crunch-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Stan Rosenberg (JIRA)" <j...@apache.org>
Subject [jira] [Updated] (CRUNCH-597) Unable to process parquet files using Hadoop
Date Fri, 18 Mar 2016 16:38:33 GMT

     [ https://issues.apache.org/jira/browse/CRUNCH-597?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Stan Rosenberg updated CRUNCH-597:
----------------------------------
    Description: 
Current version of parquet-hadoop results in the following stack trace while attempting to
read from parquet file.

{code}
java.lang.Exception: java.lang.ClassCastException: org.apache.hadoop.mapreduce.lib.input.FileSplit
cannot be cast to parquet.hadoop.ParquetInputSplit
	at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:406)
Caused by: java.lang.ClassCastException: org.apache.hadoop.mapreduce.lib.input.FileSplit cannot
be cast to parquet.hadoop.ParquetInputSplit
	at parquet.hadoop.ParquetRecordReader.initialize(ParquetRecordReader.java:107)
	at org.apache.crunch.impl.mr.run.CrunchRecordReader.initialize(CrunchRecordReader.java:140)
	at org.apache.hadoop.mapred.MapTask$NewTrackingRecordReader.initialize(MapTask.java:478)
	at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:671)
	at org.apache.hadoop.mapred.MapTask.run(MapTask.java:330)
	at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:268)
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
	at java.util.concurrent.FutureTask.run(FutureTask.java:262)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
	at java.lang.Thread.run(Thread.java:745)
{code}

Here is the relevant code snippet which yields the above stack trace when executed locally,

{code}
Pipeline pipeline = new MRPipeline(Crunch.class, conf);
PCollection<Pair<String, Observation>> observations = 
             pipeline.read(AvroParquetFileSource.builder(record).build(new Path(args[0])))
                         .parallelDo(new TranslateFn(), Avros.tableOf(Avros.strings(), Avros.specifics(Observation.class)));
for (Pair<String, Observation> pair : observations.materialize()) {
      System.out.println(pair.second());
}
PipelineResult result = pipeline.done();
{code}

  was:
Current version of parquet-hadoop results in the following stack trace while attempting to
read from parquet file,

{code}
java.lang.Exception: java.lang.ClassCastException: org.apache.hadoop.mapreduce.lib.input.FileSplit
cannot be cast to parquet.hadoop.ParquetInputSplit
	at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:406)
Caused by: java.lang.ClassCastException: org.apache.hadoop.mapreduce.lib.input.FileSplit cannot
be cast to parquet.hadoop.ParquetInputSplit
	at parquet.hadoop.ParquetRecordReader.initialize(ParquetRecordReader.java:107)
	at org.apache.crunch.impl.mr.run.CrunchRecordReader.initialize(CrunchRecordReader.java:140)
	at org.apache.hadoop.mapred.MapTask$NewTrackingRecordReader.initialize(MapTask.java:478)
	at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:671)
	at org.apache.hadoop.mapred.MapTask.run(MapTask.java:330)
	at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:268)
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
	at java.util.concurrent.FutureTask.run(FutureTask.java:262)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
	at java.lang.Thread.run(Thread.java:745)
{code}

Here is the relevant code snippet,

{code}
Pipeline pipeline = new MRPipeline(Crunch.class, conf);
PCollection<Pair<String, Observation>> observations = pipeline.read(AvroParquetFileSource.builder(record).build(new
Path(args[0])))
                        .parallelDo(new TranslateFn(), Avros.tableOf(Avros.strings(), Avros.specifics(Observation.class)));
for (Pair<String, Observation> pair : observations.materialize()) {
      System.out.println(pair.second());
}
PipelineResult result = pipeline.done();
{code}


> Unable to process parquet files using Hadoop
> --------------------------------------------
>
>                 Key: CRUNCH-597
>                 URL: https://issues.apache.org/jira/browse/CRUNCH-597
>             Project: Crunch
>          Issue Type: Bug
>          Components: Core, IO
>    Affects Versions: 0.13.0
>            Reporter: Stan Rosenberg
>            Assignee: Josh Wills
>
> Current version of parquet-hadoop results in the following stack trace while attempting
to read from parquet file.
> {code}
> java.lang.Exception: java.lang.ClassCastException: org.apache.hadoop.mapreduce.lib.input.FileSplit
cannot be cast to parquet.hadoop.ParquetInputSplit
> 	at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:406)
> Caused by: java.lang.ClassCastException: org.apache.hadoop.mapreduce.lib.input.FileSplit
cannot be cast to parquet.hadoop.ParquetInputSplit
> 	at parquet.hadoop.ParquetRecordReader.initialize(ParquetRecordReader.java:107)
> 	at org.apache.crunch.impl.mr.run.CrunchRecordReader.initialize(CrunchRecordReader.java:140)
> 	at org.apache.hadoop.mapred.MapTask$NewTrackingRecordReader.initialize(MapTask.java:478)
> 	at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:671)
> 	at org.apache.hadoop.mapred.MapTask.run(MapTask.java:330)
> 	at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:268)
> 	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
> 	at java.util.concurrent.FutureTask.run(FutureTask.java:262)
> 	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
> 	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
> 	at java.lang.Thread.run(Thread.java:745)
> {code}
> Here is the relevant code snippet which yields the above stack trace when executed locally,
> {code}
> Pipeline pipeline = new MRPipeline(Crunch.class, conf);
> PCollection<Pair<String, Observation>> observations = 
>              pipeline.read(AvroParquetFileSource.builder(record).build(new Path(args[0])))
>                          .parallelDo(new TranslateFn(), Avros.tableOf(Avros.strings(),
Avros.specifics(Observation.class)));
> for (Pair<String, Observation> pair : observations.materialize()) {
>       System.out.println(pair.second());
> }
> PipelineResult result = pipeline.done();
> {code}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Mime
View raw message