commons-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From ericbarnh...@apache.org
Subject [12/12] commons-numbers git commit: merge master and eb-test branches into commons-dev branch. I was mistakenly still making edits to eb-test branch.
Date Sun, 23 Apr 2017 17:44:46 GMT
merge master and eb-test branches into commons-dev branch. I was mistakenly still making edits
to eb-test branch.


Project: http://git-wip-us.apache.org/repos/asf/commons-numbers/repo
Commit: http://git-wip-us.apache.org/repos/asf/commons-numbers/commit/410abd7f
Tree: http://git-wip-us.apache.org/repos/asf/commons-numbers/tree/410abd7f
Diff: http://git-wip-us.apache.org/repos/asf/commons-numbers/diff/410abd7f

Branch: refs/heads/complex-dev
Commit: 410abd7fa4f63d8c2d297b62181ddfeeb44da869
Parents: e2668df ec66bce
Author: Eric Barnhill <ericbarnhill@apache.org>
Authored: Sun Apr 23 19:42:53 2017 +0200
Committer: Eric Barnhill <ericbarnhill@apache.org>
Committed: Sun Apr 23 19:42:53 2017 +0200

----------------------------------------------------------------------
 .../apache/commons/numbers/complex/Complex.java | 244 +++++++++----------
 .../commons/numbers/fraction/BigFraction.java   |  16 +-
 .../numbers/fraction/ContinuedFraction.java     | 166 +++++++++++++
 .../numbers/fraction/BigFractionTest.java       |  22 ++
 .../numbers/fraction/ContinuedFractionTest.java |  45 ++++
 pom.xml                                         |   2 +-
 src/changes/changes.xml                         |   8 +-
 src/site/site.xml                               |   2 +-
 8 files changed, 366 insertions(+), 139 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/commons-numbers/blob/410abd7f/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java
----------------------------------------------------------------------
diff --cc commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java
index 42cd0cc,ccd25d1..1189451
--- a/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java
+++ b/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java
@@@ -20,11 -20,9 +20,9 @@@ package org.apache.commons.numbers.comp
  import java.io.Serializable;
  import java.util.ArrayList;
  import java.util.List;
- 
  import org.apache.commons.numbers.core.Precision;
- 
  /**
 - * Representation of a Complex number, i.e., a number which has both a
 + * Representation of a Complex number, i.e. a number which has both a
   * real and imaginary part.
   * <p>
   * Implementations of arithmetic operations handle {@code NaN} and
@@@ -96,56 -94,8 +94,56 @@@ public class Complex implements Seriali
              (Double.isInfinite(real) || Double.isInfinite(imaginary));
      }
  
 +     /**
 +     * Creates a Complex from its polar representation.
 +     * <p>
 +     * If either {@code r} or {@code theta} is NaN, or {@code theta} is
 +     * infinite, {@link Complex#NaN} is returned.
 +     * <p>
 +     * If {@code r} is infinite and {@code theta} is finite, infinite or NaN
 +     * values may be returned in parts of the result, following the rules for
 +     * double arithmetic.
 +     *
 +     * <pre>
 +     * Examples:
 +     * {@code
 +     * polar2Complex(INFINITY, \(\pi\)) = INFINITY + INFINITY i
 +     * polar2Complex(INFINITY, 0) = INFINITY + NaN i
 +     * polar2Complex(INFINITY, \(-\frac{\pi}{4}\)) = INFINITY - INFINITY i
 +     * polar2Complex(INFINITY, \(5\frac{\pi}{4}\)) = -INFINITY - INFINITY i }
 +     * </pre>
 +     *
 +     * @param r the modulus of the complex number to create
 +     * @param theta the argument of the complex number to create
 +     * @return {@code Complex}
 +     * @since 1.1
 +     */
 +    public Complex polar(double r, double theta) {
 +        checkNotNegative(r);
 +        return new Complex(r * Math.cos(theta), r * Math.sin(theta));
 +    }
 +
      /**
-      * Returns projection of this Complex number onto the Riemann sphere,
++     * Returns projection of this complex number onto the Riemann sphere,
 +     * i.e. all infinities (including those with an NaN component)
 +     * project onto real infinity, as described in the
 +     * <a href="http://pubs.opengroup.org/onlinepubs/9699919799/functions/cproj.html">
 +     * IEEE and ISO C standards</a>.
 +     * <p>
 +     *
 +     *
 +     * @return {@code Complex} projected onto the Riemann sphere.
 +     */
 +    public Complex proj() {
 +        if (isInfinite) {
 +            return new Complex(Double.POSITIVE_INFINITY);
 +        } else {
 +            return this;
 +        }
 +    }
 +
 +     /**
-      * Return the absolute value of this Complex number.
+      * Return the absolute value of this complex number.
       * Returns {@code NaN} if either real or imaginary part is {@code NaN}
       * and {@code Double.POSITIVE_INFINITY} if neither part is {@code NaN},
       * but at least one part is infinite.
@@@ -174,19 -125,6 +173,19 @@@
          }
      }
  
 +     /**
-      * Return the norm of this Complex number, defined as the square of the magnitude
++     * Return the norm of this complex number, defined as the square of the magnitude
 +     * (Matches C++ 11 standards.)
 +     * Returns {@code NaN} if either real or imaginary part is {@code NaN}
 +     * and {@code Double.POSITIVE_INFINITY} if neither part is {@code NaN},
 +     * but at least one part is infinite.
 +     *
 +     * @return the absolute value.
 +     */
 +    public double norm() {
 +        return abs()*abs();
 +    }
 +
      /**
       * Returns a {@code Complex} whose value is
       * {@code (this + addend)}.
@@@ -234,14 -171,14 +233,14 @@@
       * The conjugate of {@code a + bi} is {@code a - bi}.
       * <p>
       * {@link #NaN} is returned if either the real or imaginary
--     * part of this Complex number equals {@code Double.NaN}.
++     * part of this complex number equals {@code Double.NaN}.
       * </p><p>
       * If the imaginary part is infinite, and the real part is not
       * {@code NaN}, the returned value has infinite imaginary part
       * of the opposite sign, e.g. the conjugate of
       * {@code 1 + POSITIVE_INFINITY i} is {@code 1 - NEGATIVE_INFINITY i}.
       * </p>
--     * @return the conjugate of this Complex object.
++     * @return the conjugate of this complex object.
       */
      public Complex conjugate() {
          if (isNaN) {
@@@ -251,17 -188,6 +250,17 @@@
          return createComplex(real, -imaginary);
      }
  
 +     /**
-      * Returns the conjugate of this Complex number.
++     * Returns the conjugate of this complex number.
 +     * C++11 grammar.
 +     * </p>
-      * @return the conjugate of this Complex object.
++     * @return the conjugate of this complex object.
 +     */
 +    public Complex conj() {
 +        return conjugate();
 +    }
 +
 +
      /**
       * Returns a {@code Complex} whose value is
       * {@code (this / divisor)}.
@@@ -302,10 -228,8 +301,9 @@@
       *
       * @param divisor Value by which this {@code Complex} is to be divided.
       * @return {@code this / divisor}.
 +     * @if {@code divisor} is {@code null}.
       */
-     public Complex divide(Complex divisor)
-         {
+     public Complex divide(Complex divisor) {
          checkNotNull(divisor);
          if (isNaN || divisor.isNaN) {
              return NaN;
@@@ -547,20 -457,11 +545,20 @@@
          return real;
      }
  
 -    /**
 +     /**
 +     * Access the real part (C++ grammar)
 +     *
 +     * @return the real part.
 +     */
 +    public double real() {
 +        return real;
 +    }
 +
 +   /**
-      * Checks whether either or both parts of this Complex number is
+      * Checks whether either or both parts of this complex number is
       * {@code NaN}.
       *
-      * @return true if either or both parts of this Complex number is
+      * @return true if either or both parts of this complex number is
       * {@code NaN}; false otherwise.
       */
      public boolean isNaN() {
@@@ -600,10 -501,8 +598,9 @@@
       *
       * @param  factor value to be multiplied by this {@code Complex}.
       * @return {@code this * factor}.
 +     * @if {@code factor} is {@code null}.
       */
-     public Complex multiply(Complex factor)
-         {
+     public Complex multiply(Complex factor) {
          checkNotNull(factor);
          if (isNaN || factor.isNaN) {
              return NaN;
@@@ -662,7 -561,7 +659,7 @@@
      /**
       * Returns a {@code Complex} whose value is {@code (-this)}.
       * Returns {@code NaN} if either real or imaginary
--     * part of this Complex number is {@code Double.NaN}.
++     * part of this complex number is {@code Double.NaN}.
       *
       * @return {@code -this}.
       */
@@@ -785,86 -679,8 +777,86 @@@
  
      /**
       * Compute the
 +     * <a href="http://mathworld.wolfram.com/InverseHyperbolicSine.html" TARGET="_top">
-      * inverse hyperbolic sine</a> of this Complex number.
++     * inverse hyperbolic sine</a> of this complex number.
 +     * Implements the formula:
 +     * <p>
 +     * {@code asinh(z) = log(z+sqrt(z^2+1))}
 +     * </p><p>
 +     * Returns {@link Complex#NaN} if either real or imaginary part of the
 +     * input argument is {@code NaN} or infinite.</p>
 +     *
-      * @return the inverse hyperbolic cosine of this Complex number
++     * @return the inverse hyperbolic cosine of this complex number
 +     * @since 1.2
 +     */
 +    public Complex asinh(){
 +        if (isNaN) {
 +            return NaN;
 +        }
 +
 +        return square().add(Complex.ONE).sqrt().add(this).log();
 +    }
 +
 +   /**
 +     * Compute the
 +     * <a href="http://mathworld.wolfram.com/InverseHyperbolicTangent.html" TARGET="_top">
-      * inverse hyperbolic tangent</a> of this Complex number.
++     * inverse hyperbolic tangent</a> of this complex number.
 +     * Implements the formula:
 +     * <p>
 +     * {@code atanh(z) = log((1+z)/(1-z))/2}
 +     * </p><p>
 +     * Returns {@link Complex#NaN} if either real or imaginary part of the
 +     * input argument is {@code NaN} or infinite.</p>
 +     *
-      * @return the inverse hyperbolic cosine of this Complex number
++     * @return the inverse hyperbolic cosine of this complex number
 +     * @since 1.2
 +     */
 +    public Complex atanh(){
 +        if (isNaN) {
 +            return NaN;
 +        }
 +
 +        return this.add(Complex.ONE).divide(Complex.ONE.subtract(this)).log().divide(new
Complex(2));
 +    }
 +   /**
 +     * Compute the
 +     * <a href="http://mathworld.wolfram.com/InverseHyperbolicCosine.html" TARGET="_top">
-      * inverse hyperbolic cosine</a> of this Complex number.
++     * inverse hyperbolic cosine</a> of this complex number.
 +     * Implements the formula:
 +     * <p>
 +     * {@code acosh(z) = log(z+sqrt(z^2-1))}
 +     * </p><p>
 +     * Returns {@link Complex#NaN} if either real or imaginary part of the
 +     * input argument is {@code NaN} or infinite.</p>
 +     *
-      * @return the inverse hyperbolic cosine of this Complex number
++     * @return the inverse hyperbolic cosine of this complex number
 +     * @since 1.2
 +     */
 +    public Complex acosh() {
 +        if (isNaN) {
 +            return NaN;
 +        }
 +
 +        return square().subtract(Complex.ONE).sqrt().add(this).log();
 +    }
 +
 +    /**
-      * Compute the square of this Complex number.
++     * Compute the square of this complex number.
 +     *
-      * @return square of this Complex number
++     * @return square of this complex number
 +     */
 +    public Complex square(){
 +        if (isNaN) {
 +            return NaN;
 +        }
 +
 +        return this.multiply(this);
 +    }
 +
 +    /**
 +     * Compute the
       * <a href="http://mathworld.wolfram.com/Cosine.html" TARGET="_top">
-      * cosine</a> of this Complex number.
+      * cosine</a> of this complex number.
       * Implements the formula:
       * <p>
       *  {@code cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)i}
@@@ -1025,19 -838,7 +1014,19 @@@
      }
  
      /**
 +     * Compute the base 10 or
 +     * <a href="http://mathworld.wolfram.com/CommonLogarithm.html" TARGET="_top">
-      * common logarithm</a> of this Complex number.
++     * common logarithm</a> of this complex number.
 +     *
 +     *  @return the base 10 logarithm of <code>this</code>.
 +    */
 +    public Complex log10() {
 +        return createComplex(Math.log(abs())/Math.log(10),
 +                             Math.atan2(imaginary, real));
 +    }
 +
 +    /**
-      * Returns of value of this Complex number raised to the power of {@code x}.
+      * Returns of value of this complex number raised to the power of {@code x}.
       * Implements the formula:
       * <pre>
       *  <code>
@@@ -1328,8 -1138,10 +1326,8 @@@
                               Math.sin(imaginary2) / d);
      }
  
 -
 -
--    /**
-      * Compute the argument of this Complex number.
++   /**
+      * Compute the argument of this complex number.
       * The argument is the angle phi between the positive real axis and
       * the point representing this number in the complex plane.
       * The value returned is between -PI (not inclusive)
@@@ -1350,28 -1162,7 +1348,17 @@@
      }
  
      /**
-      * Compute the argument of this Complex number.
-      * The argument is the angle phi between the positive real axis and
-      * the point representing this number in the complex plane.
-      * The value returned is between -PI (not inclusive)
-      * and PI (inclusive), with negative values returned for numbers with
-      * negative imaginary parts.
-      * <p>
-      * If either real or imaginary part (or both) is NaN, NaN is returned.
-      * Infinite parts are handled as {@code Math.atan2} handles them,
-      * essentially treating finite parts as zero in the presence of an
-      * infinite coordinate and returning a multiple of pi/4 depending on
-      * the signs of the infinite parts.
-      * See the javadoc for {@code Math.atan2} for full details.
++     * Compute the argument of this complex number.
++     * C++11 syntax
 +     *
 +     * @return the argument of {@code this}.
 +     */
 +    public double arg() {
 +        return getArgument();
 +    }
 +
 +    /**
-      * Computes the n-th roots of this Complex number.
+      * Computes the n-th roots of this complex number.
       * The nth roots are defined by the formula:
       * <pre>
       *  <code>
@@@ -1497,27 -1286,16 +1482,28 @@@
          }
      }
  
 +
 +     /**
 +     * Check that the argument is positive and throw a RuntimeException
 +     * if it is not.
 +     * @param arg {@code int} to check
 +     */
 +    private static void checkNotNegative(int arg) {
 +        if (arg <= 0) {
 +            throw new RuntimeException("Complex: Non-positive argument");
 +        }
 +    }
 +    
      /**
-      * Check that the Complex is not null and throw a RuntimeException
-      * if it is.
-      * @param arg     the Complex to check
+      * Returns {@code true} if the values are equal according to semantics of
+      * {@link Double#equals(Object)}.
+      *
+      * @param x Value
+      * @param y Value
+      * @return {@code new Double(x).equals(new Double(y))}
       */
-     private static void checkNotNull(Complex arg) {
-         if (arg == null) {
-             throw new RuntimeException("Complex: Null argument");
-         }
+     private static boolean equals(double x, double y) {
+         return new Double(x).equals(new Double(y));
      }
  
      /**


Mime
View raw message