commons-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Gilles (JIRA)" <j...@apache.org>
Subject [jira] [Commented] (RNG-50) PoissonSampler single use speed improvements
Date Mon, 30 Jul 2018 22:29:00 GMT

    [ https://issues.apache.org/jira/browse/RNG-50?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16562608#comment-16562608
] 

Gilles commented on RNG-50:
---------------------------

bq.  just pasted pre-formatted output text from the JUnit tests into the comment. It looks
fine through a web browser

It's not a formatting problem; I refer to the contents that duplicate column info within each
of the rows, and confusing associations such
as
{noformat}
log(n!)= 15336
{noformat}

I also don't get what
{noformat}
(1.306886.2x faster)
{noformat}
means.

The information is interesting but for those tables to go into the userguide, benchmarks should
be based on JMH (see e.g. the example code in the corresponding module).

bq. I've updated the code to use final methods and final inner classes which should help the
JVM optimisation.

I don't think it will make any significant difference; again, a reliable (or at least de facto
standard) way to know is to use JMH.

Would you care making a patch or PR with the incremental changes discussed above (two new
classes, wrapper, no cache) and associated unit tests (basically adding the two "new" samplers
in {{DiscreteSamplersList}})?


> PoissonSampler single use speed improvements
> --------------------------------------------
>
>                 Key: RNG-50
>                 URL: https://issues.apache.org/jira/browse/RNG-50
>             Project: Commons RNG
>          Issue Type: Improvement
>    Affects Versions: 1.0
>            Reporter: Alex D Herbert
>            Priority: Minor
>         Attachments: PoissonSamplerTest.java
>
>
> The Sampler architecture of {{org.apache.commons.rng.sampling.distribution}} is nicely
written for fast sampling of small dataset sizes. The constructors for the samplers do not
check the input parameters are valid for the respective distributions (in contrast to the
old {{org.apache.commons.math3.random.distribution}} classes). I assume this is a design choice
for speed. Thus most of the samplers can be used within a loop to sample just one value with
very little overhead.
> The {{PoissonSampler}} precomputes log factorial numbers upon construction if the mean
is above 40. This is done using the {{InternalUtils.FactorialLog}} class. As of version 1.0
this internal class is currently only used in the {{PoissonSampler}}.
> The cache size is limited to 2*PIVOT (where PIVOT=40). But it creates and precomputes
the cache every time a PoissonSampler is constructed if the mean is above the PIVOT value.
> Why not create this once in a static block for the PoissonSampler?
> {code:java}
> /** {@code log(n!)}. */
> private static final FactorialLog factorialLog;
>      
> static 
> {
>     factorialLog = FactorialLog.create().withCache((int) (2 * PoissonSampler.PIVOT));
> }
> {code}
> This will make the construction cost of a new {{PoissonSampler}} negligible. If the table
is computed dynamically as a static construction method then the overhead will be in the first
use. Thus the following call will be much faster:
> {code:java}
> UniformRandomProvider rng = ...;
> int value = new PoissonSampler(rng, 50).sample();
> {code}
> I have tested this modification (see attached file) and the results are:
> {noformat}
> Mean 40  Single construction ( 7330792) vs Loop construction                        
 (24334724)   (3.319522.2x faster)
> Mean 40  Single construction ( 7330792) vs Loop construction with static FactorialLog
( 7990656)   (1.090013.2x faster)
> Mean 50  Single construction ( 6390303) vs Loop construction                        
 (19389026)   (3.034132.2x faster)
> Mean 50  Single construction ( 6390303) vs Loop construction with static FactorialLog
( 6146556)   (0.961857.2x faster)
> Mean 60  Single construction ( 6041165) vs Loop construction                        
 (21337678)   (3.532047.2x faster)
> Mean 60  Single construction ( 6041165) vs Loop construction with static FactorialLog
( 5329129)   (0.882136.2x faster)
> Mean 70  Single construction ( 6064003) vs Loop construction                        
 (23963516)   (3.951765.2x faster)
> Mean 70  Single construction ( 6064003) vs Loop construction with static FactorialLog
( 5306081)   (0.875013.2x faster)
> Mean 80  Single construction ( 6064772) vs Loop construction                        
 (26381365)   (4.349935.2x faster)
> Mean 80  Single construction ( 6064772) vs Loop construction with static FactorialLog
( 6341274)   (1.045591.2x faster)
> {noformat}
> Thus the speed improvements would be approximately 3-4 fold for single use Poisson sampling.



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Mime
View raw message