = abs( bx - dy )
-			//
-			// If we do a substitution such that
-			// c1 = a*c >= 0 ? c : -c
-			// d1 = b*d >= 0 ? d : -d
-			// we get the following linear system:
-			// (1) w = abs( ax + c1y )
-			// (2) h = abs( bx + d1y )
-			//
-			// Since we're matching height we only care about (2) 
-			
-			var b:Number = matrix.b;
-			var d:Number = matrix.d;
-			
-			// If components are very close to zero, zero them out to handle the special cases
-			if (-1.0e-9 < b && b < +1.0e-9)
-				b = 0;
-			if (-1.0e-9 < d && d < +1.0e-9)
-				d = 0;
-			
-			if (b == 0 && d == 0)
-				return null; // No solution
-			
-			// Handle special cases first
-			if (b == 0 && d == 0)
-				return null; // No solution
-			
-			if (b == 0)
-				return new Point( preferredX, h / Math.abs(d) );               
-			else if (d == 0)
-				return new Point( h / Math.abs(b), preferredY );    
-			
-			const d1:Number = (b*d >= 0) ? d : -d;
-			// Now we have the following linear sytesm:
-			// (1) x = preferredX or y = preferredY
-			// (2) h = abs( bx + d1y )
-			
-			var s:Point;
-			var x:Number;
-			var y:Number;
-			
-			if (d1 != 0 && preferredX > 0)
-			{
-				const invD1:Number = 1 / d1;
-				preferredX = Math.max(minX, Math.min(maxX, preferredX));
-				x = preferredX;
-				
-				// Case1:
-				// bx + d1y >= 0
-				// x = preferredX
-				y = (h - b * x) * invD1;
-				if (minY <= y && y <= maxY &&
-					b * x + d1 * y >= 0 ) // Satisfy Case1
-				{
-					s = new Point(x, y);
-				}
-				
-				// Case2:
-				// bx + d1y < 0
-				// x = preferredX
-				y = (-h - b * x) * invD1;
-				if (minY <= y && y <= maxY &&
-					b * x + d1 * y < 0 ) // Satisfy Case2
-				{
-					// If there is no solution, or the new solution yields smaller value, pick the new solution.
-					if (!s || transformSize(s.x, s.y, matrix).x > transformSize(x, y, matrix).x)
-						s = new Point(x, y);
-				}
-			}
-			
-			if (b != 0 && preferredY > 0)
-			{
-				const invB:Number = 1 / b;
-				preferredY = Math.max(minY, Math.min(maxY, preferredY));
-				y = preferredY;
-				
-				// Case3:
-				// bx + d1y >= 0
-				// y = preferredY
-				x = ( h - d1 * y ) * invB;
-				if (minX <= x && x <= maxX &&
-					b * x + d1 * y >= 0) // Satisfy Case3
-				{
-					// If there is no solution, or the new solution yields smaller value, pick the new solution.
-					if (!s || transformSize(s.x, s.y, matrix).x > transformSize(x, y, matrix).x)
-						s = new Point(x, y);
-				}
-				
-				// Case4:
-				// bx + d1y < 0
-				// y = preferredY
-				x = ( -h - d1 * y ) * invB;
-				if (minX <= x && x <= maxX &&
-					b * x + d1 * y < 0) // Satisfy Case4
-				{
-					// If there is no solution, or the new solution yields smaller value, pick the new solution.
-					if (!s || transformSize(s.x, s.y, matrix).x > transformSize(x, y, matrix).x)
-						s = new Point(x, y);
-				}
-			}
-			
-			// If there's already a solution that matches preferred dimention, return
-			if (s)
-				return s;
-			
-			// Find a solution that matches the width and minimizes the height: 
-			const a:Number = matrix.a;
-			const c:Number = matrix.c;
-			const c1:Number = ( a*c >= 0 ) ? c : -c;
-			return solveEquation(b, d1, h, minX, minY, maxX, maxY, a, c1);
-		}
-		
-		/**
-		 *  Calculates (x,y) such that the bounding box (0,0,x,y) transformed
-		 *  with <code>matrix</code> will have bounding box with
-		 *  width equal to <code>w</code>.
-		 *  x and y are restricted by <code>minX</code>, <code>maxX</code> and
-		 *  <code>minY</code>, <code>maxY</code>.
-		 *
-		 *  If possible x will be set to <code>preferredX</code> or
-		 *  y will be set to <code>preferredY</code>.
-		 *  
-		 *  When there are multiple solutions, the function picks the one that
-		 *  minimizes the bounding box area of transformed (0,0,x,y).
-		 * 
-		 *  The functon assumes <code>minX >= 0</code> and <code>minY >= 0</code>
-		 *  (solution components x and y are non-negative).
-		 *  
-		 *  @return Returns Point(x,y) or null if no solution exists. 
-		 * 
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */        
-		static public function calcUBoundsToFitTBoundsWidth(w:Number,
-															matrix:Matrix,
-															preferredX:Number,
-															preferredY:Number,
-															minX:Number,
-															minY:Number,
-															maxX:Number,
-															maxY:Number):Point
-		{
-			// Untransformed bounds size is (x,y). The corners of the untransformed
-			// bounding box are p1(0,0) p2(x,0) p3(0,y) p4(x,y).
-			// Matrix is | a c tx |
-			//           | b d ty |
-			//
-			// After transfomation with the matrix those four points are:
-			// t1 = (0, 0)              = matrix.deltaTransformPoint(p1)
-			// t2 = (ax, bx)            = matrix.deltaTransformPoint(p2)
-			// t3 = (cy, dy)            = matrix.deltaTransformPoint(p3)
-			// t4 = (ax + cy, cx + dy)  = matrix.deltaTransformPoint(p4)
-			//
-			// The transformed bounds bounding box dimensions are (w,h):
-			// (1) w = max( t1.x, t2.x, t3.x, t4.x ) - min( t1.x, t2.x, t3.x, t4.x)
-			// (2) h = max( t1.y, t2.y, t3.y, t4.y ) - min( t1.y, t2.y, t3.y, t4.y)
-			//
-			// Looking at all the possible cases for min and max functions above,
-			// we can construct and solve simple linear systems for x and y.
-			// For example in the case of
-			// t1.x <= t2.x <= t3.x <= t4.x
-			// our first equation is
-			// (1) w = t4.x - t1.x <==> w = ax + cy
-			//
-			// To minimize the cases we're looking at we can take advantage of
-			// the limits we have: x >= 0, y >= 0;
-			// Taking into account these limits we deduce that:
-			// a*c >= 0  gives us (1) w = abs( t4.x - t1.x ) = abs( ax + cy )
-			// a*c <  0  gives us (1) w = abs( t2.x - t3.x ) = abs( ax - cy )
-			// b*d >= 0  gives us (2) h = abs( t4.y - t1.y ) = abs( bx + dy )
-			// b*d <  0  gives us (2) h = abs( t2.y - t3.y ) = abs( bx - dy )
-			//
-			// If we do a substitution such that
-			// c1 = a*c >= 0 ? c : -c
-			// d1 = b*d >= 0 ? d : -d
-			// we get the following linear system:
-			// (1) w = abs( ax + c1y )
-			// (2) h = abs( bx + d1y )
-			//
-			// Since we're matching width we only care about (1) 
-			
-			var a:Number = matrix.a;
-			var c:Number = matrix.c;
-			
-			// If components are very close to zero, zero them out to handle the special cases
-			if (-1.0e-9 < a && a < +1.0e-9)
-				a = 0;
-			if (-1.0e-9 < c && c < +1.0e-9)
-				c = 0;
-			
-			// Handle special cases first
-			if (a == 0 && c == 0)
-				return null; // No solution
-			
-			if (a == 0)
-				return new Point( preferredX, w / Math.abs(c) );               
-			else if (c == 0)
-				return new Point( w / Math.abs(a), preferredY );    
-			
-			const c1:Number = ( a*c >= 0 ) ? c : -c;
-			// Now we have the following linear sytesm:
-			// (1) w = abs( ax + c1y )
-			// (2) x = preferredX or y = preferredY
-			
-			var s:Point;
-			var x:Number;
-			var y:Number;
-			
-			if (c1 != 0 && preferredX > 0)
-			{
-				const invC1:Number = 1 / c1;
-				preferredX = Math.max(minX, Math.min(maxX, preferredX));
-				x = preferredX;
-				
-				// Case1:
-				// a * x + c1 * y >= 0
-				// x = preferredX
-				y = (w - a * x) * invC1;
-				if (minY <= y && y <= maxY &&
-					a * x + c1 * y >= 0 ) // Satisfy Case1
-				{
-					s = new Point(x, y);        
-				}
-				
-				// Case2:
-				// a * x + c1 * y < 0
-				// x = preferredX
-				y = (-w - a * x) * invC1;
-				if (minY <= y && y <= maxY &&
-					a * x + c1 * y < 0 ) // Satisfy Case2
-				{
-					// If there is no solution, or the new solution yields smaller value, pick the new solution.
-					if (!s || transformSize(s.x, s.y, matrix).y > transformSize(x, y, matrix).y)
-						s = new Point(x, y);
-				}
-			}
-			
-			if (a != 0 && preferredY > 0)
-			{
-				const invA:Number = 1 / a;
-				preferredY = Math.max(minY, Math.min(maxY, preferredY));
-				y = preferredY;
-				
-				// Case3:
-				// a * x + c1 * y >= 0
-				// y = preferredY
-				x = (w - c1 * y ) * invA;
-				if (minX <= x && x <= maxX &&
-					a * x + c1 * y >= 0) // Satisfy Case3
-				{
-					// If there is no solution, or the new solution yields smaller value, pick the new solution.
-					if (!s || transformSize(s.x, s.y, matrix).y > transformSize(x, y, matrix).y)
-						s = new Point(x, y);
-				}
-				
-				// Case4:
-				// a * x + c1 * y < 0
-				// y = preferredY
-				x = (-w - c1 * y ) * invA;
-				if (minX <= x && x <= maxX &&
-					a * x + c1 * y < 0) // Satisfy Case4
-				{
-					// If there is no solution, or the new solution yields smaller value, pick the new solution.
-					if (!s || transformSize(s.x, s.y, matrix).y > transformSize(x, y, matrix).y)
-						s = new Point(x, y);
-				}
-			}
-			
-			// If there's already a solution that matches preferred dimention, return
-			if (s)
-				return s;
-			
-			// Find a solution that matches the width and minimizes the height: 
-			const b:Number = matrix.b;
-			const d:Number = matrix.d;
-			const d1:Number = (b*d >= 0) ? d : -d;
-			return solveEquation(a, c1, w, minX, minY, maxX, maxY, b, d1);
-		}
-		
-		/**
-		 *  Finds a solution (x,y) for the equation abs(a*x + c*y) = w such that
-		 *  abs(b*x +d*y) is minimized.
-		 *  If there is infinite number of solutions, x and y are picked to be
-		 *  as close as possible.
-		 * 
-		 *  Doesn't handle cases where <code>a</code> or <code>c</code> are zero.
-		 * 
-		 *  @return Returns Point(x,y)
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */        
-		static private function solveEquation(a:Number,
-											  c:Number,
-											  w:Number,
-											  minX:Number,
-											  minY:Number, 
-											  maxX:Number, 
-											  maxY:Number, 
-											  b:Number, 
-											  d:Number):Point
-		{
-			if (a == 0 || c == 0)
-				return null; // x and y are not co-dependent
-			
-			// (1) w = abs( ax + cy )
-			// Find the range of solutsion for y and pick:
-			var x:Number;
-			var y:Number;
-			var s:Point;
-			
-			// Case1: ax + cy >= 0, from (1) above we get:
-			// (1) x = (w - cy) / a
-			//
-			// Lets find the possible range of values for y:
-			// We know that
-			// (3) minX <= x <= maxX
-			//
-			// Substitute x with (w - cy)/a in (3):
-			// (3) minX - w/a <= -cy/a <= maxX - w/a
-			// (3) min( A, B ) <= y <= max( A, B ), where
-			// A = (minX - w/a) * (-a/c)
-			// B = (maxX - w/a) * (-a/c)
-			
-			var A:Number = (w - minX * a) / c;              
-			var B:Number = (w - maxX * a) / c;              
-			var rangeMinY:Number = Math.max(minY, Math.min(A, B));
-			var rangeMaxY:Number = Math.min(maxY, Math.max(A, B));
-			const det:Number = (b * c - a * d);
-			
-			// We have a possible solution for Case1 if the range for y is valid
-			if (rangeMinY <= rangeMaxY)
-			{
-				// Now that we have a valid range for y, we need to pick a value within
-				// that range.
-				//
-				// We calculate the value based on a custom condition.
-				//
-				// The custom condition that we use could be anything that defines
-				// another equation for x and y. Some examples are:
-				// "make x and y as close as possible": y = w / ( a + c );  
-				// "minimize abs(bx + dy)": y = b * w / det    
-				// "preserve aspect ratio": y = w / ( a * preferredX / preferredY + c );
-				if (Math.abs(det) < 1.0e-9)
-				{
-					// There is infinite number of solutions, lets pick x == y
-					y = w / ( a + c );
-				}
-				else
-				{
-					// Minimize abs(bx + dy) - we need to solve:
-					// abs( b * ( w - c * y ) / a + d * y ) = 0
-					// which gives us:
-					y = b * w / det;
-				}
-				
-				// Now that we have the y value calculated from the custom condition,
-				// we clamp with the range. This gives us a solution with
-				// values as close as possible to satisfy our custom condition when
-				// the condition is a linear function of x and y (in our case it is).
-				y = Math.max(rangeMinY, Math.min(y, rangeMaxY));
-				
-				x = (w - c * y) / a;
-				return new Point(x, y);
-			}
-			
-			// Case2: ax + cy < 0, from (1) above we get:
-			// (1) x = (-w - cy) / a
-			//
-			// Lets find the possible range of values for y:
-			// We know that
-			// (3) minX <= x <= maxX
-			//
-			// Substitute x with (-w - cy)/a in (3):
-			// (3) minX + w/a <= -cy/a <= maxX + w/a
-			// (3) min( A, B ) <= y <= max( A, B ), where
-			// A = (minX + w/a) * (-a/c)
-			// B = (maxX + w/a) * (-a/c)
-			
-			A = -(minX * a + w) / c;
-			B = -(maxX * a + w) / c;
-			rangeMinY = Math.max(minY, Math.min(A, B));
-			rangeMaxY = Math.min(maxY, Math.max(A, B));
-			
-			// We have a possible solution for Case2 if the range for y is valid
-			if (rangeMinY <= rangeMaxY)
-			{
-				// Now that we have a valid range for y, we need to pick a value within
-				// that range.
-				//
-				// We calculate the value based on a custom condition.
-				//
-				// The custom condition that we use could be anything that defines
-				// another equation for x and y. Some examples are:
-				// "make x and y as close as possible": y = -w / ( a + c );  
-				// "minimize abs(bx + dy)": y = -b * w / det    
-				// "preserve aspect ratio": y = w / ( a * preferredX / preferredY + c );
-				if (Math.abs(det) < 1.0e-9)
-				{
-					// There is infinite number of solutions, lets pick x == y
-					y = -w / ( a + c );
-				}
-				else
-				{
-					// Minimize abs(bx + dy) - we need to solve:
-					// abs( b * ( -w - c * y ) / a + d * y ) = 0
-					// which gives us:
-					y = -b * w / det;
-				}
-				
-				// Now that we have the y value calculated from the custom condition,
-				// we clamp with the range. This gives us a solution with
-				// values as close as possible to satisfy our custom condition when
-				// the condition is a linear function of x and y (in our case it is).
-				y = Math.max(rangeMinY, Math.min(y, rangeMaxY));
-				x = (-w - c * y) / a;
-				return new Point(x, y);
-				
-			}
-			return null; // No solution
-		}
-		
-		/**
-		 *  Calculates (x,y) such that the bounding box (0,0,x,y) transformed
-		 *  with <code>matrix</code> will have bounding box (0,0,w,h).
-		 *  x and y are restricted by <code>minX</code>, <code>maxX</code> and
-		 *  <code>minY</code>, <code>maxY</code>.
-		 * 
-		 *  When there is infinite number of solutions, the function will
-		 *  calculate x and y to be as close as possible.
-		 * 
-		 *  The functon assumes <code>minX >= 0</code> and <code>minY >= 0</code>
-		 *  (solution components x and y are non-negative). 
-		 *  
-		 *  @return Point(x,y) or null if no solution exists.
-		 * 
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */
-		static public function calcUBoundsToFitTBounds(w:Number, 
-													   h:Number,
-													   matrix:Matrix,
-													   minX:Number,
-													   minY:Number, 
-													   maxX:Number, 
-													   maxY:Number):Point
-		{
-			// Untransformed bounds size is (x,y). The corners of the untransformed
-			// bounding box are p1(0,0) p2(x,0) p3(0,y) p4(x,y).
-			// Matrix is | a c tx |
-			//           | b d ty |
-			//
-			// After transfomation with the matrix those four points are:
-			// t1 = (0, 0)              = matrix.deltaTransformPoint(p1)
-			// t2 = (ax, bx)            = matrix.deltaTransformPoint(p2)
-			// t3 = (cy, dy)            = matrix.deltaTransformPoint(p3)
-			// t4 = (ax + cy, cx + dy)  = matrix.deltaTransformPoint(p4)
-			//
-			// The transformed bounds bounding box dimensions are (w,h):
-			// (1) w = max( t1.x, t2.x, t3.x, t4.x ) - min( t1.x, t2.x, t3.x, t4.x)
-			// (2) h = max( t1.y, t2.y, t3.y, t4.y ) - min( t1.y, t2.y, t3.y, t4.y)
-			//
-			// Looking at all the possible cases for min and max functions above,
-			// we can construct and solve simple linear systems for x and y.
-			// For example in the case of
-			// t1.x <= t2.x <= t3.x <= t4.x
-			// our first equation is
-			// (1) w = t4.x - t1.x <==> w = ax + cy
-			//
-			// To minimize the cases we're looking at we can take advantage of
-			// the limits we have: x >= 0, y >= 0;
-			// Taking into account these limits we deduce that:
-			// a*c >= 0  gives us (1) w = abs( t4.x - t1.x ) = abs( ax + cy )
-			// a*c <  0  gives us (1) w = abs( t2.x - t3.x ) = abs( ax - cy )
-			// b*d >= 0  gives us (2) h = abs( t4.y - t1.y ) = abs( bx + dy )
-			// b*d <  0  gives us (2) h = abs( t2.y - t3.y ) = abs( bx - dy )
-			//
-			// If we do a substitution such that
-			// c1 = a*c >= 0 ? c : -c
-			// d1 = b*d >= 0 ? d : -d
-			// we get the following linear system:
-			// (1) w = abs( ax + c1y )
-			// (2) h = abs( bx + d1y )
-			// 
-			
-			var a:Number = matrix.a;
-			var b:Number = matrix.b;
-			var c:Number = matrix.c;
-			var d:Number = matrix.d;
-			
-			// If components are very close to zero, zero them out to handle the special cases
-			if (-1.0e-9 < a && a < +1.0e-9)
-				a = 0;
-			if (-1.0e-9 < b && b < +1.0e-9)
-				b = 0;
-			if (-1.0e-9 < c && c < +1.0e-9)
-				c = 0;
-			if (-1.0e-9 < d && d < +1.0e-9)
-				d = 0;
-			
-			// Handle special cases.
-			if (b == 0 && c == 0)
-			{
-				// No solution in the following cases since the matrix collapses
-				// all points into a line.
-				if (a == 0 || d == 0)
-					return null;
-				
-				// (1) w = abs( ax + cy ) <=> w = abs( ax ) <=> w = abs(a)x
-				// (2) h = abs( bx + dy ) <=> h = abs( dy ) <=> h = abs(d)y
-				return new Point(w / Math.abs(a), h / Math.abs(d));
-			}
-			
-			if (a == 0 && d == 0)
-			{
-				// No solution in the following cases since the matrix collapses
-				// all points into a line.
-				if (b == 0 || c == 0)
-					return null;
-				
-				// (1) w = abs( ax + cy ) <=> w = abs( cy ) <=> w = abs(c)y
-				// (2) h = abs( bx + dy ) <=> h = abs( bx ) <=> h = abs(b)x
-				return new Point(h / Math.abs(b), w / Math.abs(c));
-			}
-			
-			// Handle general cases.
-			const c1:Number = ( a*c >= 0 ) ? c : -c;
-			const d1:Number = ( b*d >= 0 ) ? d : -d;
-			// we get the following linear system:
-			// (1) w = abs( ax + c1y )
-			// (2) h = abs( bx + d1y )
-			
-			// Calculate the determinant of the system
-			const det:Number = a * d1 - b * c1;
-			if (Math.abs(det) < 1.0e-9)
-			{
-				// No solution in these cases since the matrix
-				// collapses all points into a line.
-				if (c1 == 0 || a == 0 || a == -c1)
-					return null;
-				
-				if (Math.abs(a * h - b * w) > 1.0e-9)
-					return null; // No solution in this case
-				
-				// Determinant is zero, the equations (1) & (2) are equivalent and
-				// we have only one equation:
-				// (1) w = abs( ax + c1y )
-				//
-				// Solve it finding x and y as close as possible:
-				return solveEquation(a, c1, w, minX, minX, maxX, maxY, b, d1);
-			}
-			
-			// Pre-multiply w & h by the inverse dteterminant
-			const invDet:Number = 1 / det;
-			w *= invDet;
-			h *= invDet;
-			
-			// Case 1:
-			// a * x + c1 * y >= 0
-			// b * x + d1 * y >= 0
-			var s:Point;
-			s = solveSystem(a, c1, b, d1, w, h);
-			if (s &&
-				minX <= s.x && s.x <= maxX && minY <= s.y && s.y <= maxY &&
-				a * s.x + c1 * s.x >= 0 &&
-				b * s.x + d1 * s.y >= 0)
-				return s;
-			
-			// Case 2:
-			// a * x + c1 * y >= 0
-			// b * x + d1 * y < 0
-			s = solveSystem( a, c1, b, d1, w, -h);
-			if (s &&
-				minX <= s.x && s.x <= maxX && minY <= s.y && s.y <= maxY &&
-				a * s.x + c1 * s.x >= 0 &&
-				b * s.x + d1 * s.y < 0)
-				return s;
-			
-			// Case 3:
-			// a * x + c1 * y < 0
-			// b * x + d1 * y >= 0
-			s = solveSystem( a, c1, b, d1, -w, h);
-			if (s &&
-				minX <= s.x && s.x <= maxX && minY <= s.y && s.y <= maxY &&
-				a * s.x + c1 * s.x < 0 &&
-				b * s.x + d1 * s.y >= 0)
-				return s;
-			
-			// Case 4:
-			// a * x + c1 * y < 0
-			// b * x + d1 * y < 0
-			s = solveSystem( a, c1, b, d1, -w, -h);
-			if (s &&
-				minX <= s.x && s.x <= maxX && minY <= s.y && s.y <= maxY &&
-				a * s.x + c1 * s.x < 0 &&
-				b * s.x + d1 * s.y < 0)
-				return s;
-			
-			return null; // No solution.
-		}
-		
-		/**
-		 *  Determine if two Matrix instances are equal.
-		 *  
-		 *  @return true if the matrices are equal.
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */
-		public static function isEqual(m1:Matrix, m2:Matrix):Boolean
-		{
-			return ((m1 && m2 && 
-				m1.a == m2.a &&
-				m1.b == m2.b &&
-				m1.c == m2.c &&
-				m1.d == m2.d &&
-				m1.tx == m2.tx &&
-				m1.ty == m2.ty) || 
-				(!m1 && !m2));
-		}
-		
-		/**
-		 *  Determine if two Matrix3D instances are equal.
-		 *  
-		 *  @return true if the matrices are equal.
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */
-		public static function isEqual3D(m1:Matrix3D, m2:Matrix3D):Boolean
-		{
-			if (m1 && m2 && m1.rawData.length == m2.rawData.length)
-			{
-				var r1:Vector.<Number> = m1.rawData;
-				var r2:Vector.<Number> = m2.rawData;
-				
-				return (r1[0] == r2[0] &&
-					r1[1] == r2[1] &&
-					r1[2] == r2[2] &&
-					r1[3] == r2[3] &&
-					r1[4] == r2[4] &&
-					r1[5] == r2[5] &&
-					r1[6] == r2[6] &&
-					r1[7] == r2[7] &&
-					r1[8] == r2[8] &&
-					r1[9] == r2[9] &&
-					r1[10] == r2[10] &&
-					r1[11] == r2[11] &&
-					r1[12] == r2[12] &&
-					r1[13] == r2[13] &&
-					r1[14] == r2[14] &&
-					r1[15] == r2[15]);
-			}
-			
-			return (!m1 && !m2);
-		}
-		
-		/**
-		 *  Calculates (x,y) such as to satisfy the linear system:
-		 *  | a * x + c * y = m
-		 *  | b * x + d * y = n
-		 * 
-		 *  @param mOverDet <code>mOverDet must be equal to m / (a*d - b*c)</code>
-		 *  @param nOverDet <code>mOverDet must be equal to n / (a*d - b*c)</code>
-		 *
-		 *  @return returns Point(x,y)
-		 *
-		 *  
-		 *  @langversion 3.0
-		 *  @playerversion Flash 9
-		 *  @playerversion AIR 1.1
-		 *  @productversion Flex 3
-		 */
-		static private function solveSystem(a:Number, 
-											c:Number, 
-											b:Number, 
-											d:Number, 
-											mOverDet:Number, 
-											nOverDet:Number):Point
-		{
-			return new Point(d * mOverDet - c * nOverDet,
-				a * nOverDet - b * mOverDet);
-		}
-		
-	}
-	
-}
-


Mime
View raw message