drill-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From tshi...@apache.org
Subject [2/3] drill-site git commit: Website update
Date Tue, 19 May 2015 12:01:28 GMT
http://git-wip-us.apache.org/repos/asf/drill-site/blob/1e0ae343/docs/lesson-1-learn-about-the-data-set/index.html
----------------------------------------------------------------------
diff --git a/docs/lesson-1-learn-about-the-data-set/index.html b/docs/lesson-1-learn-about-the-data-set/index.html
index d0a8624..703234f 100644
--- a/docs/lesson-1-learn-about-the-data-set/index.html
+++ b/docs/lesson-1-learn-about-the-data-set/index.html
@@ -937,39 +937,50 @@ format.</p>
 
 <h3 id="start-the-drill-shell">Start the Drill Shell</h3>
 
-<p>If the Drill shell is not already started, use a Terminal or Command window to log
-into the demo VM as root, then enter <code>sqlline</code>, as described in <a href="/docs/getting-to-know-the-drill-sandbox">&quot;Getting to Know the Sandbox&quot;</a>:</p>
+<p>If the Drill shell is not already started, use a Terminal or Command Prompt to log
+into the demo VM as mapr, then enter <code>sqlline</code>, as described in <a href="/docs/getting-to-know-the-drill-sandbox">&quot;Getting to Know the Sandbox&quot;</a>:</p>
 
 <p>You can run queries to complete the tutorial. To exit from
 the Drill shell, type:</p>
-<div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; !quit
-</code></pre></div>
+
+<p><code>0: jdbc:drill:&gt; !quit</code></p>
+
 <p>Examples in this tutorial use the Drill shell. You can also execute queries using the Drill Web UI.</p>
 
+<h3 id="enable-the-decimal-data-yype">Enable the DECIMAL Data Yype</h3>
+
+<p>This tutorial uses the DECIMAL data type in some examples. The DECIMAL data type is disabled by default in this release, so enable the DECIMAL data type before proceeding:</p>
+<div class="highlight"><pre><code class="language-text" data-lang="text">alter session set `planner.enable_decimal_data_type`=true;
+
++-------+--------------------------------------------+
+|  ok   |                  summary                   |
++-------+--------------------------------------------+
+| true  | planner.enable_decimal_data_type updated.  |
++-------+--------------------------------------------+
+1 row selected 
+</code></pre></div>
 <h3 id="list-the-available-workspaces-and-databases:">List the available workspaces and databases:</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; show databases;
-+-------------+
-| SCHEMA_NAME |
-+-------------+
-| hive.default |
-| dfs.default |
-| dfs.logs    |
-| dfs.root    |
-| dfs.views   |
-| dfs.clicks  |
-| dfs.tmp     |
-| sys         |
-| maprdb      |
-| cp.default  |
-| INFORMATION_SCHEMA |
-+-------------+
-12 rows selected
++---------------------+
+|     SCHEMA_NAME     |
++---------------------+
+| INFORMATION_SCHEMA  |
+| cp.default          |
+| dfs.clicks          |
+| dfs.default         |
+| dfs.logs            |
+| dfs.root            |
+| dfs.tmp             |
+| dfs.views           |
+| hive.default        |
+| maprdb              |
+| sys                 |
++---------------------+
 </code></pre></div>
 <p>This command exposes all the metadata available from the storage
 plugins configured with Drill as a set of schemas. The Hive and
 MapR-DB databases, file system, and other data are configured in the file system. As
-you run queries in the tutorial, you will switch among these schemas by
-submitting the USE command. This behavior resembles the ability to use
+you run queries in the tutorial, you run the USE command to switch among these schemas. Switching schemas in this way resembles using
 different database schemas (namespaces) in a relational database system.</p>
 
 <h2 id="query-hive-tables">Query Hive Tables</h2>
@@ -979,12 +990,13 @@ This is a Hive external table pointing to the data stored in flat files on the
 MapR file system. The orders table contains 122,000 rows.</p>
 
 <h3 id="set-the-schema-to-hive:">Set the schema to hive:</h3>
-<div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; use hive;
-+------------+------------+
-| ok | summary |
-+------------+------------+
-| true | Default schema changed to &#39;hive&#39; |
-+------------+------------+
+<div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; use hive.`default`;
++-------+-------------------------------------------+
+|  ok   |                  summary                  |
++-------+-------------------------------------------+
+| true  | Default schema changed to [hive.default]  |
++-------+-------------------------------------------+
+1 row selected
 </code></pre></div>
 <p>You will run the USE command throughout this tutorial. The USE command sets
 the schema for the current session.</p>
@@ -1026,7 +1038,7 @@ the standard LIMIT clause, which limits the result set to the specified number
 of rows. You can use LIMIT with or without an ORDER BY clause.</p>
 
 <p>Drill provides seamless integration with Hive by allowing queries on Hive
-tables defined in the metastore with no extra configuration. Note that Hive is
+tables defined in the metastore with no extra configuration. Hive is
 not a prerequisite for Drill, but simply serves as a storage plugin or data
 source for Drill. Drill also lets users query all Hive file formats (including
 custom serdes). Additionally, any UDFs defined in Hive can be leveraged as
@@ -1044,11 +1056,10 @@ development. Every MapR-DB table has a row_key, in addition to one or more
 column families. Each column family contains one or more specific columns. The
 row_key value is a primary key that uniquely identifies each row.</p>
 
-<p>Drill allows direct queries on MapR-DB and HBase tables. Unlike other SQL on
+<p>Drill directly queries MapR-DB and HBase tables. Unlike other SQL on
 Hadoop options, Drill requires no overlay schema definitions in Hive to work
-with this data. Think about a MapR-DB or HBase table with thousands of
-columns, such as a time-series database, and the pain of having to manage
-duplicate schemas for it in Hive!</p>
+with this data. Drill removes the pain of having to manage duplicate schemas in Hive when you have a MapR-DB or HBase table with thousands of
+columns typical of a time-series database.</p>
 
 <h3 id="products-table">Products Table</h3>
 
@@ -1068,32 +1079,35 @@ duplicate schemas for it in Hive!</p>
 <p>The customers table contains 993 rows.</p>
 
 <h3 id="set-the-workspace-to-maprdb:">Set the workspace to maprdb:</h3>
-<div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; use maprdb;
-+------------+------------+
-| ok | summary |
-+------------+------------+
-| true | Default schema changed to &#39;maprdb&#39; |
-+------------+------------+
+<div class="highlight"><pre><code class="language-text" data-lang="text">use maprdb;
++-------+-------------------------------------+
+|  ok   |               summary               |
++-------+-------------------------------------+
+| true  | Default schema changed to [maprdb]  |
++-------+-------------------------------------+
+1 row selected
 </code></pre></div>
 <h3 id="describe-the-tables:">Describe the tables:</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; describe customers;
-+-------------+------------+-------------+
-| COLUMN_NAME | DATA_TYPE  | IS_NULLABLE |
-+-------------+------------+-------------+
-| row_key     | ANY        | NO          |
-| address     | (VARCHAR(1), ANY) MAP | NO          |
-| loyalty     | (VARCHAR(1), ANY) MAP | NO          |
-| personal    | (VARCHAR(1), ANY) MAP | NO          |
-+-------------+------------+-------------+
++--------------+------------------------+--------------+
+| COLUMN_NAME  |       DATA_TYPE        | IS_NULLABLE  |
++--------------+------------------------+--------------+
+| row_key      | ANY                    | NO           |
+| address      | (VARCHAR(1), ANY) MAP  | NO           |
+| loyalty      | (VARCHAR(1), ANY) MAP  | NO           |
+| personal     | (VARCHAR(1), ANY) MAP  | NO           |
++--------------+------------------------+--------------+
+4 rows selected 
 
 0: jdbc:drill:&gt; describe products;
-+-------------+------------+-------------+
-| COLUMN_NAME | DATA_TYPE  | IS_NULLABLE |
-+-------------+------------+-------------+
-| row_key     | ANY        | NO          |
-| details     | (VARCHAR(1), ANY) MAP | NO          |
-| pricing     | (VARCHAR(1), ANY) MAP | NO          |
-+-------------+------------+-------------+
++--------------+------------------------+--------------+
+| COLUMN_NAME  |       DATA_TYPE        | IS_NULLABLE  |
++--------------+------------------------+--------------+
+| row_key      | ANY                    | NO           |
+| details      | (VARCHAR(1), ANY) MAP  | NO           |
+| pricing      | (VARCHAR(1), ANY) MAP  | NO           |
++--------------+------------------------+--------------+
+3 rows selected 
 </code></pre></div>
 <p>Unlike the Hive example, the DESCRIBE command does not return the full schema
 up to the column level. Wide-column NoSQL databases such as MapR-DB and HBase
@@ -1108,14 +1122,16 @@ ANY.</p>
 
 <h3 id="select-5-rows-from-the-products-table:">Select 5 rows from the products table:</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select * from products limit 5;
-+------------+------------+------------+
-| row_key | details | pricing |
-+------------+------------+------------+
-| [B@a1a3e25 | {&quot;category&quot;:&quot;bGFwdG9w&quot;,&quot;name&quot;:&quot;IlNvbnkgbm90ZWJvb2si&quot;} | {&quot;price&quot;:&quot;OTU5&quot;} |
-| [B@103a43af | {&quot;category&quot;:&quot;RW52ZWxvcGVz&quot;,&quot;name&quot;:&quot;IzEwLTQgMS84IHggOSAxLzIgUHJlbWl1bSBEaWFnb25hbCBTZWFtIEVudmVsb3Blcw==&quot;} | {&quot;price&quot;:&quot;MT |
-| [B@61319e7b | {&quot;category&quot;:&quot;U3RvcmFnZSAmIE9yZ2FuaXphdGlvbg==&quot;,&quot;name&quot;:&quot;MjQgQ2FwYWNpdHkgTWF4aSBEYXRhIEJpbmRlciBSYWNrc1BlYXJs&quot;} | {&quot;price&quot; |
-| [B@9bcf17 | {&quot;category&quot;:&quot;TGFiZWxz&quot;,&quot;name&quot;:&quot;QXZlcnkgNDk4&quot;} | {&quot;price&quot;:&quot;Mw==&quot;} |
-| [B@7538ef50 | {&quot;category&quot;:&quot;TGFiZWxz&quot;,&quot;name&quot;:&quot;QXZlcnkgNDk=&quot;} | {&quot;price&quot;:&quot;Mw==&quot;} |
++--------------+----------------------------------------------------------------------------------------------------------------+-------------------+
+|   row_key    |                                                    details                                                     |      pricing      |
++--------------+----------------------------------------------------------------------------------------------------------------+-------------------+
+| [B@b01c5f8   | {&quot;category&quot;:&quot;bGFwdG9w&quot;,&quot;name&quot;:&quot;U29ueSBub3RlYm9vaw==&quot;}                                                          | {&quot;price&quot;:&quot;OTU5&quot;}  |
+| [B@5edfe5ad  | {&quot;category&quot;:&quot;RW52ZWxvcGVz&quot;,&quot;name&quot;:&quot;IzEwLTQgMS84IHggOSAxLzIgUHJlbWl1bSBEaWFnb25hbCBTZWFtIEVudmVsb3Blcw==&quot;}      | {&quot;price&quot;:&quot;MTY=&quot;}  |
+| [B@3d5ff184  | {&quot;category&quot;:&quot;U3RvcmFnZSAmIE9yZ2FuaXphdGlvbg==&quot;,&quot;name&quot;:&quot;MjQgQ2FwYWNpdHkgTWF4aSBEYXRhIEJpbmRlciBSYWNrc1BlYXJs&quot;}  | {&quot;price&quot;:&quot;MjEx&quot;}  |
+| [B@65e93096  | {&quot;category&quot;:&quot;TGFiZWxz&quot;,&quot;name&quot;:&quot;QXZlcnkgNDk4&quot;}                                                                  | {&quot;price&quot;:&quot;Mw==&quot;}  |
+| [B@3074fc1f  | {&quot;category&quot;:&quot;TGFiZWxz&quot;,&quot;name&quot;:&quot;QXZlcnkgNDk=&quot;}                                                                  | {&quot;price&quot;:&quot;Mw==&quot;}  |
++--------------+----------------------------------------------------------------------------------------------------------------+-------------------+
+5 rows selected 
 </code></pre></div>
 <p>Given that Drill requires no up front schema definitions indicating data
 types, the query returns the raw byte arrays for column values, just as they
@@ -1126,17 +1142,18 @@ and pricing) have the map data type and appear as JSON strings.</p>
 
 <h3 id="select-5-rows-from-the-customers-table:">Select 5 rows from the customers table:</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">+0: jdbc:drill:&gt; select * from customers limit 5;
-+------------+------------+------------+------------+
-| row_key | address | loyalty | personal |
-+------------+------------+------------+------------+
-| [B@284bae62 | {&quot;state&quot;:&quot;Imt5Ig==&quot;} | {&quot;agg_rev&quot;:&quot;IjEwMDEtMzAwMCI=&quot;,&quot;membership&quot;:&quot;ImJhc2ljIg==&quot;} | {&quot;age&quot;:&quot;IjI2LTM1Ig==&quot;,&quot;gender&quot;:&quot;Ik1B |
-| [B@7ffa4523 | {&quot;state&quot;:&quot;ImNhIg==&quot;} | {&quot;agg_rev&quot;:&quot;IjAtMTAwIg==&quot;,&quot;membership&quot;:&quot;ImdvbGQi&quot;} | {&quot;age&quot;:&quot;IjI2LTM1Ig==&quot;,&quot;gender&quot;:&quot;IkZFTUFMRSI= |
-| [B@7d13e79 | {&quot;state&quot;:&quot;Im9rIg==&quot;} | {&quot;agg_rev&quot;:&quot;IjUwMS0xMDAwIg==&quot;,&quot;membership&quot;:&quot;InNpbHZlciI=&quot;} | {&quot;age&quot;:&quot;IjI2LTM1Ig==&quot;,&quot;gender&quot;:&quot;IkZFT |
-| [B@3a5c7df1 | {&quot;state&quot;:&quot;ImtzIg==&quot;} | {&quot;agg_rev&quot;:&quot;IjMwMDEtMTAwMDAwIg==&quot;,&quot;membership&quot;:&quot;ImdvbGQi&quot;} | {&quot;age&quot;:&quot;IjUxLTEwMCI=&quot;,&quot;gender&quot;:&quot;IkZF |
-| [B@e507726 | {&quot;state&quot;:&quot;Im5qIg==&quot;} | {&quot;agg_rev&quot;:&quot;IjAtMTAwIg==&quot;,&quot;membership&quot;:&quot;ImJhc2ljIg==&quot;} | {&quot;age&quot;:&quot;IjIxLTI1Ig==&quot;,&quot;gender&quot;:&quot;Ik1BTEUi&quot; |
-+------------+------------+------------+------------+
++--------------+-----------------------+-------------------------------------------------+---------------------------------------------------------------------------------------+
+|   row_key    |        address        |                     loyalty                     |                                       personal                                        |
++--------------+-----------------------+-------------------------------------------------+---------------------------------------------------------------------------------------+
+| [B@3ed2649e  | {&quot;state&quot;:&quot;InZhIg==&quot;}  | {&quot;agg_rev&quot;:&quot;MTk3&quot;,&quot;membership&quot;:&quot;InNpbHZlciI=&quot;}  | {&quot;age&quot;:&quot;IjE1LTIwIg==&quot;,&quot;gender&quot;:&quot;IkZFTUFMRSI=&quot;,&quot;name&quot;:&quot;IkNvcnJpbmUgTWVjaGFtIg==&quot;}      |
+| [B@66cbe14a  | {&quot;state&quot;:&quot;ImluIg==&quot;}  | {&quot;agg_rev&quot;:&quot;MjMw&quot;,&quot;membership&quot;:&quot;InNpbHZlciI=&quot;}  | {&quot;age&quot;:&quot;IjI2LTM1Ig==&quot;,&quot;gender&quot;:&quot;Ik1BTEUi&quot;,&quot;name&quot;:&quot;IkJyaXR0YW55IFBhcmsi&quot;}              |
+| [B@5333f5ff  | {&quot;state&quot;:&quot;ImNhIg==&quot;}  | {&quot;agg_rev&quot;:&quot;MjUw&quot;,&quot;membership&quot;:&quot;InNpbHZlciI=&quot;}  | {&quot;age&quot;:&quot;IjI2LTM1Ig==&quot;,&quot;gender&quot;:&quot;Ik1BTEUi&quot;,&quot;name&quot;:&quot;IlJvc2UgTG9rZXki&quot;}                  |
+| [B@785b6305  | {&quot;state&quot;:&quot;Im1lIg==&quot;}  | {&quot;agg_rev&quot;:&quot;MjYz&quot;,&quot;membership&quot;:&quot;InNpbHZlciI=&quot;}  | {&quot;age&quot;:&quot;IjUxLTEwMCI=&quot;,&quot;gender&quot;:&quot;IkZFTUFMRSI=&quot;,&quot;name&quot;:&quot;IkphbWVzIEZvd2xlciI=&quot;}          |
+| [B@37c21afe  | {&quot;state&quot;:&quot;Im1uIg==&quot;}  | {&quot;agg_rev&quot;:&quot;MjAy&quot;,&quot;membership&quot;:&quot;InNpbHZlciI=&quot;}  | {&quot;age&quot;:&quot;IjUxLTEwMCI=&quot;,&quot;gender&quot;:&quot;Ik9USEVSIg==&quot;,&quot;name&quot;:&quot;Ikd1aWxsZXJtbyBLb2VobGVyIg==&quot;}  |
++--------------+-----------------------+-------------------------------------------------+---------------------------------------------------------------------------------------+
+5 rows selected
 </code></pre></div>
-<p>Again the table returns byte data that needs to be cast to readable data
+<p>Again, the table returns byte data that needs to be cast to readable data
 types.</p>
 
 <h2 id="query-the-file-system">Query the File System</h2>
@@ -1146,7 +1163,7 @@ schemas (such as MapR-DB and HBase), Drill offers the unique capability to
 perform SQL queries directly on file system. The file system could be a local
 file system, or a distributed file system such as MapR-FS, HDFS, or S3.</p>
 
-<p>In the context of Drill, a file or a directory is considered as synonymous to
+<p>In the context of Drill, a file or a directory is synonymous with
 a relational database “table.” Therefore, you can perform SQL operations
 directly on files and directories without the need for up-front schema
 definitions or schema management for any model changes. The schema is
@@ -1160,7 +1177,7 @@ is in JSON format. The JSON files have the following structure:</p>
 {&quot;trans_id&quot;:33848,&quot;date&quot;:&quot;2014-04-10&quot;,&quot;time&quot;:&quot;04:44:42&quot;,&quot;user_info&quot;:{&quot;cust_id&quot;:21449,&quot;device&quot;:&quot;IOS6&quot;,&quot;state&quot;:&quot;oh&quot;},&quot;trans_info&quot;:{&quot;prod_id&quot;:[582],&quot;purch_flag&quot;:&quot;false&quot;}}
 </code></pre></div>
 <p>The clicks.json and clicks.campaign.json files contain metadata as part of the
-data itself (referred to as “self-describing” data). Also note that the data
+data itself (referred to as “self-describing” data). The data
 elements are complex, or nested. The initial queries below do not show how to
 unpack the nested data, but they show that easy access to the data requires no
 setup beyond the definition of a workspace.</p>
@@ -1168,35 +1185,37 @@ setup beyond the definition of a workspace.</p>
 <h3 id="query-nested-clickstream-data">Query nested clickstream data</h3>
 
 <h4 id="set-the-workspace-to-dfs.clicks:">Set the workspace to dfs.clicks:</h4>
-<div class="highlight"><pre><code class="language-text" data-lang="text"> 0: jdbc:drill:&gt; use dfs.clicks;
-+------------+------------+
-| ok | summary |
-+------------+------------+
-| true | Default schema changed to &#39;dfs.clicks&#39; |
-+------------+------------+
+<div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; use dfs.clicks;
++-------+-----------------------------------------+
+|  ok   |                 summary                 |
++-------+-----------------------------------------+
+| true  | Default schema changed to [dfs.clicks]  |
++-------+-----------------------------------------+
+1 row selected
 </code></pre></div>
 <p>In this case, setting the workspace is a mechanism for making queries easier
 to write. When you specify a file system workspace, you can shorten references
 to files in your queries. Instead of having to provide the
 complete path to a file, you can provide the path relative to a directory
 location specified in the workspace. For example:</p>
-<div class="highlight"><pre><code class="language-text" data-lang="text">&quot;location&quot;: &quot;/mapr/demo.mapr.com/data/nested&quot;
-</code></pre></div>
+
+<p><code>&quot;location&quot;: &quot;/mapr/demo.mapr.com/data/nested&quot;</code></p>
+
 <p>Any file or directory that you want to query in this path can be referenced
 relative to this path. The clicks directory referred to in the following query
 is directly below the nested directory.</p>
 
 <h4 id="select-2-rows-from-the-clicks.json-file:">Select 2 rows from the clicks.json file:</h4>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select * from `clicks/clicks.json` limit 2;
-+------------+------------+------------+------------+------------+
-|  trans_id  |    date    |    time    | user_info  | trans_info |
-+------------+------------+------------+------------+------------+
-| 31920      | 2014-04-26 | 12:17:12   | {&quot;cust_id&quot;:22526,&quot;device&quot;:&quot;IOS5&quot;,&quot;state&quot;:&quot;il&quot;} | {&quot;prod_id&quot;:[174,2],&quot;purch_flag&quot;:&quot;false&quot;} |
-| 31026      | 2014-04-20 | 13:50:29   | {&quot;cust_id&quot;:16368,&quot;device&quot;:&quot;AOS4.2&quot;,&quot;state&quot;:&quot;nc&quot;} | {&quot;prod_id&quot;:[],&quot;purch_flag&quot;:&quot;false&quot;} |
-+------------+------------+------------+------------+------------+
-2 rows selected
++-----------+-------------+-----------+---------------------------------------------------+-------------------------------------------+
+| trans_id  |    date     |   time    |                     user_info                     |                trans_info                 |
++-----------+-------------+-----------+---------------------------------------------------+-------------------------------------------+
+| 31920     | 2014-04-26  | 12:17:12  | {&quot;cust_id&quot;:22526,&quot;device&quot;:&quot;IOS5&quot;,&quot;state&quot;:&quot;il&quot;}    | {&quot;prod_id&quot;:[174,2],&quot;purch_flag&quot;:&quot;false&quot;}  |
+| 31026     | 2014-04-20  | 13:50:29  | {&quot;cust_id&quot;:16368,&quot;device&quot;:&quot;AOS4.2&quot;,&quot;state&quot;:&quot;nc&quot;}  | {&quot;prod_id&quot;:[],&quot;purch_flag&quot;:&quot;false&quot;}       |
++-----------+-------------+-----------+---------------------------------------------------+-------------------------------------------+
+2 rows selected 
 </code></pre></div>
-<p>Note that the FROM clause reference points to a specific file. Drill expands
+<p>The FROM clause reference points to a specific file. Drill expands
 the traditional concept of a “table reference” in a standard SQL FROM clause
 to refer to a file in a local or distributed file system.</p>
 
@@ -1206,13 +1225,13 @@ or characters.</p>
 
 <h4 id="select-2-rows-from-the-campaign.json-file:">Select 2 rows from the campaign.json file:</h4>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select * from `clicks/clicks.campaign.json` limit 2;
-+------------+------------+------------+------------+------------+------------+
-|  trans_id  |    date    |    time    | user_info  |  ad_info   | trans_info |
-+------------+------------+------------+------------+------------+------------+
-| 35232      | 2014-05-10 | 00:13:03   | {&quot;cust_id&quot;:18520,&quot;device&quot;:&quot;AOS4.3&quot;,&quot;state&quot;:&quot;tx&quot;} | {&quot;camp_id&quot;:&quot;null&quot;} | {&quot;prod_id&quot;:[7,7],&quot;purch_flag&quot;:&quot;true&quot;} |
-| 31995      | 2014-05-22 | 16:06:38   | {&quot;cust_id&quot;:17182,&quot;device&quot;:&quot;IOS6&quot;,&quot;state&quot;:&quot;fl&quot;} | {&quot;camp_id&quot;:&quot;null&quot;} | {&quot;prod_id&quot;:[],&quot;purch_flag&quot;:&quot;false&quot;} |
-+------------+------------+------------+------------+------------+------------+
-2 rows selected
++-----------+-------------+-----------+---------------------------------------------------+---------------------+----------------------------------------+
+| trans_id  |    date     |   time    |                     user_info                     |       ad_info       |               trans_info               |
++-----------+-------------+-----------+---------------------------------------------------+---------------------+----------------------------------------+
+| 35232     | 2014-05-10  | 00:13:03  | {&quot;cust_id&quot;:18520,&quot;device&quot;:&quot;AOS4.3&quot;,&quot;state&quot;:&quot;tx&quot;}  | {&quot;camp_id&quot;:&quot;null&quot;}  | {&quot;prod_id&quot;:[7,7],&quot;purch_flag&quot;:&quot;true&quot;}  |
+| 31995     | 2014-05-22  | 16:06:38  | {&quot;cust_id&quot;:17182,&quot;device&quot;:&quot;IOS6&quot;,&quot;state&quot;:&quot;fl&quot;}    | {&quot;camp_id&quot;:&quot;null&quot;}  | {&quot;prod_id&quot;:[],&quot;purch_flag&quot;:&quot;false&quot;}    |
++-----------+-------------+-----------+---------------------------------------------------+---------------------+----------------------------------------+
+2 rows selected 
 </code></pre></div>
 <p>Notice that with a select * query, any complex data types such as maps and
 arrays return as JSON strings. You will see how to unpack this data using
@@ -1239,21 +1258,23 @@ are many of these files, but you can use Drill to query them all as a single
 data source, or to query a subset of the files.</p>
 
 <h4 id="set-the-workspace-to-dfs.logs:">Set the workspace to dfs.logs:</h4>
-<div class="highlight"><pre><code class="language-text" data-lang="text"> 0: jdbc:drill:&gt; use dfs.logs;
-+------------+------------+
-| ok | summary |
-+------------+------------+
-| true | Default schema changed to &#39;dfs.logs&#39; |
-+------------+------------+
+<div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; use dfs.logs;
++-------+---------------------------------------+
+|  ok   |                summary                |
++-------+---------------------------------------+
+| true  | Default schema changed to [dfs.logs]  |
++-------+---------------------------------------+
+1 row selected
 </code></pre></div>
 <h4 id="select-2-rows-from-the-logs-directory:">Select 2 rows from the logs directory:</h4>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select * from logs limit 2;
-+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+----------+
-| dir0 | dir1 | trans_id | date | time | cust_id | device | state | camp_id | keywords | prod_id | purch_fl |
-+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+----------+
-| 2014 | 8 | 24181 | 08/02/2014 | 09:23:52 | 0 | IOS5 | il | 2 | wait | 128 | false |
-| 2014 | 8 | 24195 | 08/02/2014 | 07:58:19 | 243 | IOS5 | mo | 6 | hmm | 107 | false |
-+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+----------+
++-------+-------+-----------+-------------+-----------+----------+---------+--------+----------+-----------+----------+-------------+
+| dir0  | dir1  | trans_id  |    date     |   time    | cust_id  | device  | state  | camp_id  | keywords  | prod_id  | purch_flag  |
++-------+-------+-----------+-------------+-----------+----------+---------+--------+----------+-----------+----------+-------------+
+| 2012  | 8     | 109       | 08/07/2012  | 20:33:13  | 144618   | IOS5    | ga     | 4        | hey       | 6        | false       |
+| 2012  | 8     | 119       | 08/19/2012  | 03:37:50  | 17       | IOS5    | tx     | 16       | and       | 50       | false       |
++-------+-------+-----------+-------------+-----------+----------+---------+--------+----------+-----------+----------+-------------+
+2 rows selected 
 </code></pre></div>
 <p>Note that this is flat JSON data. The dfs.clicks workspace location property
 points to a directory that contains the logs directory, making the FROM clause
@@ -1266,11 +1287,12 @@ queries that leverage these dynamic variables.</p>
 
 <h4 id="find-the-total-number-of-rows-in-the-logs-directory-(all-files):">Find the total number of rows in the logs directory (all files):</h4>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select count(*) from logs;
-+------------+
-| EXPR$0 |
-+------------+
-| 48000 |
-+------------+
++---------+
+| EXPR$0  |
++---------+
+| 48000   |
++---------+
+1 row selected 
 </code></pre></div>
 <p>This query traverses all of the files in the logs directory and its
 subdirectories to return the total number of rows in those files.</p>

http://git-wip-us.apache.org/repos/asf/drill-site/blob/1e0ae343/docs/lesson-2-run-queries-with-ansi-sql/index.html
----------------------------------------------------------------------
diff --git a/docs/lesson-2-run-queries-with-ansi-sql/index.html b/docs/lesson-2-run-queries-with-ansi-sql/index.html
index f5c8fef..b7cd8fa 100644
--- a/docs/lesson-2-run-queries-with-ansi-sql/index.html
+++ b/docs/lesson-2-run-queries-with-ansi-sql/index.html
@@ -938,31 +938,32 @@ statement.</p>
 <h2 id="aggregation">Aggregation</h2>
 
 <h3 id="set-the-schema-to-hive:">Set the schema to hive:</h3>
-<div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; use hive;
-+------------+------------+
-|     ok     |  summary   |
-+------------+------------+
-| true       | Default schema changed to &#39;hive&#39; |
-+------------+------------+
-1 row selected
+<div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; use hive.`default`;
++-------+-------------------------------------------+
+|  ok   |                  summary                  |
++-------+-------------------------------------------+
+| true  | Default schema changed to [hive.default]  |
++-------+-------------------------------------------+
+1 row selected 
 </code></pre></div>
 <h3 id="return-sales-totals-by-month:">Return sales totals by month:</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select `month`, sum(order_total)
 from orders group by `month` order by 2 desc;
-+------------+------------+
-| month | EXPR$1 |
-+------------+------------+
-| June | 950481 |
-| May | 947796 |
-| March | 836809 |
-| April | 807291 |
-| July | 757395 |
-| October | 676236 |
-| August | 572269 |
-| February | 532901 |
-| September | 373100 |
-| January | 346536 |
-+------------+------------+
++------------+---------+
+|   month    | EXPR$1  |
++------------+---------+
+| June       | 950481  |
+| May        | 947796  |
+| March      | 836809  |
+| April      | 807291  |
+| July       | 757395  |
+| October    | 676236  |
+| August     | 572269  |
+| February   | 532901  |
+| September  | 373100  |
+| January    | 346536  |
++------------+---------+
+10 rows selected 
 </code></pre></div>
 <p>Drill supports SQL aggregate functions such as SUM, MAX, AVG, and MIN.
 Standard SQL clauses work in the same way in Drill queries as in relational
@@ -974,31 +975,31 @@ is a reserved word in SQL.</p>
 <h3 id="return-the-top-20-sales-totals-by-month-and-state:">Return the top 20 sales totals by month and state:</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select `month`, state, sum(order_total) as sales from orders group by `month`, state
 order by 3 desc limit 20;
-+------------+------------+------------+
-|   month    |   state    |   sales    |
-+------------+------------+------------+
-| May        | ca         | 119586     |
-| June       | ca         | 116322     |
-| April      | ca         | 101363     |
-| March      | ca         | 99540      |
-| July       | ca         | 90285      |
-| October    | ca         | 80090      |
-| June       | tx         | 78363      |
-| May        | tx         | 77247      |
-| March      | tx         | 73815      |
-| August     | ca         | 71255      |
-| April      | tx         | 68385      |
-| July       | tx         | 63858      |
-| February   | ca         | 63527      |
-| June       | fl         | 62199      |
-| June       | ny         | 62052      |
-| May        | fl         | 61651      |
-| May        | ny         | 59369      |
-| October    | tx         | 55076      |
-| March      | fl         | 54867      |
-| March      | ny         | 52101      |
-+------------+------------+------------+
-20 rows selected
++-----------+--------+---------+
+|   month   | state  |  sales  |
++-----------+--------+---------+
+| May       | ca     | 119586  |
+| June      | ca     | 116322  |
+| April     | ca     | 101363  |
+| March     | ca     | 99540   |
+| July      | ca     | 90285   |
+| October   | ca     | 80090   |
+| June      | tx     | 78363   |
+| May       | tx     | 77247   |
+| March     | tx     | 73815   |
+| August    | ca     | 71255   |
+| April     | tx     | 68385   |
+| July      | tx     | 63858   |
+| February  | ca     | 63527   |
+| June      | fl     | 62199   |
+| June      | ny     | 62052   |
+| May       | fl     | 61651   |
+| May       | ny     | 59369   |
+| October   | tx     | 55076   |
+| March     | fl     | 54867   |
+| March     | ny     | 52101   |
++-----------+--------+---------+
+20 rows selected 
 </code></pre></div>
 <p>Note the alias for the result of the SUM function. Drill supports column
 aliases and table aliases.</p>
@@ -1009,27 +1010,28 @@ aliases and table aliases.</p>
 
 <h3 id="set-the-workspace-to-dfs.clicks">Set the workspace to dfs.clicks</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; use dfs.clicks;
-+------------+------------+
-|     ok     |  summary   |
-+------------+------------+
-| true       | Default schema changed to &#39;dfs.clicks&#39; |
-+------------+------------+
++-------+-----------------------------------------+
+|  ok   |                 summary                 |
++-------+-----------------------------------------+
+| true  | Default schema changed to [dfs.clicks]  |
++-------+-----------------------------------------+
 1 row selected
 </code></pre></div>
 <h3 id="return-total-number-of-clicks-for-devices-that-indicate-high-click-throughs:">Return total number of clicks for devices that indicate high click-throughs:</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select t.user_info.device, count(*) from `clicks/clicks.json` t 
 group by t.user_info.device
 having count(*) &gt; 1000;
-+------------+------------+
-|   EXPR$0   |   EXPR$1   |
-+------------+------------+
-| IOS5       | 11814      |
-| AOS4.2     | 5986       |
-| IOS6       | 4464       |
-| IOS7       | 3135       |
-| AOS4.4     | 1562       |
-| AOS4.3     | 3039       |
-+------------+------------+
++---------+---------+
+| EXPR$0  | EXPR$1  |
++---------+---------+
+| IOS5    | 11814   |
+| AOS4.2  | 5986    |
+| IOS6    | 4464    |
+| IOS7    | 3135    |
+| AOS4.4  | 1562    |
+| AOS4.3  | 3039    |
++---------+---------+
+6 rows selected
 </code></pre></div>
 <p>The aggregate is a count of the records for each different mobile device in
 the clickstream data. Only the activity for the devices that registered more
@@ -1059,19 +1061,23 @@ duplicate rows from those files): <code>clicks.campaign.json</code> and <code>cl
 <h2 id="subqueries">Subqueries</h2>
 
 <h3 id="set-the-workspace-to-hive:">Set the workspace to hive:</h3>
-<div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; use hive;
-+------------+------------+
-|     ok     |  summary   |
-+------------+------------+
-| true       | Default schema changed to &#39;hive&#39; |
-+------------+------------+
+<div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; use hive.`default`;
++-------+-------------------------------------------+
+|  ok   |                  summary                  |
++-------+-------------------------------------------+
+| true  | Default schema changed to [hive.default]  |
++-------+-------------------------------------------+
+1 row selected
 </code></pre></div>
 <h3 id="compare-order-totals-across-states:">Compare order totals across states:</h3>
-<div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select o1.cust_id, sum(o1.order_total) as ny_sales,
-(select sum(o2.order_total) from hive.orders o2
-where o1.cust_id=o2.cust_id and state=&#39;ca&#39;) as ca_sales
-from hive.orders o1 where o1.state=&#39;ny&#39; group by o1.cust_id
-order by cust_id limit 20;
+<div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select ny_sales.cust_id, ny_sales.total_orders, ca_sales.total_orders
+from
+(select o.cust_id, sum(o.order_total) as total_orders from hive.orders o where state = &#39;ny&#39; group by o.cust_id) ny_sales
+left outer join
+(select o.cust_id, sum(o.order_total) as total_orders from hive.orders o where state = &#39;ca&#39; group by o.cust_id) ca_sales
+on ny_sales.cust_id = ca_sales.cust_id
+order by ny_sales.cust_id
+limit 20;
 +------------+------------+------------+
 |  cust_id   |  ny_sales  |  ca_sales  |
 +------------+------------+------------+
@@ -1097,26 +1103,18 @@ order by cust_id limit 20;
 | 1024       | 233        | null       |
 +------------+------------+------------+
 </code></pre></div>
-<p>This example demonstrates Drill support for correlated subqueries. This query
-uses a subquery in the select list and correlates the result of the subquery
-with the outer query, using the cust_id column reference. The subquery returns
-the sum of order totals for California, and the outer query returns the
-equivalent sum, for the same cust_id, for New York.</p>
-
-<p>The result set is sorted by the cust_id and presents the sales totals side by
-side for easy comparison. Null values indicate customer IDs that did not
-register any sales in that state.</p>
+<p>This example demonstrates Drill support for subqueries. </p>
 
 <h2 id="cast-function">CAST Function</h2>
 
 <h3 id="use-the-maprdb-workspace:">Use the maprdb workspace:</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; use maprdb;
-+------------+------------+
-|     ok     |  summary   |
-+------------+------------+
-| true       | Default schema changed to &#39;maprdb&#39; |
-+------------+------------+
-1 row selected
++-------+-------------------------------------+
+|  ok   |               summary               |
++-------+-------------------------------------+
+| true  | Default schema changed to [maprdb]  |
++-------+-------------------------------------+
+1 row selected (0.088 seconds)
 </code></pre></div>
 <h3 id="return-customer-data-with-appropriate-data-types">Return customer data with appropriate data types</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select cast(row_key as int) as cust_id, cast(t.personal.name as varchar(20)) as name, 
@@ -1124,16 +1122,15 @@ cast(t.personal.gender as varchar(10)) as gender, cast(t.personal.age as varchar
 cast(t.address.state as varchar(4)) as state, cast(t.loyalty.agg_rev as dec(7,2)) as agg_rev, 
 cast(t.loyalty.membership as varchar(20)) as membership
 from customers t limit 5;
-+------------+------------+------------+------------+------------    +------------+------------+
-|  cust_id   |    name    |   gender   |    age     |   state    |  agg_rev   | membership |
-+------------+------------+------------+------------+------------+------------+------------+
-| 10001      | &quot;Corrine Mecham&quot; | &quot;FEMALE&quot;   | &quot;15-20&quot;    | &quot;va&quot;       | 197.00     | &quot;silver&quot;   |
-| 10005      | &quot;Brittany Park&quot; | &quot;MALE&quot;     | &quot;26-35&quot;    | &quot;in&quot;       | 230.00     | &quot;silver&quot;   |
-| 10006      | &quot;Rose Lokey&quot; | &quot;MALE&quot;     | &quot;26-35&quot;    | &quot;ca&quot;       | 250.00     | &quot;silver&quot;   |
-| 10007      | &quot;James Fowler&quot; | &quot;FEMALE&quot;   | &quot;51-100&quot;   | &quot;me&quot;       | 263.00     | &quot;silver&quot;   |
-| 10010      | &quot;Guillermo Koehler&quot; | &quot;OTHER&quot;    | &quot;51-100&quot;   | &quot;mn&quot;       | 202.00     | &quot;silver&quot;   |
-+------------+------------+------------+------------+------------+------------+------------+
-5 rows selected
++----------+----------------------+-----------+-----------+--------+----------+-------------+
+| cust_id  |         name         |  gender   |    age    | state  | agg_rev  | membership  |
++----------+----------------------+-----------+-----------+--------+----------+-------------+
+| 10001    | &quot;Corrine Mecham&quot;     | &quot;FEMALE&quot;  | &quot;15-20&quot;   | &quot;va&quot;   | 197.00   | &quot;silver&quot;    |
+| 10005    | &quot;Brittany Park&quot;      | &quot;MALE&quot;    | &quot;26-35&quot;   | &quot;in&quot;   | 230.00   | &quot;silver&quot;    |
+| 10006    | &quot;Rose Lokey&quot;         | &quot;MALE&quot;    | &quot;26-35&quot;   | &quot;ca&quot;   | 250.00   | &quot;silver&quot;    |
+| 10007    | &quot;James Fowler&quot;       | &quot;FEMALE&quot;  | &quot;51-100&quot;  | &quot;me&quot;   | 263.00   | &quot;silver&quot;    |
+| 10010    | &quot;Guillermo Koehler&quot;  | &quot;OTHER&quot;   | &quot;51-100&quot;  | &quot;mn&quot;   | 202.00   | &quot;silver&quot;    |
++----------+----------------------+-----------+-----------+--------+----------+-------------+
 </code></pre></div>
 <p>Note the following features of this query:</p>
 
@@ -1159,11 +1156,12 @@ from customers t limit 1;
 </code></pre></div>
 <h2 id="create-view-command">CREATE VIEW Command</h2>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; use dfs.views;
-+------------+------------+
-| ok | summary |
-+------------+------------+
-| true | Default schema changed to &#39;dfs.views&#39; |
-+------------+------------+
++-------+----------------------------------------+
+|  ok   |                summary                 |
++-------+----------------------------------------+
+| true  | Default schema changed to [dfs.views]  |
++-------+----------------------------------------+
+1 row selected
 </code></pre></div>
 <h3 id="use-a-mutable-workspace:">Use a mutable workspace:</h3>
 
@@ -1180,11 +1178,11 @@ cast(t.address.state as varchar(4)) as state,
 cast(t.loyalty.agg_rev as dec(7,2)) as agg_rev,
 cast(t.loyalty.membership as varchar(20)) as membership
 from maprdb.customers t;
-+------------+------------+
-|     ok     |  summary   |
-+------------+------------+
-| true       | View &#39;custview&#39; replaced successfully in &#39;dfs.views&#39; schema |
-+------------+------------+
++-------+-------------------------------------------------------------+
+|  ok   |                           summary                           |
++-------+-------------------------------------------------------------+
+| true  | View &#39;custview&#39; created successfully in &#39;dfs.views&#39; schema  |
++-------+-------------------------------------------------------------+
 1 row selected
 </code></pre></div>
 <p>Drill provides CREATE OR REPLACE VIEW syntax similar to relational databases
@@ -1206,11 +1204,12 @@ supports the creation of metadata in the file system.</p>
 
 <h3 id="query-data-from-the-view:">Query data from the view:</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select * from custview limit 1;
-+------------+------------+------------+------------+------------+------------+------------+
-|  cust_id   |    name    |   gender   |    age     |   state    |  agg_rev   | membership |
-+------------+------------+------------+------------+------------+------------+------------+
-| 10001      | &quot;Corrine Mecham&quot; | &quot;FEMALE&quot;   | &quot;15-20&quot;    | &quot;va&quot;       | 197.00     | &quot;silver&quot;   |
-+------------+------------+------------+------------+------------+------------+------------+
++----------+-------------------+-----------+----------+--------+----------+-------------+
+| cust_id  |       name        |  gender   |   age    | state  | agg_rev  | membership  |
++----------+-------------------+-----------+----------+--------+----------+-------------+
+| 10001    | &quot;Corrine Mecham&quot;  | &quot;FEMALE&quot;  | &quot;15-20&quot;  | &quot;va&quot;   | 197.00   | &quot;silver&quot;    |
++----------+-------------------+-----------+----------+--------+----------+-------------+
+1 row selected
 </code></pre></div>
 <p>Once the users get an idea on what data is available by exploring it directly
 from file system , views can be used as a way to take the data in downstream

http://git-wip-us.apache.org/repos/asf/drill-site/blob/1e0ae343/docs/lesson-3-run-queries-on-complex-data-types/index.html
----------------------------------------------------------------------
diff --git a/docs/lesson-3-run-queries-on-complex-data-types/index.html b/docs/lesson-3-run-queries-on-complex-data-types/index.html
index 372146f..6d48126 100644
--- a/docs/lesson-3-run-queries-on-complex-data-types/index.html
+++ b/docs/lesson-3-run-queries-on-complex-data-types/index.html
@@ -950,28 +950,30 @@ exist. Here is a visual example of how this works:</p>
 
 <h3 id="set-workspace-to-dfs.logs:">Set workspace to dfs.logs:</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; use dfs.logs;
-+------------+------------+
-| ok | summary |
-+------------+------------+
-| true | Default schema changed to &#39;dfs.logs&#39; |
-+------------+------------+
++-------+---------------------------------------+
+|  ok   |                summary                |
++-------+---------------------------------------+
+| true  | Default schema changed to [dfs.logs]  |
++-------+---------------------------------------+
+1 row selected
 </code></pre></div>
 <h3 id="query-logs-data-for-a-specific-year:">Query logs data for a specific year:</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select * from logs where dir0=&#39;2013&#39; limit 10;
-+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+
-|    dir0    |    dir1    |  trans_id  |    date    |    time    |  cust_id   |   device   |   state    |  camp_id   |  keywords  |  prod_id   | purch_flag |
-+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+
-| 2013       | 2          | 12115      | 02/23/2013 | 19:48:24   | 3          | IOS5       | az         | 5          | who&#39;s      | 6          | false      |
-| 2013       | 2          | 12127      | 02/26/2013 | 19:42:03   | 11459      | IOS5       | wa         | 10         | for        | 331        | false      |
-| 2013       | 2          | 12138      | 02/09/2013 | 05:49:01   | 1          | IOS6       | ca         | 7          | minutes    | 500        | false      |
-| 2013       | 2          | 12139      | 02/23/2013 | 06:58:20   | 1          | AOS4.4     | ms         | 7          | i          | 20         | false      |
-| 2013       | 2          | 12145      | 02/10/2013 | 10:14:56   | 10         | IOS5       | mi         | 6          | wrong      | 42         | false      |
-| 2013       | 2          | 12157      | 02/15/2013 | 02:49:22   | 102        | IOS5       | ny         | 5          | want       | 95         | false      |
-| 2013       | 2          | 12176      | 02/19/2013 | 08:39:02   | 28         | IOS5       | or         | 0          | and        | 351        | false      |
-| 2013       | 2          | 12194      | 02/24/2013 | 08:26:17   | 125445     | IOS5       | ar         | 0          | say        | 500        | true       |
-| 2013       | 2          | 12236      | 02/05/2013 | 01:40:05   | 10         | IOS5       | nj         | 2          | sir        | 393        | false      |
-| 2013       | 2          | 12249      | 02/03/2013 | 04:45:47   | 21725      | IOS5       | nj         | 5          | no         | 414        | false      |
-+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+------------+
++-------+-------+-----------+-------------+-----------+----------+---------+--------+----------+-----------+----------+-------------+
+| dir0  | dir1  | trans_id  |    date     |   time    | cust_id  | device  | state  | camp_id  | keywords  | prod_id  | purch_flag  |
++-------+-------+-----------+-------------+-----------+----------+---------+--------+----------+-----------+----------+-------------+
+| 2013  | 8     | 12104     | 08/29/2013  | 09:34:37  | 962      | IOS5    | ma     | 3        | milhouse  | 17       | false       |
+| 2013  | 8     | 12132     | 08/23/2013  | 01:11:25  | 4        | IOS7    | mi     | 11       | hi        | 439      | false       |
+| 2013  | 8     | 12177     | 08/14/2013  | 13:48:50  | 23       | AOS4.2  | il     | 14       | give      | 382      | false       |
+| 2013  | 8     | 12180     | 08/03/2013  | 20:48:45  | 1509     | IOS7    | ca     | 0        | i&#39;m       | 340      | false       |
+| 2013  | 8     | 12187     | 08/16/2013  | 10:28:07  | 0        | IOS5    | ny     | 16       | clicking  | 11       | false       |
+| 2013  | 8     | 12190     | 08/10/2013  | 14:16:50  | 9        | IOS5    | va     | 3        | a         | 495      | false       |
+| 2013  | 8     | 12200     | 08/02/2013  | 20:54:38  | 42219    | IOS5    | ia     | 0        | what&#39;s    | 346      | false       |
+| 2013  | 8     | 12210     | 08/05/2013  | 20:12:24  | 8073     | IOS5    | sc     | 5        | if        | 33       | false       |
+| 2013  | 8     | 12235     | 08/28/2013  | 07:49:45  | 595      | IOS5    | tx     | 2        | that      | 51       | false       |
+| 2013  | 8     | 12239     | 08/13/2013  | 03:24:31  | 2        | IOS5    | or     | 6        | haw-haw   | 40       | false       |
++-------+-------+-----------+-------------+-----------+----------+---------+--------+----------+-----------+----------+-------------+
+10 rows selected
 </code></pre></div>
 <p>This query constrains files inside the subdirectory named 2013. The variable
 dir0 refers to the first level down from logs, dir1 to the next level, and so
@@ -984,33 +986,33 @@ an IOS5 device in August 2013.</p>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select dir0 as yr, dir1 as mth, cust_id from logs
 where dir0=&#39;2013&#39; and dir1=&#39;8&#39; and device=&#39;IOS5&#39; and purch_flag=&#39;true&#39;
 order by `date`;
-+------------+------------+------------+
-|     yr     |    mth     |  cust_id   |
-+------------+------------+------------+
-| 2013       | 8          | 4          |
-| 2013       | 8          | 521        |
-| 2013       | 8          | 1          |
-| 2013       | 8          | 2          |
++-------+------+----------+
+|  yr   | mth  | cust_id  |
++-------+------+----------+
+| 2013  | 8    | 4        |
+| 2013  | 8    | 521      |
+| 2013  | 8    | 1        |
+| 2013  | 8    | 2        |
 
 ...
 </code></pre></div>
 <h3 id="return-monthly-counts-per-customer-for-a-given-year:">Return monthly counts per customer for a given year:</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select cust_id, dir1 month_no, count(*) month_count from logs
 where dir0=2014 group by cust_id, dir1 order by cust_id, month_no limit 10;
-+------------+------------+-------------+
-|  cust_id   |  month_no  | month_count |
-+------------+------------+-------------+
-| 0          | 1          | 143         |
-| 0          | 2          | 118         |
-| 0          | 3          | 117         |
-| 0          | 4          | 115         |
-| 0          | 5          | 137         |
-| 0          | 6          | 117         |
-| 0          | 7          | 142         |
-| 0          | 8          | 19          |
-| 1          | 1          | 66          |
-| 1          | 2          | 59          |
-+------------+------------+-------------+
++----------+-----------+--------------+
+| cust_id  | month_no  | month_count  |
++----------+-----------+--------------+
+| 0        | 1         | 143          |
+| 0        | 2         | 118          |
+| 0        | 3         | 117          |
+| 0        | 4         | 115          |
+| 0        | 5         | 137          |
+| 0        | 6         | 117          |
+| 0        | 7         | 142          |
+| 0        | 8         | 19           |
+| 1        | 1         | 66           |
+| 1        | 2         | 59           |
++----------+-----------+--------------+
 10 rows selected
 </code></pre></div>
 <p>This query groups the aggregate function by customer ID and month for one
@@ -1024,11 +1026,12 @@ JavaScript notation, you will already know how some of these extensions work.</p
 
 <h3 id="set-the-workspace-to-dfs.clicks:">Set the workspace to dfs.clicks:</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; use dfs.clicks;
-+------------+------------+
-| ok | summary |
-+------------+------------+
-| true | Default schema changed to &#39;dfs.clicks&#39; |
-+------------+------------+
++-------+-----------------------------------------+
+|  ok   |                 summary                 |
++-------+-----------------------------------------+
+| true  | Default schema changed to [dfs.clicks]  |
++-------+-----------------------------------------+
+1 row selected
 </code></pre></div>
 <h3 id="explore-clickstream-data:">Explore clickstream data:</h3>
 
@@ -1036,29 +1039,31 @@ JavaScript notation, you will already know how some of these extensions work.</p
 arrays within arrays. The following queries show how to access this complex
 data.</p>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select * from `clicks/clicks.json` limit 5;
-+------------+------------+------------+------------+------------+
-| trans_id | date | time | user_info | trans_info |
-+------------+------------+------------+------------+------------+
-| 31920 | 2014-04-26 | 12:17:12 | {&quot;cust_id&quot;:22526,&quot;device&quot;:&quot;IOS5&quot;,&quot;state&quot;:&quot;il&quot;} | {&quot;prod_id&quot;:[174,2],&quot;purch_flag&quot;:&quot;false&quot;} |
-| 31026 | 2014-04-20 | 13:50:29 | {&quot;cust_id&quot;:16368,&quot;device&quot;:&quot;AOS4.2&quot;,&quot;state&quot;:&quot;nc&quot;} | {&quot;prod_id&quot;:[],&quot;purch_flag&quot;:&quot;false&quot;} |
-| 33848 | 2014-04-10 | 04:44:42 | {&quot;cust_id&quot;:21449,&quot;device&quot;:&quot;IOS6&quot;,&quot;state&quot;:&quot;oh&quot;} | {&quot;prod_id&quot;:[582],&quot;purch_flag&quot;:&quot;false&quot;} |
-| 32383 | 2014-04-18 | 06:27:47 | {&quot;cust_id&quot;:20323,&quot;device&quot;:&quot;IOS5&quot;,&quot;state&quot;:&quot;oh&quot;} | {&quot;prod_id&quot;:[710,47],&quot;purch_flag&quot;:&quot;false&quot;} |
-| 32359 | 2014-04-19 | 23:13:25 | {&quot;cust_id&quot;:15360,&quot;device&quot;:&quot;IOS5&quot;,&quot;state&quot;:&quot;ca&quot;} | {&quot;prod_id&quot;: [0,8,170,173,1,124,46,764,30,711,0,3,25],&quot;purch_flag&quot;:&quot;true&quot;} |
-+------------+------------+------------+------------+------------+
++-----------+-------------+-----------+---------------------------------------------------+---------------------------------------------------------------------------+
+| trans_id  |    date     |   time    |                     user_info                     |                                trans_info                                 |
++-----------+-------------+-----------+---------------------------------------------------+---------------------------------------------------------------------------+
+| 31920     | 2014-04-26  | 12:17:12  | {&quot;cust_id&quot;:22526,&quot;device&quot;:&quot;IOS5&quot;,&quot;state&quot;:&quot;il&quot;}    | {&quot;prod_id&quot;:[174,2],&quot;purch_flag&quot;:&quot;false&quot;}                                  |
+| 31026     | 2014-04-20  | 13:50:29  | {&quot;cust_id&quot;:16368,&quot;device&quot;:&quot;AOS4.2&quot;,&quot;state&quot;:&quot;nc&quot;}  | {&quot;prod_id&quot;:[],&quot;purch_flag&quot;:&quot;false&quot;}                                       |
+| 33848     | 2014-04-10  | 04:44:42  | {&quot;cust_id&quot;:21449,&quot;device&quot;:&quot;IOS6&quot;,&quot;state&quot;:&quot;oh&quot;}    | {&quot;prod_id&quot;:[582],&quot;purch_flag&quot;:&quot;false&quot;}                                    |
+| 32383     | 2014-04-18  | 06:27:47  | {&quot;cust_id&quot;:20323,&quot;device&quot;:&quot;IOS5&quot;,&quot;state&quot;:&quot;oh&quot;}    | {&quot;prod_id&quot;:[710,47],&quot;purch_flag&quot;:&quot;false&quot;}                                 |
+| 32359     | 2014-04-19  | 23:13:25  | {&quot;cust_id&quot;:15360,&quot;device&quot;:&quot;IOS5&quot;,&quot;state&quot;:&quot;ca&quot;}    | {&quot;prod_id&quot;:[0,8,170,173,1,124,46,764,30,711,0,3,25],&quot;purch_flag&quot;:&quot;true&quot;}  |
++-----------+-------------+-----------+---------------------------------------------------+---------------------------------------------------------------------------+
+5 rows selected
 </code></pre></div>
 <h3 id="unpack-the-user_info-column:">Unpack the user_info column:</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select t.user_info.cust_id as custid, t.user_info.device as device,
 t.user_info.state as state
 from `clicks/clicks.json` t limit 5;
-+------------+------------+------------+
-|   custid   |   device   |   state    |
-+------------+------------+------------+
-| 22526      | IOS5       | il         |
-| 16368      | AOS4.2     | nc         |
-| 21449      | IOS6       | oh         |
-| 20323      | IOS5       | oh         |
-| 15360      | IOS5       | ca         |
-+------------+------------+------------+
++---------+---------+--------+
+| custid  | device  | state  |
++---------+---------+--------+
+| 22526   | IOS5    | il     |
+| 16368   | AOS4.2  | nc     |
+| 21449   | IOS6    | oh     |
+| 20323   | IOS5    | oh     |
+| 15360   | IOS5    | ca     |
++---------+---------+--------+
+5 rows selected (0.171 seconds)
 </code></pre></div>
 <p>This query uses a simple table.column.column notation to extract nested column
 data. For example:</p>
@@ -1074,15 +1079,16 @@ parsed as table names by the SQL parser.</p>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select t.trans_info.prod_id as prodid, t.trans_info.purch_flag as
 purchased
 from `clicks/clicks.json` t limit 5;
-+------------+------------+
-|   prodid   | purchased  |
-+------------+------------+
-| [174,2]    | false      |
-| []         | false      |
-| [582]      | false      |
-| [710,47]   | false      |
-| [0,8,170,173,1,124,46,764,30,711,0,3,25] | true       |
-    5 rows selected
++-------------------------------------------+------------+
+|                  prodid                   | purchased  |
++-------------------------------------------+------------+
+| [174,2]                                   | false      |
+| []                                        | false      |
+| [582]                                     | false      |
+| [710,47]                                  | false      |
+| [0,8,170,173,1,124,46,764,30,711,0,3,25]  | true       |
++-------------------------------------------+------------+
+5 rows selected
 </code></pre></div>
 <p>Note that this result reveals that the prod_id column contains an array of IDs
 (one or more product ID values per row, separated by commas). The next step
@@ -1186,46 +1192,52 @@ quickly create a Drill table from the results of the query.</p>
 
 <h3 id="continue-to-use-the-dfs.clicks-workspace">Continue to use the dfs.clicks workspace</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; use dfs.clicks;
-+------------+------------+
-| ok | summary |
-+------------+------------+
-| true | Default schema changed to &#39;dfs.clicks&#39; |
-+------------+------------+
++-------+-----------------------------------------+
+|  ok   |                 summary                 |
++-------+-----------------------------------------+
+| true  | Default schema changed to [dfs.clicks]  |
++-------+-----------------------------------------+
+1 row selected (1.61 seconds)
 </code></pre></div>
 <h3 id="return-product-searches-for-high-value-customers:">Return product searches for high-value customers:</h3>
-<div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select o.cust_id, o.order_total, t.trans_info.prod_id[0] as prod_id 
-from hive.orders as o, `clicks/clicks.json` t 
-where o.cust_id=t.user_info.cust_id 
-and o.order_total &gt; (select avg(inord.order_total) 
-from hive.orders inord where inord.state = o.state);
-+------------+-------------+------------+
-|  cust_id   | order_total |   prod_id  |
-+------------+-------------+------------+
-...
-| 9650       | 69          | 16         |
-| 9650       | 69          | 560        |
-| 9650       | 69          | 959        |
-| 9654       | 76          | 768        |
-| 9656       | 76          | 32         |
-| 9656       | 76          | 16         |
-...
-+------------+-------------+------------+
-106,281 rows selected
+<div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select o.cust_id, o.order_total, t.trans_info.prod_id[0] as prod_id
+from 
+hive.orders as o
+join `clicks/clicks.json` t
+on o.cust_id=t.user_info.cust_id
+where o.order_total &gt; (select avg(inord.order_total)
+                      from hive.orders inord
+                      where inord.state = o.state);
++----------+--------------+----------+
+| cust_id  | order_total  | prod_id  |
++----------+--------------+----------+
+| 1328     | 73           | 26       |
+| 1328     | 146          | 26       |
+| 1328     | 56           | 26       |
+| 1328     | 91           | 26       |
+| 1328     | 74           | 26       |
+    ...
++----------+--------------+----------+
+107,482 rows selected (14.863 seconds)
 </code></pre></div>
 <p>This query returns a list of products that are being searched for by customers
 who have made transactions that are above the average in their states.</p>
 
 <h3 id="materialize-the-result-of-the-previous-query:">Materialize the result of the previous query:</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; create table product_search as select o.cust_id, o.order_total, t.trans_info.prod_id[0] as prod_id
-from hive.orders as o, `clicks/clicks.json` t 
-where o.cust_id=t.user_info.cust_id and o.order_total &gt; (select avg(inord.order_total) 
-from hive.orders inord where inord.state = o.state);
-+------------+---------------------------+
-|  Fragment  | Number of records written |
-+------------+---------------------------+
-| 0_0        | 106281                    |
-+------------+---------------------------+
-1 row selected
+from
+hive.orders as o
+join `clicks/clicks.json` t
+on o.cust_id=t.user_info.cust_id
+where o.order_total &gt; (select avg(inord.order_total)
+                      from hive.orders inord
+                      where inord.state = o.state);
++-----------+----------------------------+
+| Fragment  | Number of records written  |
++-----------+----------------------------+
+| 0_0       | 107482                     |
++-----------+----------------------------+
+1 row selected (3.488 seconds)
 </code></pre></div>
 <p>This example uses a CTAS statement to create a table based on a correlated
 subquery that you ran previously. This table contains all of the rows that the
@@ -1238,12 +1250,12 @@ in csv, parquet, and json formats.</p>
 <p>This example simply checks that the CTAS statement worked by verifying the
 number of rows in the table.</p>
 <div class="highlight"><pre><code class="language-text" data-lang="text">0: jdbc:drill:&gt; select count(*) from product_search;
-+------------+
-|   EXPR$0   |
-+------------+
-| 106281     |
-+------------+
-1 row selected
++---------+
+| EXPR$0  |
++---------+
+| 107482  |
++---------+
+1 row selected (0.155 seconds)
 </code></pre></div>
 <h3 id="find-the-storage-file-for-the-table:">Find the storage file for the table:</h3>
 <div class="highlight"><pre><code class="language-text" data-lang="text">[root@maprdemo product_search]# cd /mapr/demo.mapr.com/data/nested/product_search
@@ -1257,7 +1269,7 @@ drwxr-xr-x. 4 root root      2 Sep 15 13:41 ..
 stored in the location defined by the dfs.clicks workspace:</p>
 <div class="highlight"><pre><code class="language-text" data-lang="text">&quot;location&quot;: &quot;http://demo.mapr.com/data/nested&quot;
 </code></pre></div>
-<p>with a subdirectory that has the same name as the table you created.</p>
+<p>There is a subdirectory that has the same name as the table you created.</p>
 
 <h2 id="what&#39;s-next">What&#39;s Next</h2>
 

http://git-wip-us.apache.org/repos/asf/drill-site/blob/1e0ae343/docs/supported-data-types/index.html
----------------------------------------------------------------------
diff --git a/docs/supported-data-types/index.html b/docs/supported-data-types/index.html
index 0cebb90..e0dcee5 100644
--- a/docs/supported-data-types/index.html
+++ b/docs/supported-data-types/index.html
@@ -988,7 +988,7 @@
 <td>2015-12-30 22:55:55.23</td>
 </tr>
 <tr>
-<td>CHARACTER VARYING, CHARACTER, CHAR, or VARCHAR***</td>
+<td>CHARACTER VARYING, CHARACTER, CHAR,*** or VARCHAR</td>
 <td>UTF8-encoded variable-length string. The default limit is 1 character. The maximum character limit is 2,147,483,647.</td>
 <td>CHAR(30) casts data to a 30-character string maximum.</td>
 </tr>
@@ -1000,7 +1000,7 @@
 
 <h2 id="enabling-the-decimal-type">Enabling the DECIMAL Type</h2>
 
-<p>To enable the DECIMAL type, set the <code>planner.enable_decimal_data_type</code> option to <code>true</code>. Enable the DECIMAL data type if performance is not an issue.</p>
+<p>To enable the DECIMAL type, set the <code>planner.enable_decimal_data_type</code> option to <code>true</code>. The DECIMAL type is released as an alpha feature and not recommended for production use.</p>
 <div class="highlight"><pre><code class="language-text" data-lang="text"> ALTER SYSTEM SET `planner.enable_decimal_data_type` = true;
 
 +-------+--------------------------------------------+
@@ -1039,9 +1039,12 @@ Implicitly casts Parquet data to the SQL types shown in <a href="/docs/parquet-f
 Implicitly casts all textual data to VARCHAR.</li>
 </ul>
 
-<h2 id="precedence-of-data-types">Precedence of Data Types</h2>
+<h2 id="explicit-casting-precedence-of-data-types">Explicit Casting Precedence of Data Types</h2>
 
-<p>The following list includes data types Drill uses in descending order of precedence. As shown in the table, you can cast a NULL value, which has the lowest precedence, to any other type; you can cast a SMALLINT (not supported in this release) value to INT. You cannot cast an INT value to SMALLINT due to possible precision loss. Drill might deviate from these precedence rules for performance reasons. Under certain circumstances, such as queries involving SUBSTR and CONCAT functions, Drill reverses the order of precedence and allows a cast to VARCHAR from a type of higher precedence than VARCHAR, such as BIGINT.</p>
+<p>The following list includes data types Drill uses in descending order of precedence. Casting precedence shown in the following table applies to the implicit casting that Drill performs. For example, Drill might implicitly cast data when a query includes a function or filter on mismatched data types:</p>
+<div class="highlight"><pre><code class="language-text" data-lang="text">SELECT myBigInt FROM mytable WHERE myBigInt = 2.5;
+</code></pre></div>
+<p>As shown in the table, you can cast a NULL value, which has the lowest precedence, to any other type; you can cast a SMALLINT (not supported in this release) value to INT. Drill might deviate from these precedence rules for performance reasons. Under certain circumstances, such as queries involving SUBSTR and CONCAT functions, Drill reverses the order of precedence and allows a cast to VARCHAR from a type of higher precedence than VARCHAR, such as BIGINT.</p>
 
 <h3 id="casting-precedence">Casting Precedence</h3>
 
@@ -1116,8 +1119,8 @@ Implicitly casts all textual data to VARCHAR.</li>
 <tr>
 <td>21</td>
 <td>NULL (lowest)</td>
-<td></td>
-<td></td>
+<td>21</td>
+<td>NULL (lowest)</td>
 </tr>
 </tbody></table>
 
@@ -1178,7 +1181,7 @@ Converts a string to TIMESTAMP.</li>
 </tr>
 <tr>
 <td>SMALLINT*</td>
-<td></td>
+<td>yes</td>
 <td>yes</td>
 <td>yes</td>
 <td>yes</td>
@@ -1191,7 +1194,7 @@ Converts a string to TIMESTAMP.</li>
 <tr>
 <td>INT</td>
 <td>yes</td>
-<td>no</td>
+<td>yes</td>
 <td>yes</td>
 <td>yes</td>
 <td>yes</td>
@@ -1242,7 +1245,7 @@ Converts a string to TIMESTAMP.</li>
 <td>yes</td>
 <td>yes</td>
 <td>yes</td>
-<td>no</td>
+<td>yes</td>
 <td>yes</td>
 <td>no</td>
 <td>yes</td>
@@ -1255,7 +1258,7 @@ Converts a string to TIMESTAMP.</li>
 <td>yes</td>
 <td>yes</td>
 <td>yes</td>
-<td>no</td>
+<td>char</td>
 <td>yes</td>
 <td>yes</td>
 <td>yes</td>
@@ -1282,7 +1285,7 @@ Converts a string to TIMESTAMP.</li>
 <td>yes</td>
 <td>yes</td>
 <td>no</td>
-<td>yes</td>
+<td>no</td>
 </tr>
 <tr>
 <td>VARBINARY**</td>
@@ -1299,9 +1302,16 @@ Converts a string to TIMESTAMP.</li>
 </tbody></table>
 
 <p>* Not supported in this release.<br>
-** Used to cast binary data coming to/from sources such as MapR-DB/HBase.<br>
+** Used to cast binary UTF-8 data coming to/from sources such as MapR-DB/HBase.<br>
 *** You cannot convert a character string having a decimal point to an INT or BIGINT.   </p>
 
+<div class="admonition note">
+  <p class="first admonition-title">Note</p>
+  <p class="last">The CAST function does not support all representations of FIXEDBINARY. Only the UTF-8 format is supported.   </p>
+</div>
+
+<p>If your FIXEDBINARY or VARBINARY data is in a format other than UTF-8, such as big endian, use the CONVERT_TO/FROM functions instead of CAST.</p>
+
 <h3 id="date-and-time-data-types">Date and Time Data Types</h3>
 
 <table><thead>
@@ -1407,12 +1417,14 @@ Converts a string to TIMESTAMP.</li>
 </tr>
 </tbody></table>
 
-<p>* Used to cast binary data coming to/from sources such as MapR-DB/HBase.   </p>
+<p>* Used to cast binary UTF-8 data coming to/from sources such as MapR-DB/HBase.   </p>
 
 <h2 id="convert_to-and-convert_from-data-types">CONVERT_TO and CONVERT_FROM Data Types</h2>
 
-<p>You use the CONVERT_TO and CONVERT_FROM data types as arguments to the CONVERT_TO
-and CONVERT_FROM functions. CONVERT_FROM and CONVERT_TO methods transform a known binary representation/encoding to a Drill internal format. </p>
+<p>CONVERT_TO converts data to binary from the input type. CONVERT_FROM converts data from binary to the input type. For example, the following CONVERT_TO function converts an integer in big endian format to VARBINARY:</p>
+<div class="highlight"><pre><code class="language-text" data-lang="text">CONVERT_TO(mycolumn, &#39;INT_BE&#39;)
+</code></pre></div>
+<p>CONVERT_FROM and CONVERT_TO methods transform a known binary representation/encoding to a Drill internal format. </p>
 
 <p>We recommend storing HBase/MapR-DB data in a binary representation rather than
 a string representation. Use the *_BE types to store integer data types in an HBase or Mapr-DB table.  INT is a 4-byte little endian signed integer. INT_BE is a 4-byte big endian signed integer. The comparison order of *_BE encoded bytes is the same as the integer value itself if the bytes are unsigned or positive. Using a *_BE type facilitates scan range pruning and filter pushdown into HBase scan. </p>

http://git-wip-us.apache.org/repos/asf/drill-site/blob/1e0ae343/download/index.html
----------------------------------------------------------------------
diff --git a/download/index.html b/download/index.html
index 29263b2..1eac652 100644
--- a/download/index.html
+++ b/download/index.html
@@ -119,22 +119,22 @@
 </div>
 
 <div class="int_text" align="left"><link href="/css/download.css" rel="stylesheet" type="text/css">
-<p>Drill 0.9 was released on May 4, 2015.</p>
+<p>Drill 1.0 was released on May 19, 2015.</p>
 
 <div id="download_bar">
 <div class="table">
 <ul id="download_buttons">
-<li><a href="http://www.apache.org/dyn/closer.cgi/drill/drill-0.9.0/apache-drill-0.9.0.tar.gz" class="find" id="apachemirror">Find an Apache Mirror</a></li>
-<li><a href="http://getdrill.org/drill/download/apache-drill-0.9.0.tar.gz" rel="nofollow" class="dl" id="directdownload">Direct File Download</a></li>
+<li><a href="http://www.apache.org/dyn/closer.cgi/drill/drill-1.0.0/apache-drill-1.0.0.tar.gz" class="find" id="apachemirror">Find an Apache Mirror</a></li>
+<li><a href="http://getdrill.org/drill/download/apache-drill-1.0.0.tar.gz" rel="nofollow" class="dl" id="directdownload">Direct File Download</a></li>
 <li><a href="/docs/interfaces-introduction/" class="dl">Client Drivers (ODBC/JDBC)</a></li>
 </ul>
 </div>
 </div>
 
-<p>Additional resources for Drill 0.9:</p>
+<p>Additional resources for Drill 1.0:</p>
 <ul>
-<li><a href="/docs/apache-drill-0-9-0-release-notes/">Release notes</a></li>
-<li><a href="https://github.com/apache/drill/tree/0.9.0">Source code</a></li>
+<li><a href="/docs/apache-drill-1-0-0-release-notes/">Release notes</a></li>
+<li><a href="https://github.com/apache/drill/tree/1.0.0">Source code</a></li>
 </ul>
 
 <p>If you're looking for an older release, see the <a href="/docs/release-notes/">release notes</a>.


Mime
View raw message