commons-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Phil Steitz (JIRA)" <j...@apache.org>
Subject [jira] [Resolved] (MATH-364) Make Erf more precise in the tails by providing erfc
Date Thu, 01 Sep 2011 01:27:10 GMT

     [ https://issues.apache.org/jira/browse/MATH-364?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Phil Steitz resolved MATH-364.
------------------------------

    Resolution: Fixed

Many thanks for the patch.  Applied with minor modifications in r1163888.

> Make Erf more precise in the tails by providing erfc
> ----------------------------------------------------
>
>                 Key: MATH-364
>                 URL: https://issues.apache.org/jira/browse/MATH-364
>             Project: Commons Math
>          Issue Type: Improvement
>    Affects Versions: 1.1, 1.2, 2.0, 2.1
>            Reporter: Christian Winter
>            Priority: Minor
>             Fix For: 3.0
>
>         Attachments: Math-364_patch.patch
>
>
> First I want to thank Phil Steitz for making Erf stable in the tails through adjusting
the choices in calculating the regularized gamma functions, see [Math-282|https://issues.apache.org/jira/browse/MATH-282].
However, the precision of Erf in the tails is limitted to fixed point precision because of
the closeness to +/-1.0, although the Gamma class could provide much more accuracy. Thus I
propose to add the methods erfc(double) and erf(double, double) to the class Erf:
> {code:borderStyle=solid}
> /**
>  * Returns the complementary error function erfc(x).
>  * @param x the value
>  * @return the complementary error function erfc(x)
>  * @throws MathException if the algorithm fails to converge
>  */
> public static double erfc(double x) throws MathException {
> double ret = Gamma.regularizedGammaQ(0.5, x * x, 1.0e-15, 10000);
> 	if (x < 0) {
> 		ret = -ret;
> 	}
> 	return ret;
> }
> /**
>  * Returns the difference of the error function values of x1 and x2.
>  * @param x1 the first bound
>  * @param x2 the second bound
>  * @return erf(x2) - erf(x1)
>  * @throws MathException
>  */
> public static double erf(double x1, double x2) throws MathException {
> 	if(x1>x2)
> 		return erf(x2, x1);
> 	if(x1==x2)
> 		return 0.0;
>     	
> 	double f1 = erf(x1);
> 	double f2 = erf(x2);
> 	
> 	if(f2 > 0.5)
> 		if(f1 > 0.5)
> 			return erfc(x1) - erfc(x2);
> 		else
> 			return (0.5-erfc(x2)) + (0.5-f1);
> 	else
> 		if(f1 < -0.5)
> 			if(f2 < -0.5)
> 				return erfc(-x2) - erfc(-x1);
> 			else
> 				return (0.5-erfc(-x1)) + (0.5+f2);
> 		else
> 			return f2 - f1;
> }
> {code} 
> Further this can be used to improve the NormalDistributionImpl through
> {code:borderStyle=solid}
> @Override
> public double cumulativeProbability(double x0, double x1) throws MathException {
> 	return 0.5 * Erf.erf(
> 			(x0 - getMean()) / (getStandardDeviation() * sqrt2),
> 			(x1 - getMean()) / (getStandardDeviation() * sqrt2) );
> }
> {code}

--
This message is automatically generated by JIRA.
For more information on JIRA, see: http://www.atlassian.com/software/jira

        

Mime
View raw message