commons-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From er...@apache.org
Subject [12/16] commons-numbers git commit: Multimodule project setup.
Date Wed, 18 Jan 2017 13:54:51 GMT
http://git-wip-us.apache.org/repos/asf/commons-numbers/blob/c4541327/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/ComplexTest.java
----------------------------------------------------------------------
diff --git a/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/ComplexTest.java b/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/ComplexTest.java
new file mode 100644
index 0000000..1dbcce1
--- /dev/null
+++ b/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/ComplexTest.java
@@ -0,0 +1,1477 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.numbers.complex;
+
+import java.util.List;
+
+import org.apache.commons.numbers.complex.Complex;
+import org.apache.commons.numbers.complex.ComplexUtils;
+import org.junit.Assert;
+import org.junit.Ignore;
+import org.junit.Test;
+
+
+/**
+ */
+public class ComplexTest {
+
+
+    private double inf = Double.POSITIVE_INFINITY;
+    private double neginf = Double.NEGATIVE_INFINITY;
+    private double nan = Double.NaN;
+    private double pi = Math.PI;
+    private Complex oneInf = new Complex(1, inf);
+    private Complex oneNegInf = new Complex(1, neginf);
+    private Complex infOne = new Complex(inf, 1);
+    private Complex infZero = new Complex(inf, 0);
+    private Complex infNaN = new Complex(inf, nan);
+    private Complex infNegInf = new Complex(inf, neginf);
+    private Complex infInf = new Complex(inf, inf);
+    private Complex negInfInf = new Complex(neginf, inf);
+    private Complex negInfZero = new Complex(neginf, 0);
+    private Complex negInfOne = new Complex(neginf, 1);
+    private Complex negInfNaN = new Complex(neginf, nan);
+    private Complex negInfNegInf = new Complex(neginf, neginf);
+    private Complex oneNaN = new Complex(1, nan);
+    private Complex zeroInf = new Complex(0, inf);
+    private Complex zeroNaN = new Complex(0, nan);
+    private Complex nanInf = new Complex(nan, inf);
+    private Complex nanNegInf = new Complex(nan, neginf);
+    private Complex nanZero = new Complex(nan, 0);
+
+    @Test
+    public void testConstructor() {
+        Complex z = new Complex(3.0, 4.0);
+        Assert.assertEquals(3.0, z.getReal(), 1.0e-5);
+        Assert.assertEquals(4.0, z.getImaginary(), 1.0e-5);
+    }
+
+    @Test
+    public void testConstructorNaN() {
+        Complex z = new Complex(3.0, Double.NaN);
+        Assert.assertTrue(z.isNaN());
+
+        z = new Complex(nan, 4.0);
+        Assert.assertTrue(z.isNaN());
+
+        z = new Complex(3.0, 4.0);
+        Assert.assertFalse(z.isNaN());
+    }
+
+    @Test
+    public void testAbs() {
+        Complex z = new Complex(3.0, 4.0);
+        Assert.assertEquals(5.0, z.abs(), 1.0e-5);
+    }
+
+    @Test
+    public void testAbsNaN() {
+        Assert.assertTrue(Double.isNaN(Complex.NaN.abs()));
+        Complex z = new Complex(inf, nan);
+        Assert.assertTrue(Double.isNaN(z.abs()));
+    }
+
+    @Test
+    public void testAbsInfinite() {
+        Complex z = new Complex(inf, 0);
+        Assert.assertEquals(inf, z.abs(), 0);
+        z = new Complex(0, neginf);
+        Assert.assertEquals(inf, z.abs(), 0);
+        z = new Complex(inf, neginf);
+        Assert.assertEquals(inf, z.abs(), 0);
+    }
+
+    @Test
+    public void testAdd() {
+        Complex x = new Complex(3.0, 4.0);
+        Complex y = new Complex(5.0, 6.0);
+        Complex z = x.add(y);
+        Assert.assertEquals(8.0, z.getReal(), 1.0e-5);
+        Assert.assertEquals(10.0, z.getImaginary(), 1.0e-5);
+    }
+
+    @Test
+    public void testAddNaN() {
+        Complex x = new Complex(3.0, 4.0);
+        Complex z = x.add(Complex.NaN);
+        Assert.assertSame(Complex.NaN, z);
+        z = new Complex(1, nan);
+        Complex w = x.add(z);
+        Assert.assertSame(Complex.NaN, w);
+    }
+
+    @Test
+    public void testAddInf() {
+        Complex x = new Complex(1, 1);
+        Complex z = new Complex(inf, 0);
+        Complex w = x.add(z);
+        Assert.assertEquals(w.getImaginary(), 1, 0);
+        Assert.assertEquals(inf, w.getReal(), 0);
+
+        x = new Complex(neginf, 0);
+        Assert.assertTrue(Double.isNaN(x.add(z).getReal()));
+    }
+
+
+    @Test
+    public void testScalarAdd() {
+        Complex x = new Complex(3.0, 4.0);
+        double yDouble = 2.0;
+        Complex yComplex = new Complex(yDouble);
+        Assert.assertEquals(x.add(yComplex), x.add(yDouble));
+    }
+
+    @Test
+    public void testScalarAddNaN() {
+        Complex x = new Complex(3.0, 4.0);
+        double yDouble = Double.NaN;
+        Complex yComplex = new Complex(yDouble);
+        Assert.assertEquals(x.add(yComplex), x.add(yDouble));
+    }
+
+    @Test
+    public void testScalarAddInf() {
+        Complex x = new Complex(1, 1);
+        double yDouble = Double.POSITIVE_INFINITY;
+
+        Complex yComplex = new Complex(yDouble);
+        Assert.assertEquals(x.add(yComplex), x.add(yDouble));
+
+        x = new Complex(neginf, 0);
+        Assert.assertEquals(x.add(yComplex), x.add(yDouble));
+    }
+
+    @Test
+    public void testConjugate() {
+        Complex x = new Complex(3.0, 4.0);
+        Complex z = x.conjugate();
+        Assert.assertEquals(3.0, z.getReal(), 1.0e-5);
+        Assert.assertEquals(-4.0, z.getImaginary(), 1.0e-5);
+    }
+
+    @Test
+    public void testConjugateNaN() {
+        Complex z = Complex.NaN.conjugate();
+        Assert.assertTrue(z.isNaN());
+    }
+
+    @Test
+    public void testConjugateInfiinite() {
+        Complex z = new Complex(0, inf);
+        Assert.assertEquals(neginf, z.conjugate().getImaginary(), 0);
+        z = new Complex(0, neginf);
+        Assert.assertEquals(inf, z.conjugate().getImaginary(), 0);
+    }
+
+    @Test
+    public void testDivide() {
+        Complex x = new Complex(3.0, 4.0);
+        Complex y = new Complex(5.0, 6.0);
+        Complex z = x.divide(y);
+        Assert.assertEquals(39.0 / 61.0, z.getReal(), 1.0e-5);
+        Assert.assertEquals(2.0 / 61.0, z.getImaginary(), 1.0e-5);
+    }
+
+    @Test
+    public void testDivideReal() {
+        Complex x = new Complex(2d, 3d);
+        Complex y = new Complex(2d, 0d);
+        Assert.assertEquals(new Complex(1d, 1.5), x.divide(y));
+
+    }
+
+    @Test
+    public void testDivideImaginary() {
+        Complex x = new Complex(2d, 3d);
+        Complex y = new Complex(0d, 2d);
+        Assert.assertEquals(new Complex(1.5d, -1d), x.divide(y));
+    }
+
+    @Test
+    public void testDivideInf() {
+        Complex x = new Complex(3, 4);
+        Complex w = new Complex(neginf, inf);
+        Assert.assertTrue(x.divide(w).equals(Complex.ZERO));
+
+        Complex z = w.divide(x);
+        Assert.assertTrue(Double.isNaN(z.getReal()));
+        Assert.assertEquals(inf, z.getImaginary(), 0);
+
+        w = new Complex(inf, inf);
+        z = w.divide(x);
+        Assert.assertTrue(Double.isNaN(z.getImaginary()));
+        Assert.assertEquals(inf, z.getReal(), 0);
+
+        w = new Complex(1, inf);
+        z = w.divide(w);
+        Assert.assertTrue(Double.isNaN(z.getReal()));
+        Assert.assertTrue(Double.isNaN(z.getImaginary()));
+    }
+
+    @Test
+    public void testDivideZero() {
+        Complex x = new Complex(3.0, 4.0);
+        Complex z = x.divide(Complex.ZERO);
+        // Assert.assertEquals(z, Complex.INF); // See MATH-657
+        Assert.assertEquals(z, Complex.NaN);
+    }
+
+    @Test
+    public void testDivideZeroZero() {
+        Complex x = new Complex(0.0, 0.0);
+        Complex z = x.divide(Complex.ZERO);
+        Assert.assertEquals(z, Complex.NaN);
+    }
+
+    @Test
+    public void testDivideNaN() {
+        Complex x = new Complex(3.0, 4.0);
+        Complex z = x.divide(Complex.NaN);
+        Assert.assertTrue(z.isNaN());
+    }
+
+    @Test
+    public void testDivideNaNInf() {
+       Complex z = oneInf.divide(Complex.ONE);
+       Assert.assertTrue(Double.isNaN(z.getReal()));
+       Assert.assertEquals(inf, z.getImaginary(), 0);
+
+       z = negInfNegInf.divide(oneNaN);
+       Assert.assertTrue(Double.isNaN(z.getReal()));
+       Assert.assertTrue(Double.isNaN(z.getImaginary()));
+
+       z = negInfInf.divide(Complex.ONE);
+       Assert.assertTrue(Double.isNaN(z.getReal()));
+       Assert.assertTrue(Double.isNaN(z.getImaginary()));
+    }
+
+    @Test
+    public void testScalarDivide() {
+        Complex x = new Complex(3.0, 4.0);
+        double yDouble = 2.0;
+        Complex yComplex = new Complex(yDouble);
+        Assert.assertEquals(x.divide(yComplex), x.divide(yDouble));
+    }
+
+    @Test
+    public void testScalarDivideNaN() {
+        Complex x = new Complex(3.0, 4.0);
+        double yDouble = Double.NaN;
+        Complex yComplex = new Complex(yDouble);
+        Assert.assertEquals(x.divide(yComplex), x.divide(yDouble));
+    }
+
+    @Test
+    public void testScalarDivideZero() {
+        Complex x = new Complex(1,1);
+        TestUtils.assertEquals(x.divide(Complex.ZERO), x.divide(0), 0);
+    }
+
+    @Test
+    public void testReciprocal() {
+        Complex z = new Complex(5.0, 6.0);
+        Complex act = z.reciprocal();
+        double expRe = 5.0 / 61.0;
+        double expIm = -6.0 / 61.0;
+        Assert.assertEquals(expRe, act.getReal(), Math.ulp(expRe));
+        Assert.assertEquals(expIm, act.getImaginary(), Math.ulp(expIm));
+    }
+
+    @Test
+    public void testReciprocalReal() {
+        Complex z = new Complex(-2.0, 0.0);
+        Assert.assertTrue(Complex.equals(new Complex(-0.5, 0.0), z.reciprocal()));
+    }
+
+    @Test
+    public void testReciprocalImaginary() {
+        Complex z = new Complex(0.0, -2.0);
+        Assert.assertEquals(new Complex(0.0, 0.5), z.reciprocal());
+    }
+
+    @Test
+    public void testReciprocalInf() {
+        Complex z = new Complex(neginf, inf);
+        Assert.assertTrue(z.reciprocal().equals(Complex.ZERO));
+
+        z = new Complex(1, inf).reciprocal();
+        Assert.assertEquals(z, Complex.ZERO);
+    }
+
+    @Test
+    public void testReciprocalZero() {
+        Assert.assertEquals(Complex.ZERO.reciprocal(), Complex.INF);
+    }
+
+    @Test
+    public void testReciprocalNaN() {
+        Assert.assertTrue(Complex.NaN.reciprocal().isNaN());
+    }
+
+    @Test
+    public void testMultiply() {
+        Complex x = new Complex(3.0, 4.0);
+        Complex y = new Complex(5.0, 6.0);
+        Complex z = x.multiply(y);
+        Assert.assertEquals(-9.0, z.getReal(), 1.0e-5);
+        Assert.assertEquals(38.0, z.getImaginary(), 1.0e-5);
+    }
+
+    @Test
+    public void testMultiplyNaN() {
+        Complex x = new Complex(3.0, 4.0);
+        Complex z = x.multiply(Complex.NaN);
+        Assert.assertSame(Complex.NaN, z);
+        z = Complex.NaN.multiply(5);
+        Assert.assertSame(Complex.NaN, z);
+    }
+
+    @Test
+    public void testMultiplyInfInf() {
+        // Assert.assertTrue(infInf.multiply(infInf).isNaN()); // MATH-620
+        Assert.assertTrue(infInf.multiply(infInf).isInfinite());
+    }
+
+    @Test
+    public void testMultiplyNaNInf() {
+        Complex z = new Complex(1,1);
+        Complex w = z.multiply(infOne);
+        Assert.assertEquals(w.getReal(), inf, 0);
+        Assert.assertEquals(w.getImaginary(), inf, 0);
+
+        // [MATH-164]
+        Assert.assertTrue(new Complex( 1,0).multiply(infInf).equals(Complex.INF));
+        Assert.assertTrue(new Complex(-1,0).multiply(infInf).equals(Complex.INF));
+        Assert.assertTrue(new Complex( 1,0).multiply(negInfZero).equals(Complex.INF));
+
+        w = oneInf.multiply(oneNegInf);
+        Assert.assertEquals(w.getReal(), inf, 0);
+        Assert.assertEquals(w.getImaginary(), inf, 0);
+
+        w = negInfNegInf.multiply(oneNaN);
+        Assert.assertTrue(Double.isNaN(w.getReal()));
+        Assert.assertTrue(Double.isNaN(w.getImaginary()));
+
+        z = new Complex(1, neginf);
+        Assert.assertSame(Complex.INF, z.multiply(z));
+    }
+
+    @Test
+    public void testScalarMultiply() {
+        Complex x = new Complex(3.0, 4.0);
+        double yDouble = 2.0;
+        Complex yComplex = new Complex(yDouble);
+        Assert.assertEquals(x.multiply(yComplex), x.multiply(yDouble));
+        int zInt = -5;
+        Complex zComplex = new Complex(zInt);
+        Assert.assertEquals(x.multiply(zComplex), x.multiply(zInt));
+    }
+
+    @Test
+    public void testScalarMultiplyNaN() {
+        Complex x = new Complex(3.0, 4.0);
+        double yDouble = Double.NaN;
+        Complex yComplex = new Complex(yDouble);
+        Assert.assertEquals(x.multiply(yComplex), x.multiply(yDouble));
+    }
+
+    @Test
+    public void testScalarMultiplyInf() {
+        Complex x = new Complex(1, 1);
+        double yDouble = Double.POSITIVE_INFINITY;
+        Complex yComplex = new Complex(yDouble);
+        Assert.assertEquals(x.multiply(yComplex), x.multiply(yDouble));
+
+        yDouble = Double.NEGATIVE_INFINITY;
+        yComplex = new Complex(yDouble);
+        Assert.assertEquals(x.multiply(yComplex), x.multiply(yDouble));
+    }
+
+    @Test
+    public void testNegate() {
+        Complex x = new Complex(3.0, 4.0);
+        Complex z = x.negate();
+        Assert.assertEquals(-3.0, z.getReal(), 1.0e-5);
+        Assert.assertEquals(-4.0, z.getImaginary(), 1.0e-5);
+    }
+
+    @Test
+    public void testNegateNaN() {
+        Complex z = Complex.NaN.negate();
+        Assert.assertTrue(z.isNaN());
+    }
+
+    @Test
+    public void testSubtract() {
+        Complex x = new Complex(3.0, 4.0);
+        Complex y = new Complex(5.0, 6.0);
+        Complex z = x.subtract(y);
+        Assert.assertEquals(-2.0, z.getReal(), 1.0e-5);
+        Assert.assertEquals(-2.0, z.getImaginary(), 1.0e-5);
+    }
+
+    @Test
+    public void testSubtractNaN() {
+        Complex x = new Complex(3.0, 4.0);
+        Complex z = x.subtract(Complex.NaN);
+        Assert.assertSame(Complex.NaN, z);
+        z = new Complex(1, nan);
+        Complex w = x.subtract(z);
+        Assert.assertSame(Complex.NaN, w);
+    }
+
+    @Test
+    public void testSubtractInf() {
+        Complex x = new Complex(1, 1);
+        Complex z = new Complex(neginf, 0);
+        Complex w = x.subtract(z);
+        Assert.assertEquals(w.getImaginary(), 1, 0);
+        Assert.assertEquals(inf, w.getReal(), 0);
+
+        x = new Complex(neginf, 0);
+        Assert.assertTrue(Double.isNaN(x.subtract(z).getReal()));
+    }
+
+    @Test
+    public void testScalarSubtract() {
+        Complex x = new Complex(3.0, 4.0);
+        double yDouble = 2.0;
+        Complex yComplex = new Complex(yDouble);
+        Assert.assertEquals(x.subtract(yComplex), x.subtract(yDouble));
+    }
+
+    @Test
+    public void testScalarSubtractNaN() {
+        Complex x = new Complex(3.0, 4.0);
+        double yDouble = Double.NaN;
+        Complex yComplex = new Complex(yDouble);
+        Assert.assertEquals(x.subtract(yComplex), x.subtract(yDouble));
+    }
+
+    @Test
+    public void testScalarSubtractInf() {
+        Complex x = new Complex(1, 1);
+        double yDouble = Double.POSITIVE_INFINITY;
+        Complex yComplex = new Complex(yDouble);
+        Assert.assertEquals(x.subtract(yComplex), x.subtract(yDouble));
+
+        x = new Complex(neginf, 0);
+        Assert.assertEquals(x.subtract(yComplex), x.subtract(yDouble));
+    }
+
+
+    @Test
+    public void testEqualsNull() {
+        Complex x = new Complex(3.0, 4.0);
+        Assert.assertFalse(x.equals(null));
+    }
+
+    @Test(expected=NullPointerException.class)
+    public void testFloatingPointEqualsPrecondition1() {
+        Complex.equals(new Complex(3.0, 4.0), null, 3);
+    }
+    @Test(expected=NullPointerException.class)
+    public void testFloatingPointEqualsPrecondition2() {
+        Complex.equals(null, new Complex(3.0, 4.0), 3);
+    }
+
+    @Test
+    public void testEqualsClass() {
+        Complex x = new Complex(3.0, 4.0);
+        Assert.assertFalse(x.equals(this));
+    }
+
+    @Test
+    public void testEqualsSame() {
+        Complex x = new Complex(3.0, 4.0);
+        Assert.assertTrue(x.equals(x));
+    }
+
+    @Test
+    public void testFloatingPointEquals() {
+        double re = -3.21;
+        double im = 456789e10;
+
+        final Complex x = new Complex(re, im);
+        Complex y = new Complex(re, im);
+
+        Assert.assertTrue(x.equals(y));
+        Assert.assertTrue(Complex.equals(x, y));
+
+        final int maxUlps = 5;
+        for (int i = 0; i < maxUlps; i++) {
+            re = Math.nextUp(re);
+            im = Math.nextUp(im);
+        }
+        y = new Complex(re, im);
+        Assert.assertTrue(Complex.equals(x, y, maxUlps));
+
+        re = Math.nextUp(re);
+        im = Math.nextUp(im);
+        y = new Complex(re, im);
+        Assert.assertFalse(Complex.equals(x, y, maxUlps));
+    }
+
+    @Test
+    public void testFloatingPointEqualsNaN() {
+        Complex c = new Complex(Double.NaN, 1);
+        Assert.assertFalse(Complex.equals(c, c));
+
+        c = new Complex(1, Double.NaN);
+        Assert.assertFalse(Complex.equals(c, c));
+    }
+
+    @Test
+    public void testFloatingPointEqualsWithAllowedDelta() {
+        final double re = 153.0000;
+        final double im = 152.9375;
+        final double tol1 = 0.0625;
+        final Complex x = new Complex(re, im);
+        final Complex y = new Complex(re + tol1, im + tol1);
+        Assert.assertTrue(Complex.equals(x, y, tol1));
+
+        final double tol2 = 0.0624;
+        Assert.assertFalse(Complex.equals(x, y, tol2));
+    }
+
+    @Test
+    public void testFloatingPointEqualsWithAllowedDeltaNaN() {
+        final Complex x = new Complex(0, Double.NaN);
+        final Complex y = new Complex(Double.NaN, 0);
+        Assert.assertFalse(Complex.equals(x, Complex.ZERO, 0.1));
+        Assert.assertFalse(Complex.equals(x, x, 0.1));
+        Assert.assertFalse(Complex.equals(x, y, 0.1));
+    }
+
+    @Test
+    public void testFloatingPointEqualsWithRelativeTolerance() {
+        final double tol = 1e-4;
+        final double re = 1;
+        final double im = 1e10;
+
+        final double f = 1 + tol;
+        final Complex x = new Complex(re, im);
+        final Complex y = new Complex(re * f, im * f);
+        Assert.assertTrue(Complex.equalsWithRelativeTolerance(x, y, tol));
+    }
+
+    @Test
+    public void testFloatingPointEqualsWithRelativeToleranceNaN() {
+        final Complex x = new Complex(0, Double.NaN);
+        final Complex y = new Complex(Double.NaN, 0);
+        Assert.assertFalse(Complex.equalsWithRelativeTolerance(x, Complex.ZERO, 0.1));
+        Assert.assertFalse(Complex.equalsWithRelativeTolerance(x, x, 0.1));
+        Assert.assertFalse(Complex.equalsWithRelativeTolerance(x, y, 0.1));
+    }
+
+    @Test
+    public void testEqualsTrue() {
+        Complex x = new Complex(3.0, 4.0);
+        Complex y = new Complex(3.0, 4.0);
+        Assert.assertTrue(x.equals(y));
+    }
+
+    @Test
+    public void testEqualsRealDifference() {
+        Complex x = new Complex(0.0, 0.0);
+        Complex y = new Complex(0.0 + Double.MIN_VALUE, 0.0);
+        Assert.assertFalse(x.equals(y));
+    }
+
+    @Test
+    public void testEqualsImaginaryDifference() {
+        Complex x = new Complex(0.0, 0.0);
+        Complex y = new Complex(0.0, 0.0 + Double.MIN_VALUE);
+        Assert.assertFalse(x.equals(y));
+    }
+
+    @Test
+    public void testEqualsNaN() {
+        Complex realNaN = new Complex(Double.NaN, 0.0);
+        Complex imaginaryNaN = new Complex(0.0, Double.NaN);
+        Complex complexNaN = Complex.NaN;
+        Assert.assertTrue(realNaN.equals(imaginaryNaN));
+        Assert.assertTrue(imaginaryNaN.equals(complexNaN));
+        Assert.assertTrue(realNaN.equals(complexNaN));
+    }
+
+    @Test
+    public void testHashCode() {
+        Complex x = new Complex(0.0, 0.0);
+        Complex y = new Complex(0.0, 0.0 + Double.MIN_VALUE);
+        Assert.assertFalse(x.hashCode()==y.hashCode());
+        y = new Complex(0.0 + Double.MIN_VALUE, 0.0);
+        Assert.assertFalse(x.hashCode()==y.hashCode());
+        Complex realNaN = new Complex(Double.NaN, 0.0);
+        Complex imaginaryNaN = new Complex(0.0, Double.NaN);
+        Assert.assertEquals(realNaN.hashCode(), imaginaryNaN.hashCode());
+        Assert.assertEquals(imaginaryNaN.hashCode(), Complex.NaN.hashCode());
+
+        // MATH-1118
+        // "equals" and "hashCode" must be compatible: if two objects have
+        // different hash codes, "equals" must return false.
+        final String msg = "'equals' not compatible with 'hashCode'";
+
+        x = new Complex(0.0, 0.0);
+        y = new Complex(0.0, -0.0);
+        Assert.assertTrue(x.hashCode() != y.hashCode());
+        Assert.assertFalse(msg, x.equals(y));
+
+        x = new Complex(0.0, 0.0);
+        y = new Complex(-0.0, 0.0);
+        Assert.assertTrue(x.hashCode() != y.hashCode());
+        Assert.assertFalse(msg, x.equals(y));
+    }
+
+    @Test
+    public void testAcos() {
+        Complex z = new Complex(3, 4);
+        Complex expected = new Complex(0.936812, -2.30551);
+        TestUtils.assertEquals(expected, z.acos(), 1.0e-5);
+        TestUtils.assertEquals(new Complex(Math.acos(0), 0),
+                Complex.ZERO.acos(), 1.0e-12);
+    }
+
+    @Test
+    public void testAcosInf() {
+        TestUtils.assertSame(Complex.NaN, oneInf.acos());
+        TestUtils.assertSame(Complex.NaN, oneNegInf.acos());
+        TestUtils.assertSame(Complex.NaN, infOne.acos());
+        TestUtils.assertSame(Complex.NaN, negInfOne.acos());
+        TestUtils.assertSame(Complex.NaN, infInf.acos());
+        TestUtils.assertSame(Complex.NaN, infNegInf.acos());
+        TestUtils.assertSame(Complex.NaN, negInfInf.acos());
+        TestUtils.assertSame(Complex.NaN, negInfNegInf.acos());
+    }
+
+    @Test
+    public void testAcosNaN() {
+        Assert.assertTrue(Complex.NaN.acos().isNaN());
+    }
+
+    @Test
+    public void testAsin() {
+        Complex z = new Complex(3, 4);
+        Complex expected = new Complex(0.633984, 2.30551);
+        TestUtils.assertEquals(expected, z.asin(), 1.0e-5);
+    }
+
+    @Test
+    public void testAsinNaN() {
+        Assert.assertTrue(Complex.NaN.asin().isNaN());
+    }
+
+    @Test
+    public void testAsinInf() {
+        TestUtils.assertSame(Complex.NaN, oneInf.asin());
+        TestUtils.assertSame(Complex.NaN, oneNegInf.asin());
+        TestUtils.assertSame(Complex.NaN, infOne.asin());
+        TestUtils.assertSame(Complex.NaN, negInfOne.asin());
+        TestUtils.assertSame(Complex.NaN, infInf.asin());
+        TestUtils.assertSame(Complex.NaN, infNegInf.asin());
+        TestUtils.assertSame(Complex.NaN, negInfInf.asin());
+        TestUtils.assertSame(Complex.NaN, negInfNegInf.asin());
+    }
+
+
+    @Test
+    public void testAtan() {
+        Complex z = new Complex(3, 4);
+        Complex expected = new Complex(1.44831, 0.158997);
+        TestUtils.assertEquals(expected, z.atan(), 1.0e-5);
+    }
+
+    @Test
+    public void testAtanInf() {
+        TestUtils.assertSame(Complex.NaN, oneInf.atan());
+        TestUtils.assertSame(Complex.NaN, oneNegInf.atan());
+        TestUtils.assertSame(Complex.NaN, infOne.atan());
+        TestUtils.assertSame(Complex.NaN, negInfOne.atan());
+        TestUtils.assertSame(Complex.NaN, infInf.atan());
+        TestUtils.assertSame(Complex.NaN, infNegInf.atan());
+        TestUtils.assertSame(Complex.NaN, negInfInf.atan());
+        TestUtils.assertSame(Complex.NaN, negInfNegInf.atan());
+    }
+
+    @Test
+    public void testAtanI() {
+        Assert.assertTrue(Complex.I.atan().isNaN());
+    }
+
+    @Test
+    public void testAtanNaN() {
+        Assert.assertTrue(Complex.NaN.atan().isNaN());
+    }
+
+    @Test
+    public void testCos() {
+        Complex z = new Complex(3, 4);
+        Complex expected = new Complex(-27.03495, -3.851153);
+        TestUtils.assertEquals(expected, z.cos(), 1.0e-5);
+    }
+
+    @Test
+    public void testCosNaN() {
+        Assert.assertTrue(Complex.NaN.cos().isNaN());
+    }
+
+    @Test
+    public void testCosInf() {
+        TestUtils.assertSame(infNegInf, oneInf.cos());
+        TestUtils.assertSame(infInf, oneNegInf.cos());
+        TestUtils.assertSame(Complex.NaN, infOne.cos());
+        TestUtils.assertSame(Complex.NaN, negInfOne.cos());
+        TestUtils.assertSame(Complex.NaN, infInf.cos());
+        TestUtils.assertSame(Complex.NaN, infNegInf.cos());
+        TestUtils.assertSame(Complex.NaN, negInfInf.cos());
+        TestUtils.assertSame(Complex.NaN, negInfNegInf.cos());
+    }
+
+    @Test
+    public void testCosh() {
+        Complex z = new Complex(3, 4);
+        Complex expected = new Complex(-6.58066, -7.58155);
+        TestUtils.assertEquals(expected, z.cosh(), 1.0e-5);
+    }
+
+    @Test
+    public void testCoshNaN() {
+        Assert.assertTrue(Complex.NaN.cosh().isNaN());
+    }
+
+    @Test
+    public void testCoshInf() {
+        TestUtils.assertSame(Complex.NaN, oneInf.cosh());
+        TestUtils.assertSame(Complex.NaN, oneNegInf.cosh());
+        TestUtils.assertSame(infInf, infOne.cosh());
+        TestUtils.assertSame(infNegInf, negInfOne.cosh());
+        TestUtils.assertSame(Complex.NaN, infInf.cosh());
+        TestUtils.assertSame(Complex.NaN, infNegInf.cosh());
+        TestUtils.assertSame(Complex.NaN, negInfInf.cosh());
+        TestUtils.assertSame(Complex.NaN, negInfNegInf.cosh());
+    }
+
+    @Test
+    public void testExp() {
+        final double tol = Math.ulp(1d);
+        Complex z = new Complex(3, 4);
+        Complex expected = new Complex(-13.12878, -15.20078);
+        TestUtils.assertEquals(expected, z.exp(), 1.0e-5);
+        TestUtils.assertEquals(Complex.ONE,
+                Complex.ZERO.exp(), tol);
+        Complex iPi = Complex.I.multiply(new Complex(pi,0));
+        TestUtils.assertEquals(Complex.ONE.negate(),
+                iPi.exp(), tol);
+    }
+
+    @Test
+    public void testExpNaN() {
+        Assert.assertTrue(Complex.NaN.exp().isNaN());
+    }
+
+    @Test
+    public void testExpInf1() {
+        TestUtils.assertSame(Complex.NaN, oneInf.exp());
+    }
+
+    @Test
+    public void testExpInf2() {
+        TestUtils.assertSame(Complex.NaN, oneNegInf.exp());
+    }
+
+    @Test
+    public void testExpInf3() {
+        TestUtils.assertSame(infInf, infOne.exp());
+    }
+
+    @Test
+    @Ignore
+    public void testJava() {// TODO more debug
+        System.out.println(">>testJava()");
+        // MathTest#testExpSpecialCases() checks the following:
+        // Assert.assertEquals("exp of -infinity should be 0.0", 0.0, Math.exp(Double.NEGATIVE_INFINITY), Precision.EPSILON);
+        // Let's check how well Math works:
+        System.out.println("Math.exp="+Math.exp(Double.NEGATIVE_INFINITY));
+        String props[] = {
+        "java.version", //    Java Runtime Environment version
+        "java.vendor", // Java Runtime Environment vendor
+        "java.vm.specification.version", //   Java Virtual Machine specification version
+        "java.vm.specification.vendor", //    Java Virtual Machine specification vendor
+        "java.vm.specification.name", //  Java Virtual Machine specification name
+        "java.vm.version", // Java Virtual Machine implementation version
+        "java.vm.vendor", //  Java Virtual Machine implementation vendor
+        "java.vm.name", //    Java Virtual Machine implementation name
+        "java.specification.version", //  Java Runtime Environment specification version
+        "java.specification.vendor", //   Java Runtime Environment specification vendor
+        "java.specification.name", // Java Runtime Environment specification name
+        "java.class.version", //  Java class format version number
+        };
+        for(String t : props) {
+            System.out.println(t + "=" + System.getProperty(t));
+        }
+        System.out.println("<<testJava()");
+    }
+
+    @Test
+    public void testExpInf4() {
+        final Complex exp = negInfOne.exp();
+        TestUtils.assertSame(Complex.ZERO, exp);
+    }
+
+    @Test
+    public void testExpInf5() {
+        TestUtils.assertSame(Complex.NaN, infInf.exp());
+    }
+
+    @Test
+    public void testExpInf6() {
+        TestUtils.assertSame(Complex.NaN, infNegInf.exp());
+    }
+
+    @Test
+    public void testExpInf7() {
+        TestUtils.assertSame(Complex.NaN, negInfInf.exp());
+    }
+
+    @Test
+    public void testExpInf8() {
+        TestUtils.assertSame(Complex.NaN, negInfNegInf.exp());
+    }
+
+    @Test
+    public void testLog() {
+        Complex z = new Complex(3, 4);
+        Complex expected = new Complex(1.60944, 0.927295);
+        TestUtils.assertEquals(expected, z.log(), 1.0e-5);
+    }
+
+    @Test
+    public void testLogNaN() {
+        Assert.assertTrue(Complex.NaN.log().isNaN());
+    }
+
+    @Test
+    public void testLogInf() {
+        final double tol = Math.ulp(1d);
+        TestUtils.assertEquals(new Complex(inf, pi / 2),
+                oneInf.log(), tol);
+        TestUtils.assertEquals(new Complex(inf, -pi / 2),
+                oneNegInf.log(), tol);
+        TestUtils.assertEquals(infZero, infOne.log(), tol);
+        TestUtils.assertEquals(new Complex(inf, pi),
+                negInfOne.log(), tol);
+        TestUtils.assertEquals(new Complex(inf, pi / 4),
+                infInf.log(), tol);
+        TestUtils.assertEquals(new Complex(inf, -pi / 4),
+                infNegInf.log(), tol);
+        TestUtils.assertEquals(new Complex(inf, 3d * pi / 4),
+                negInfInf.log(), tol);
+        TestUtils.assertEquals(new Complex(inf, - 3d * pi / 4),
+                negInfNegInf.log(), tol);
+    }
+
+    @Test
+    public void testLogZero() {
+        TestUtils.assertSame(negInfZero, Complex.ZERO.log());
+    }
+
+    @Test
+    public void testPow() {
+        Complex x = new Complex(3, 4);
+        Complex y = new Complex(5, 6);
+        Complex expected = new Complex(-1.860893, 11.83677);
+        TestUtils.assertEquals(expected, x.pow(y), 1.0e-5);
+    }
+
+    @Test
+    public void testPowNaNBase() {
+        Complex x = new Complex(3, 4);
+        Assert.assertTrue(Complex.NaN.pow(x).isNaN());
+    }
+
+    @Test
+    public void testPowNaNExponent() {
+        Complex x = new Complex(3, 4);
+        Assert.assertTrue(x.pow(Complex.NaN).isNaN());
+    }
+
+   @Test
+   public void testPowInf() {
+       TestUtils.assertSame(Complex.NaN,Complex.ONE.pow(oneInf));
+       TestUtils.assertSame(Complex.NaN,Complex.ONE.pow(oneNegInf));
+       TestUtils.assertSame(Complex.NaN,Complex.ONE.pow(infOne));
+       TestUtils.assertSame(Complex.NaN,Complex.ONE.pow(infInf));
+       TestUtils.assertSame(Complex.NaN,Complex.ONE.pow(infNegInf));
+       TestUtils.assertSame(Complex.NaN,Complex.ONE.pow(negInfInf));
+       TestUtils.assertSame(Complex.NaN,Complex.ONE.pow(negInfNegInf));
+       TestUtils.assertSame(Complex.NaN,infOne.pow(Complex.ONE));
+       TestUtils.assertSame(Complex.NaN,negInfOne.pow(Complex.ONE));
+       TestUtils.assertSame(Complex.NaN,infInf.pow(Complex.ONE));
+       TestUtils.assertSame(Complex.NaN,infNegInf.pow(Complex.ONE));
+       TestUtils.assertSame(Complex.NaN,negInfInf.pow(Complex.ONE));
+       TestUtils.assertSame(Complex.NaN,negInfNegInf.pow(Complex.ONE));
+       TestUtils.assertSame(Complex.NaN,negInfNegInf.pow(infNegInf));
+       TestUtils.assertSame(Complex.NaN,negInfNegInf.pow(negInfNegInf));
+       TestUtils.assertSame(Complex.NaN,negInfNegInf.pow(infInf));
+       TestUtils.assertSame(Complex.NaN,infInf.pow(infNegInf));
+       TestUtils.assertSame(Complex.NaN,infInf.pow(negInfNegInf));
+       TestUtils.assertSame(Complex.NaN,infInf.pow(infInf));
+       TestUtils.assertSame(Complex.NaN,infNegInf.pow(infNegInf));
+       TestUtils.assertSame(Complex.NaN,infNegInf.pow(negInfNegInf));
+       TestUtils.assertSame(Complex.NaN,infNegInf.pow(infInf));
+   }
+
+   @Test
+   public void testPowZero() {
+       final double tol = Math.ulp(1d);
+       TestUtils.assertEquals(Complex.ZERO,
+              Complex.ZERO.pow(Complex.ONE), tol);
+       TestUtils.assertEquals(Complex.ZERO,
+               Complex.ZERO.pow(new Complex(2, 0)), tol);
+       TestUtils.assertSame(Complex.NaN,
+               Complex.ZERO.pow(Complex.ZERO));
+       TestUtils.assertSame(Complex.NaN,
+               Complex.ZERO.pow(Complex.I));
+       TestUtils.assertEquals(Complex.ONE,
+               Complex.ONE.pow(Complex.ZERO), tol);
+       TestUtils.assertEquals(Complex.ONE,
+               Complex.I.pow(Complex.ZERO), tol);
+       TestUtils.assertEquals(Complex.ONE,
+               new Complex(-1, 3).pow(Complex.ZERO), tol);
+   }
+
+    @Test
+    public void testScalarPow() {
+        Complex x = new Complex(3, 4);
+        double yDouble = 5.0;
+        Complex yComplex = new Complex(yDouble);
+        Assert.assertEquals(x.pow(yComplex), x.pow(yDouble));
+    }
+
+    @Test
+    public void testScalarPowNaNBase() {
+        Complex x = Complex.NaN;
+        double yDouble = 5.0;
+        Complex yComplex = new Complex(yDouble);
+        Assert.assertEquals(x.pow(yComplex), x.pow(yDouble));
+    }
+
+    @Test
+    public void testScalarPowNaNExponent() {
+        Complex x = new Complex(3, 4);
+        double yDouble = Double.NaN;
+        Complex yComplex = new Complex(yDouble);
+        Assert.assertEquals(x.pow(yComplex), x.pow(yDouble));
+    }
+
+   @Test
+   public void testScalarPowInf() {
+       TestUtils.assertSame(Complex.NaN,Complex.ONE.pow(Double.POSITIVE_INFINITY));
+       TestUtils.assertSame(Complex.NaN,Complex.ONE.pow(Double.NEGATIVE_INFINITY));
+       TestUtils.assertSame(Complex.NaN,infOne.pow(1.0));
+       TestUtils.assertSame(Complex.NaN,negInfOne.pow(1.0));
+       TestUtils.assertSame(Complex.NaN,infInf.pow(1.0));
+       TestUtils.assertSame(Complex.NaN,infNegInf.pow(1.0));
+       TestUtils.assertSame(Complex.NaN,negInfInf.pow(10));
+       TestUtils.assertSame(Complex.NaN,negInfNegInf.pow(1.0));
+       TestUtils.assertSame(Complex.NaN,negInfNegInf.pow(Double.POSITIVE_INFINITY));
+       TestUtils.assertSame(Complex.NaN,negInfNegInf.pow(Double.POSITIVE_INFINITY));
+       TestUtils.assertSame(Complex.NaN,infInf.pow(Double.POSITIVE_INFINITY));
+       TestUtils.assertSame(Complex.NaN,infInf.pow(Double.NEGATIVE_INFINITY));
+       TestUtils.assertSame(Complex.NaN,infNegInf.pow(Double.NEGATIVE_INFINITY));
+       TestUtils.assertSame(Complex.NaN,infNegInf.pow(Double.POSITIVE_INFINITY));
+   }
+
+   @Test
+   public void testScalarPowZero() {
+       final double tol = Math.ulp(1d);
+       TestUtils.assertEquals(Complex.ZERO, Complex.ZERO.pow(1.0), tol);
+       TestUtils.assertEquals(Complex.ZERO, Complex.ZERO.pow(2.0), tol);
+       TestUtils.assertSame(Complex.NaN, Complex.ZERO.pow(0.0));
+       TestUtils.assertSame(Complex.NaN, Complex.ZERO.pow(-1.0));
+       TestUtils.assertEquals(Complex.ONE, Complex.ONE.pow(0.0), tol);
+       TestUtils.assertEquals(Complex.ONE, Complex.I.pow(0.0), tol);
+       TestUtils.assertEquals(Complex.ONE, new Complex(-1, 3).pow(0.0), tol);
+   }
+
+    @Test
+    public void testSin() {
+        Complex z = new Complex(3, 4);
+        Complex expected = new Complex(3.853738, -27.01681);
+        TestUtils.assertEquals(expected, z.sin(), 1.0e-5);
+    }
+
+    @Test
+    public void testSinInf() {
+        TestUtils.assertSame(infInf, oneInf.sin());
+        TestUtils.assertSame(infNegInf, oneNegInf.sin());
+        TestUtils.assertSame(Complex.NaN, infOne.sin());
+        TestUtils.assertSame(Complex.NaN, negInfOne.sin());
+        TestUtils.assertSame(Complex.NaN, infInf.sin());
+        TestUtils.assertSame(Complex.NaN, infNegInf.sin());
+        TestUtils.assertSame(Complex.NaN, negInfInf.sin());
+        TestUtils.assertSame(Complex.NaN, negInfNegInf.sin());
+    }
+
+    @Test
+    public void testSinNaN() {
+        Assert.assertTrue(Complex.NaN.sin().isNaN());
+    }
+
+    @Test
+    public void testSinh() {
+        Complex z = new Complex(3, 4);
+        Complex expected = new Complex(-6.54812, -7.61923);
+        TestUtils.assertEquals(expected, z.sinh(), 1.0e-5);
+    }
+
+    @Test
+    public void testSinhNaN() {
+        Assert.assertTrue(Complex.NaN.sinh().isNaN());
+    }
+
+    @Test
+    public void testSinhInf() {
+        TestUtils.assertSame(Complex.NaN, oneInf.sinh());
+        TestUtils.assertSame(Complex.NaN, oneNegInf.sinh());
+        TestUtils.assertSame(infInf, infOne.sinh());
+        TestUtils.assertSame(negInfInf, negInfOne.sinh());
+        TestUtils.assertSame(Complex.NaN, infInf.sinh());
+        TestUtils.assertSame(Complex.NaN, infNegInf.sinh());
+        TestUtils.assertSame(Complex.NaN, negInfInf.sinh());
+        TestUtils.assertSame(Complex.NaN, negInfNegInf.sinh());
+    }
+
+    @Test
+    public void testSqrtRealPositive() {
+        Complex z = new Complex(3, 4);
+        Complex expected = new Complex(2, 1);
+        TestUtils.assertEquals(expected, z.sqrt(), 1.0e-5);
+    }
+
+    @Test
+    public void testSqrtRealZero() {
+        Complex z = new Complex(0.0, 4);
+        Complex expected = new Complex(1.41421, 1.41421);
+        TestUtils.assertEquals(expected, z.sqrt(), 1.0e-5);
+    }
+
+    @Test
+    public void testSqrtRealNegative() {
+        Complex z = new Complex(-3.0, 4);
+        Complex expected = new Complex(1, 2);
+        TestUtils.assertEquals(expected, z.sqrt(), 1.0e-5);
+    }
+
+    @Test
+    public void testSqrtImaginaryZero() {
+        Complex z = new Complex(-3.0, 0.0);
+        Complex expected = new Complex(0.0, 1.73205);
+        TestUtils.assertEquals(expected, z.sqrt(), 1.0e-5);
+    }
+
+    @Test
+    public void testSqrtImaginaryNegative() {
+        Complex z = new Complex(-3.0, -4.0);
+        Complex expected = new Complex(1.0, -2.0);
+        TestUtils.assertEquals(expected, z.sqrt(), 1.0e-5);
+    }
+
+    @Test
+    public void testSqrtPolar() {
+        final double tol = 1e-12;
+        double r = 1;
+        for (int i = 0; i < 5; i++) {
+            r += i;
+            double theta = 0;
+            for (int j = 0; j < 11; j++) {
+                theta += pi / 12;
+                Complex z = ComplexUtils.polar2Complex(r, theta);
+                Complex sqrtz = ComplexUtils.polar2Complex(Math.sqrt(r), theta / 2);
+                TestUtils.assertEquals(sqrtz, z.sqrt(), tol);
+            }
+        }
+    }
+
+    @Test
+    public void testSqrtNaN() {
+        Assert.assertTrue(Complex.NaN.sqrt().isNaN());
+    }
+
+    @Test
+    public void testSqrtInf() {
+        TestUtils.assertSame(infNaN, oneInf.sqrt());
+        TestUtils.assertSame(infNaN, oneNegInf.sqrt());
+        TestUtils.assertSame(infZero, infOne.sqrt());
+        TestUtils.assertSame(zeroInf, negInfOne.sqrt());
+        TestUtils.assertSame(infNaN, infInf.sqrt());
+        TestUtils.assertSame(infNaN, infNegInf.sqrt());
+        TestUtils.assertSame(nanInf, negInfInf.sqrt());
+        TestUtils.assertSame(nanNegInf, negInfNegInf.sqrt());
+    }
+
+    @Test
+    public void testSqrt1z() {
+        Complex z = new Complex(3, 4);
+        Complex expected = new Complex(4.08033, -2.94094);
+        TestUtils.assertEquals(expected, z.sqrt1z(), 1.0e-5);
+    }
+
+    @Test
+    public void testSqrt1zNaN() {
+        Assert.assertTrue(Complex.NaN.sqrt1z().isNaN());
+    }
+
+    @Test
+    public void testTan() {
+        Complex z = new Complex(3, 4);
+        Complex expected = new Complex(-0.000187346, 0.999356);
+        TestUtils.assertEquals(expected, z.tan(), 1.0e-5);
+        /* Check that no overflow occurs (MATH-722) */
+        Complex actual = new Complex(3.0, 1E10).tan();
+        expected = new Complex(0, 1);
+        TestUtils.assertEquals(expected, actual, 1.0e-5);
+        actual = new Complex(3.0, -1E10).tan();
+        expected = new Complex(0, -1);
+        TestUtils.assertEquals(expected, actual, 1.0e-5);
+    }
+
+    @Test
+    public void testTanNaN() {
+        Assert.assertTrue(Complex.NaN.tan().isNaN());
+    }
+
+    @Test
+    public void testTanInf() {
+        TestUtils.assertSame(Complex.valueOf(0.0, 1.0), oneInf.tan());
+        TestUtils.assertSame(Complex.valueOf(0.0, -1.0), oneNegInf.tan());
+        TestUtils.assertSame(Complex.NaN, infOne.tan());
+        TestUtils.assertSame(Complex.NaN, negInfOne.tan());
+        TestUtils.assertSame(Complex.NaN, infInf.tan());
+        TestUtils.assertSame(Complex.NaN, infNegInf.tan());
+        TestUtils.assertSame(Complex.NaN, negInfInf.tan());
+        TestUtils.assertSame(Complex.NaN, negInfNegInf.tan());
+    }
+
+   @Test
+   public void testTanCritical() {
+        TestUtils.assertSame(infNaN, new Complex(pi/2, 0).tan());
+        TestUtils.assertSame(negInfNaN, new Complex(-pi/2, 0).tan());
+    }
+
+    @Test
+    public void testTanh() {
+        Complex z = new Complex(3, 4);
+        Complex expected = new Complex(1.00071, 0.00490826);
+        TestUtils.assertEquals(expected, z.tanh(), 1.0e-5);
+        /* Check that no overflow occurs (MATH-722) */
+        Complex actual = new Complex(1E10, 3.0).tanh();
+        expected = new Complex(1, 0);
+        TestUtils.assertEquals(expected, actual, 1.0e-5);
+        actual = new Complex(-1E10, 3.0).tanh();
+        expected = new Complex(-1, 0);
+        TestUtils.assertEquals(expected, actual, 1.0e-5);
+    }
+
+    @Test
+    public void testTanhNaN() {
+        Assert.assertTrue(Complex.NaN.tanh().isNaN());
+    }
+
+    @Test
+    public void testTanhInf() {
+        TestUtils.assertSame(Complex.NaN, oneInf.tanh());
+        TestUtils.assertSame(Complex.NaN, oneNegInf.tanh());
+        TestUtils.assertSame(Complex.valueOf(1.0, 0.0), infOne.tanh());
+        TestUtils.assertSame(Complex.valueOf(-1.0, 0.0), negInfOne.tanh());
+        TestUtils.assertSame(Complex.NaN, infInf.tanh());
+        TestUtils.assertSame(Complex.NaN, infNegInf.tanh());
+        TestUtils.assertSame(Complex.NaN, negInfInf.tanh());
+        TestUtils.assertSame(Complex.NaN, negInfNegInf.tanh());
+    }
+
+    @Test
+    public void testTanhCritical() {
+        TestUtils.assertSame(nanInf, new Complex(0, pi/2).tanh());
+    }
+
+    /** test issue MATH-221 */
+    @Test
+    public void testMath221() {
+        Assert.assertTrue(Complex.equals(new Complex(0,-1),
+                                         new Complex(0,1).multiply(new Complex(-1,0))));
+    }
+
+    /**
+     * Test: computing <b>third roots</b> of z.
+     * <pre>
+     * <code>
+     * <b>z = -2 + 2 * i</b>
+     *   => z_0 =  1      +          i
+     *   => z_1 = -1.3660 + 0.3660 * i
+     *   => z_2 =  0.3660 - 1.3660 * i
+     * </code>
+     * </pre>
+     */
+    @Test
+    public void testNthRoot_normal_thirdRoot() {
+        // The complex number we want to compute all third-roots for.
+        Complex z = new Complex(-2,2);
+        // The List holding all third roots
+        Complex[] thirdRootsOfZ = z.nthRoot(3).toArray(new Complex[0]);
+        // Returned Collection must not be empty!
+        Assert.assertEquals(3, thirdRootsOfZ.length);
+        // test z_0
+        Assert.assertEquals(1.0,                  thirdRootsOfZ[0].getReal(),      1.0e-5);
+        Assert.assertEquals(1.0,                  thirdRootsOfZ[0].getImaginary(), 1.0e-5);
+        // test z_1
+        Assert.assertEquals(-1.3660254037844386,  thirdRootsOfZ[1].getReal(),      1.0e-5);
+        Assert.assertEquals(0.36602540378443843,  thirdRootsOfZ[1].getImaginary(), 1.0e-5);
+        // test z_2
+        Assert.assertEquals(0.366025403784439,    thirdRootsOfZ[2].getReal(),      1.0e-5);
+        Assert.assertEquals(-1.3660254037844384,  thirdRootsOfZ[2].getImaginary(), 1.0e-5);
+    }
+
+
+    /**
+     * Test: computing <b>fourth roots</b> of z.
+     * <pre>
+     * <code>
+     * <b>z = 5 - 2 * i</b>
+     *   => z_0 =  1.5164 - 0.1446 * i
+     *   => z_1 =  0.1446 + 1.5164 * i
+     *   => z_2 = -1.5164 + 0.1446 * i
+     *   => z_3 = -1.5164 - 0.1446 * i
+     * </code>
+     * </pre>
+     */
+    @Test
+    public void testNthRoot_normal_fourthRoot() {
+        // The complex number we want to compute all third-roots for.
+        Complex z = new Complex(5,-2);
+        // The List holding all fourth roots
+        Complex[] fourthRootsOfZ = z.nthRoot(4).toArray(new Complex[0]);
+        // Returned Collection must not be empty!
+        Assert.assertEquals(4, fourthRootsOfZ.length);
+        // test z_0
+        Assert.assertEquals(1.5164629308487783,     fourthRootsOfZ[0].getReal(),      1.0e-5);
+        Assert.assertEquals(-0.14469266210702247,   fourthRootsOfZ[0].getImaginary(), 1.0e-5);
+        // test z_1
+        Assert.assertEquals(0.14469266210702256,    fourthRootsOfZ[1].getReal(),      1.0e-5);
+        Assert.assertEquals(1.5164629308487783,     fourthRootsOfZ[1].getImaginary(), 1.0e-5);
+        // test z_2
+        Assert.assertEquals(-1.5164629308487783,    fourthRootsOfZ[2].getReal(),      1.0e-5);
+        Assert.assertEquals(0.14469266210702267,    fourthRootsOfZ[2].getImaginary(), 1.0e-5);
+        // test z_3
+        Assert.assertEquals(-0.14469266210702275,   fourthRootsOfZ[3].getReal(),      1.0e-5);
+        Assert.assertEquals(-1.5164629308487783,    fourthRootsOfZ[3].getImaginary(), 1.0e-5);
+    }
+
+    /**
+     * Test: computing <b>third roots</b> of z.
+     * <pre>
+     * <code>
+     * <b>z = 8</b>
+     *   => z_0 =  2
+     *   => z_1 = -1 + 1.73205 * i
+     *   => z_2 = -1 - 1.73205 * i
+     * </code>
+     * </pre>
+     */
+    @Test
+    public void testNthRoot_cornercase_thirdRoot_imaginaryPartEmpty() {
+        // The number 8 has three third roots. One we all already know is the number 2.
+        // But there are two more complex roots.
+        Complex z = new Complex(8,0);
+        // The List holding all third roots
+        Complex[] thirdRootsOfZ = z.nthRoot(3).toArray(new Complex[0]);
+        // Returned Collection must not be empty!
+        Assert.assertEquals(3, thirdRootsOfZ.length);
+        // test z_0
+        Assert.assertEquals(2.0,                thirdRootsOfZ[0].getReal(),      1.0e-5);
+        Assert.assertEquals(0.0,                thirdRootsOfZ[0].getImaginary(), 1.0e-5);
+        // test z_1
+        Assert.assertEquals(-1.0,               thirdRootsOfZ[1].getReal(),      1.0e-5);
+        Assert.assertEquals(1.7320508075688774, thirdRootsOfZ[1].getImaginary(), 1.0e-5);
+        // test z_2
+        Assert.assertEquals(-1.0,               thirdRootsOfZ[2].getReal(),      1.0e-5);
+        Assert.assertEquals(-1.732050807568877, thirdRootsOfZ[2].getImaginary(), 1.0e-5);
+    }
+
+
+    /**
+     * Test: computing <b>third roots</b> of z with real part 0.
+     * <pre>
+     * <code>
+     * <b>z = 2 * i</b>
+     *   => z_0 =  1.0911 + 0.6299 * i
+     *   => z_1 = -1.0911 + 0.6299 * i
+     *   => z_2 = -2.3144 - 1.2599 * i
+     * </code>
+     * </pre>
+     */
+    @Test
+    public void testNthRoot_cornercase_thirdRoot_realPartZero() {
+        // complex number with only imaginary part
+        Complex z = new Complex(0,2);
+        // The List holding all third roots
+        Complex[] thirdRootsOfZ = z.nthRoot(3).toArray(new Complex[0]);
+        // Returned Collection must not be empty!
+        Assert.assertEquals(3, thirdRootsOfZ.length);
+        // test z_0
+        Assert.assertEquals(1.0911236359717216,      thirdRootsOfZ[0].getReal(),      1.0e-5);
+        Assert.assertEquals(0.6299605249474365,      thirdRootsOfZ[0].getImaginary(), 1.0e-5);
+        // test z_1
+        Assert.assertEquals(-1.0911236359717216,     thirdRootsOfZ[1].getReal(),      1.0e-5);
+        Assert.assertEquals(0.6299605249474365,      thirdRootsOfZ[1].getImaginary(), 1.0e-5);
+        // test z_2
+        Assert.assertEquals(-2.3144374213981936E-16, thirdRootsOfZ[2].getReal(),      1.0e-5);
+        Assert.assertEquals(-1.2599210498948732,     thirdRootsOfZ[2].getImaginary(), 1.0e-5);
+    }
+
+    /**
+     * Test cornercases with NaN and Infinity.
+     */
+    @Test
+    public void testNthRoot_cornercase_NAN_Inf() {
+        // NaN + finite -> NaN
+        List<Complex> roots = oneNaN.nthRoot(3);
+        Assert.assertEquals(1,roots.size());
+        Assert.assertEquals(Complex.NaN, roots.get(0));
+
+        roots = nanZero.nthRoot(3);
+        Assert.assertEquals(1,roots.size());
+        Assert.assertEquals(Complex.NaN, roots.get(0));
+
+        // NaN + infinite -> NaN
+        roots = nanInf.nthRoot(3);
+        Assert.assertEquals(1,roots.size());
+        Assert.assertEquals(Complex.NaN, roots.get(0));
+
+        // finite + infinite -> Inf
+        roots = oneInf.nthRoot(3);
+        Assert.assertEquals(1,roots.size());
+        Assert.assertEquals(Complex.INF, roots.get(0));
+
+        // infinite + infinite -> Inf
+        roots = negInfInf.nthRoot(3);
+        Assert.assertEquals(1,roots.size());
+        Assert.assertEquals(Complex.INF, roots.get(0));
+    }
+
+    /**
+     * Test standard values
+     */
+    @Test
+    public void testGetArgument() {
+        Complex z = new Complex(1, 0);
+        Assert.assertEquals(0.0, z.getArgument(), 1.0e-12);
+
+        z = new Complex(1, 1);
+        Assert.assertEquals(Math.PI/4, z.getArgument(), 1.0e-12);
+
+        z = new Complex(0, 1);
+        Assert.assertEquals(Math.PI/2, z.getArgument(), 1.0e-12);
+
+        z = new Complex(-1, 1);
+        Assert.assertEquals(3 * Math.PI/4, z.getArgument(), 1.0e-12);
+
+        z = new Complex(-1, 0);
+        Assert.assertEquals(Math.PI, z.getArgument(), 1.0e-12);
+
+        z = new Complex(-1, -1);
+        Assert.assertEquals(-3 * Math.PI/4, z.getArgument(), 1.0e-12);
+
+        z = new Complex(0, -1);
+        Assert.assertEquals(-Math.PI/2, z.getArgument(), 1.0e-12);
+
+        z = new Complex(1, -1);
+        Assert.assertEquals(-Math.PI/4, z.getArgument(), 1.0e-12);
+
+    }
+
+    /**
+     * Verify atan2-style handling of infinite parts
+     */
+    @Test
+    public void testGetArgumentInf() {
+        Assert.assertEquals(Math.PI/4, infInf.getArgument(), 1.0e-12);
+        Assert.assertEquals(Math.PI/2, oneInf.getArgument(), 1.0e-12);
+        Assert.assertEquals(0.0, infOne.getArgument(), 1.0e-12);
+        Assert.assertEquals(Math.PI/2, zeroInf.getArgument(), 1.0e-12);
+        Assert.assertEquals(0.0, infZero.getArgument(), 1.0e-12);
+        Assert.assertEquals(Math.PI, negInfOne.getArgument(), 1.0e-12);
+        Assert.assertEquals(-3.0*Math.PI/4, negInfNegInf.getArgument(), 1.0e-12);
+        Assert.assertEquals(-Math.PI/2, oneNegInf.getArgument(), 1.0e-12);
+    }
+
+    /**
+     * Verify that either part NaN results in NaN
+     */
+    @Test
+    public void testGetArgumentNaN() {
+        Assert.assertTrue(Double.isNaN(nanZero.getArgument()));
+        Assert.assertTrue(Double.isNaN(zeroNaN.getArgument()));
+        Assert.assertTrue(Double.isNaN(Complex.NaN.getArgument()));
+    }
+
+    @Test
+    public void testSerial() {
+        Complex z = new Complex(3.0, 4.0);
+        Assert.assertEquals(z, TestUtils.serializeAndRecover(z));
+        Complex ncmplx = (Complex)TestUtils.serializeAndRecover(oneNaN);
+        Assert.assertEquals(nanZero, ncmplx);
+        Assert.assertTrue(ncmplx.isNaN());
+        Complex infcmplx = (Complex)TestUtils.serializeAndRecover(infInf);
+        Assert.assertEquals(infInf, infcmplx);
+        Assert.assertTrue(infcmplx.isInfinite());
+        TestComplex tz = new TestComplex(3.0, 4.0);
+        Assert.assertEquals(tz, TestUtils.serializeAndRecover(tz));
+        TestComplex ntcmplx = (TestComplex)TestUtils.serializeAndRecover(new TestComplex(oneNaN));
+        Assert.assertEquals(nanZero, ntcmplx);
+        Assert.assertTrue(ntcmplx.isNaN());
+        TestComplex inftcmplx = (TestComplex)TestUtils.serializeAndRecover(new TestComplex(infInf));
+        Assert.assertEquals(infInf, inftcmplx);
+        Assert.assertTrue(inftcmplx.isInfinite());
+    }
+
+    /**
+     * Class to test extending Complex
+     */
+    public static class TestComplex extends Complex {
+
+        /**
+         * Serialization identifier.
+         */
+        private static final long serialVersionUID = 3268726724160389237L;
+
+        public TestComplex(double real, double imaginary) {
+            super(real, imaginary);
+        }
+
+        public TestComplex(Complex other){
+            this(other.getReal(), other.getImaginary());
+        }
+
+        @Override
+        protected TestComplex createComplex(double real, double imaginary){
+            return new TestComplex(real, imaginary);
+        }
+
+    }
+}

http://git-wip-us.apache.org/repos/asf/commons-numbers/blob/c4541327/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/ComplexUtilsTest.java
----------------------------------------------------------------------
diff --git a/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/ComplexUtilsTest.java b/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/ComplexUtilsTest.java
new file mode 100644
index 0000000..9a7a29d
--- /dev/null
+++ b/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/ComplexUtilsTest.java
@@ -0,0 +1,475 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.numbers.complex;
+
+import org.apache.commons.numbers.complex.Complex;
+import org.apache.commons.numbers.complex.ComplexUtils;
+import org.junit.Assert;
+import org.junit.Test;
+
+/**
+ */
+public class ComplexUtilsTest {
+
+    private final double inf = Double.POSITIVE_INFINITY;
+    private final double negInf = Double.NEGATIVE_INFINITY;
+    private final double nan = Double.NaN;
+    private final double pi = Math.PI;
+
+    private final Complex negInfInf = new Complex(negInf, inf);
+    private final Complex infNegInf = new Complex(inf, negInf);
+    private final Complex infInf = new Complex(inf, inf);
+    private final Complex negInfNegInf = new Complex(negInf, negInf);
+    private final Complex infNaN = new Complex(inf, nan);
+
+    private static Complex c[]; // complex array with real values even and imag
+                                // values odd
+    private static Complex cr[]; // complex array with real values consecutive
+    private static Complex ci[]; // complex array with imag values consecutive
+    private static double d[]; // real array with consecutive vals
+    private static double di[]; // real array with consecutive vals,
+                                // 'interleaved' length
+    private static float f[]; // real array with consecutive vals
+    private static float fi[]; // real array with consec vals, interleaved
+                               // length
+    private static double sr[]; // real component of split array, evens
+    private static double si[]; // imag component of split array, odds
+    private static float sfr[]; // real component of split array, float, evens
+    private static float sfi[]; // imag component of split array, float, odds
+    static Complex ans1, ans2; // answers to single value extraction methods
+    static Complex[] ansArrayc1r, ansArrayc1i, ansArrayc2r, ansArrayc2i, ansArrayc3, ansArrayc4; // answers
+                                                                                                 // to
+                                                                                                 // range
+                                                                                                 // extraction
+                                                                                                 // methods
+    static double[] ansArrayd1r, ansArrayd2r, ansArrayd1i, ansArrayd2i, ansArraydi1, ansArraydi2;
+    static float[] ansArrayf1r, ansArrayf2r, ansArrayf1i, ansArrayf2i, ansArrayfi1, ansArrayfi2;
+    static String msg; // error message for AssertEquals
+    static Complex[][] c2d, cr2d, ci2d; // for 2d methods
+    static Complex[][][] c3d, cr3d, ci3d; // for 3d methods
+    static double[][] d2d, di2d, sr2d, si2d;
+    static double[][][] d3d, di3d, sr3d, si3d;
+    static float[][] f2d, fi2d, sfr2d, sfi2d;
+    static float[][][] f3d, fi3d, sfr3d, sfi3d;
+
+    private static void setArrays() { // initial setup method
+        c = new Complex[10];
+        cr = new Complex[10];
+        ci = new Complex[10];
+        d = new double[10];
+        f = new float[10];
+        di = new double[20];
+        fi = new float[20];
+        sr = new double[10];
+        si = new double[10];
+        sfr = new float[10];
+        sfi = new float[10];
+        c2d = new Complex[10][10];
+        cr2d = new Complex[10][10];
+        ci2d = new Complex[10][10];
+        c3d = new Complex[10][10][10];
+        cr3d = new Complex[10][10][10];
+        ci3d = new Complex[10][10][10];
+        d2d = new double[10][10];
+        d3d = new double[10][10][10];
+        f2d = new float[10][10];
+        f3d = new float[10][10][10];
+        sr2d = new double[10][10];
+        sr3d = new double[10][10][10];
+        si2d = new double[10][10];
+        si3d = new double[10][10][10];
+        sfr2d = new float[10][10];
+        sfr3d = new float[10][10][10];
+        sfi2d = new float[10][10];
+        sfi3d = new float[10][10][10];
+        di2d = new double[10][20];
+        di3d = new double[10][10][20];
+        fi2d = new float[10][20];
+        fi3d = new float[10][10][20];
+        for (int i = 0; i < 20; i += 2) {
+            d[i / 2] = i / 2;
+            f[i / 2] = i / 2;
+            di[i] = i;
+            di[i + 1] = i + 1;
+            fi[i] = i;
+            fi[i + 1] = i + 1;
+            c[i / 2] = new Complex(i, i + 1);
+            cr[i / 2] = new Complex(i / 2);
+            ci[i / 2] = new Complex(0, i / 2);
+            sr[i / 2] = i;
+            si[i / 2] = i + 1;
+            sfr[i / 2] = i;
+            sfi[i / 2] = i + 1;
+        }
+        for (int i = 0; i < 10; i++) {
+            for (int j = 0; j < 20; j += 2) {
+                d2d[i][j / 2] = 10 * i + j / 2;
+                f2d[i][j / 2] = 10 * i + j / 2;
+                sr2d[i][j / 2] = 10 * i + j;
+                si2d[i][j / 2] = 10 * i + j + 1;
+                sfr2d[i][j / 2] = 10 * i + j;
+                sfi2d[i][j / 2] = 10 * i + j + 1;
+                di2d[i][j] = 10 * i + j;
+                di2d[i][j + 1] = 10 * i + j + 1;
+                fi2d[i][j] = 10 * i + j;
+                fi2d[i][j + 1] = 10 * i + j + 1;
+                c2d[i][j / 2] = new Complex(10 * i + j, 10 * i + j + 1);
+                cr2d[i][j / 2] = new Complex(10 * i + j / 2);
+                ci2d[i][j / 2] = new Complex(0, 10 * i + j / 2);
+            }
+        }
+        for (int i = 0; i < 10; i++) {
+            for (int j = 0; j < 10; j++) {
+                for (int k = 0; k < 20; k += 2) {
+                    d3d[i][j][k / 2] = 100 * i + 10 * j + k / 2;
+                    f3d[i][j][k / 2] = 100 * i + 10 * j + k / 2;
+                    sr3d[i][j][k / 2] = 100 * i + 10 * j + k;
+                    si3d[i][j][k / 2] = 100 * i + 10 * j + k + 1;
+                    sfr3d[i][j][k / 2] = 100 * i + 10 * j + k;
+                    sfi3d[i][j][k / 2] = 100 * i + 10 * j + k + 1;
+                    di3d[i][j][k] = 100 * i + 10 * j + k;
+                    di3d[i][j][k + 1] = 100 * i + 10 * j + k + 1;
+                    fi3d[i][j][k] = 100 * i + 10 * j + k;
+                    fi3d[i][j][k + 1] = 100 * i + 10 * j + k + 1;
+                    c3d[i][j][k / 2] = new Complex(100 * i + 10 * j + k, 100 * i + 10 * j + k + 1);
+                    cr3d[i][j][k / 2] = new Complex(100 * i + 10 * j + k / 2);
+                    ci3d[i][j][k / 2] = new Complex(0, 100 * i + 10 * j + k / 2);
+                }
+            }
+        }
+        ansArrayc1r = new Complex[] { new Complex(3), new Complex(4), new Complex(5), new Complex(6), new Complex(7) };
+        ansArrayc2r = new Complex[] { new Complex(3), new Complex(5), new Complex(7) };
+        ansArrayc1i = new Complex[] { new Complex(0, 3), new Complex(0, 4), new Complex(0, 5), new Complex(0, 6),
+                new Complex(0, 7) };
+        ansArrayc2i = new Complex[] { new Complex(0, 3), new Complex(0, 5), new Complex(0, 7) };
+        ansArrayc3 = new Complex[] { new Complex(6, 7), new Complex(8, 9), new Complex(10, 11), new Complex(12, 13),
+                new Complex(14, 15) };
+        ansArrayc4 = new Complex[] { new Complex(6, 7), new Complex(10, 11), new Complex(14, 15) };
+        ansArrayd1r = new double[] { 6, 8, 10, 12, 14 };
+        ansArrayd1i = new double[] { 7, 9, 11, 13, 15 };
+        ansArrayd2r = new double[] { 6, 10, 14 };
+        ansArrayd2i = new double[] { 7, 11, 15 };
+        ansArrayf1r = new float[] { 6, 8, 10, 12, 14 };
+        ansArrayf1i = new float[] { 7, 9, 11, 13, 15 };
+        ansArrayf2r = new float[] { 6, 10, 14 };
+        ansArrayf2i = new float[] { 7, 11, 15 };
+        ansArraydi1 = new double[] { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
+        ansArrayfi1 = new float[] { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
+        ansArraydi2 = new double[] { 6, 7, 10, 11, 14, 15 };
+        ansArrayfi2 = new float[] { 6, 7, 10, 11, 14, 15 };
+        msg = "";
+    }
+
+    @Test
+    public void testPolar2Complex() {
+        TestUtils.assertEquals(Complex.ONE, ComplexUtils.polar2Complex(1, 0), 10e-12);
+        TestUtils.assertEquals(Complex.ZERO, ComplexUtils.polar2Complex(0, 1), 10e-12);
+        TestUtils.assertEquals(Complex.ZERO, ComplexUtils.polar2Complex(0, -1), 10e-12);
+        TestUtils.assertEquals(Complex.I, ComplexUtils.polar2Complex(1, pi / 2), 10e-12);
+        TestUtils.assertEquals(Complex.I.negate(), ComplexUtils.polar2Complex(1, -pi / 2), 10e-12);
+        double r = 0;
+        for (int i = 0; i < 5; i++) {
+            r += i;
+            double theta = 0;
+            for (int j = 0; j < 20; j++) {
+                theta += pi / 6;
+                TestUtils.assertEquals(altPolar(r, theta), ComplexUtils.polar2Complex(r, theta), 10e-12);
+            }
+            theta = -2 * pi;
+            for (int j = 0; j < 20; j++) {
+                theta -= pi / 6;
+                TestUtils.assertEquals(altPolar(r, theta), ComplexUtils.polar2Complex(r, theta), 10e-12);
+            }
+        }
+    }
+
+    protected Complex altPolar(double r, double theta) {
+        return Complex.I.multiply(new Complex(theta, 0)).exp().multiply(new Complex(r, 0));
+    }
+
+    @Test(expected = IllegalArgumentException.class)
+    public void testPolar2ComplexIllegalModulus() {
+        ComplexUtils.polar2Complex(-1, 0);
+    }
+
+    @Test
+    public void testPolar2ComplexNaN() {
+        TestUtils.assertSame(Complex.NaN, ComplexUtils.polar2Complex(nan, 1));
+        TestUtils.assertSame(Complex.NaN, ComplexUtils.polar2Complex(1, nan));
+        TestUtils.assertSame(Complex.NaN, ComplexUtils.polar2Complex(nan, nan));
+    }
+
+    @Test
+    public void testPolar2ComplexInf() {
+        TestUtils.assertSame(Complex.NaN, ComplexUtils.polar2Complex(1, inf));
+        TestUtils.assertSame(Complex.NaN, ComplexUtils.polar2Complex(1, negInf));
+        TestUtils.assertSame(Complex.NaN, ComplexUtils.polar2Complex(inf, inf));
+        TestUtils.assertSame(Complex.NaN, ComplexUtils.polar2Complex(inf, negInf));
+        TestUtils.assertSame(infInf, ComplexUtils.polar2Complex(inf, pi / 4));
+        TestUtils.assertSame(infNaN, ComplexUtils.polar2Complex(inf, 0));
+        TestUtils.assertSame(infNegInf, ComplexUtils.polar2Complex(inf, -pi / 4));
+        TestUtils.assertSame(negInfInf, ComplexUtils.polar2Complex(inf, 3 * pi / 4));
+        TestUtils.assertSame(negInfNegInf, ComplexUtils.polar2Complex(inf, 5 * pi / 4));
+    }
+
+    @Test
+    public void testCExtract() {
+        final double[] real = new double[] { negInf, -123.45, 0, 1, 234.56, pi, inf };
+        final Complex[] complex = ComplexUtils.real2Complex(real);
+
+        for (int i = 0; i < real.length; i++) {
+            Assert.assertEquals(real[i], complex[i].getReal(), 0d);
+        }
+    }
+
+    // EXTRACTION METHODS
+
+    @Test
+    public void testExtractionMethods() {
+        setArrays();
+        // Extract complex from real double array, index 3
+        TestUtils.assertSame(new Complex(3), ComplexUtils.extractComplexFromRealArray(d, 3));
+        // Extract complex from real float array, index 3
+        TestUtils.assertSame(new Complex(3), ComplexUtils.extractComplexFromRealArray(f, 3));
+        // Extract real double from complex array, index 3
+        TestUtils.assertSame(6, ComplexUtils.extractRealFromComplexArray(c, 3));
+        // Extract real float from complex array, index 3
+        TestUtils.assertSame(6, ComplexUtils.extractRealFloatFromComplexArray(c, 3));
+        // Extract complex from interleaved double array, index 3
+        TestUtils.assertSame(new Complex(6, 7), ComplexUtils.extractComplexFromInterleavedArray(d, 3));
+        // Extract complex from interleaved float array, index 3
+        TestUtils.assertSame(new Complex(6, 7), ComplexUtils.extractComplexFromInterleavedArray(f, 3));
+        // Extract interleaved double from complex array, index 3
+        TestUtils.assertEquals(msg, new double[] { 6, 7 }, ComplexUtils.extractInterleavedFromComplexArray(c, 3),
+                Math.ulp(1));
+        // Extract interleaved float from complex array, index 3
+        TestUtils.assertEquals(msg, new double[] { 6, 7 }, ComplexUtils.extractInterleavedFromComplexArray(c, 3),
+                Math.ulp(1));
+        if (!msg.equals("")) {
+            throw new RuntimeException(msg);
+        }
+    }
+    // REAL <-> COMPLEX
+
+    @Test
+    public void testRealToComplex() {
+        setArrays();
+        // Real double to complex, range 3-7, increment 1, entered as ints
+        // Real double to complex, whole array
+        TestUtils.assertEquals(msg, cr, ComplexUtils.real2Complex(d),Math.ulp(1.0));
+        // Real float to complex, whole array
+        TestUtils.assertEquals(msg, cr, ComplexUtils.real2Complex(f),Math.ulp(1.0));
+        // 2d
+        for (int i = 0; i < 10; i++) {
+            // Real double to complex, 2d
+            TestUtils.assertEquals(msg, cr2d[i], ComplexUtils.real2Complex(d2d[i]),Math.ulp(1.0));
+            // Real float to complex, 2d
+            TestUtils.assertEquals(msg, cr2d[i], ComplexUtils.real2Complex(f2d[i]),Math.ulp(1.0));
+        }
+        // 3d
+        for (int i = 0; i < 10; i++) {
+            for (int j = 0; j < 10; j++) {
+                // Real double to complex, 3d
+                TestUtils.assertEquals(msg, cr3d[i][j], ComplexUtils.real2Complex(d3d[i][j]),Math.ulp(1.0));
+                // Real float to complex, 3d
+                TestUtils.assertEquals(msg, cr3d[i][j], ComplexUtils.real2Complex(f3d[i][j]),Math.ulp(1.0));
+            }
+        }
+        if (!msg.equals("")) {
+            throw new RuntimeException(msg);
+        }
+    }
+
+    @Test
+    public void testComplexToReal() {
+        setArrays();
+        // Real complex to double, whole array
+        TestUtils.assertEquals(msg, sr, ComplexUtils.complex2Real(c),Math.ulp(1.0));
+        // Real complex to float, whole array
+        TestUtils.assertEquals(msg, sfr, ComplexUtils.complex2RealFloat(c),Math.ulp(1.0f));
+        // 2d
+        for (int i = 0; i < 10; i++) {
+            // Real complex to double, 2d
+            TestUtils.assertEquals(msg, sr2d[i], ComplexUtils.complex2Real(c2d[i]),Math.ulp(1.0));
+            // Real complex to float, 2d
+            TestUtils.assertEquals(msg, sfr2d[i], ComplexUtils.complex2RealFloat(c2d[i]),Math.ulp(1.0f));
+        }
+        // 3d
+        for (int i = 0; i < 10; i++) {
+            for (int j = 0; j < 10; j++) {
+                // Real complex to double, 3d
+                TestUtils.assertEquals(msg, sr3d[i][j], ComplexUtils.complex2Real(c3d[i][j]),Math.ulp(1.0));
+                // Real complex to float, 3d
+                TestUtils.assertEquals(msg, sfr3d[i][j], ComplexUtils.complex2RealFloat(c3d[i][j]),Math.ulp(1.0f));
+            }
+        }
+        if (!msg.equals("")) {
+            throw new RuntimeException(msg);
+        }
+    }
+
+    // IMAGINARY <-> COMPLEX
+
+    @Test
+    public void testImaginaryToComplex() {
+        setArrays();
+        // Imaginary double to complex, whole array
+        TestUtils.assertEquals(msg, ci, ComplexUtils.imaginary2Complex(d),Math.ulp(1.0));
+        // Imaginary float to complex, whole array
+        TestUtils.assertEquals(msg, ci, ComplexUtils.imaginary2Complex(f),Math.ulp(1.0));
+        // 2d
+        for (int i = 0; i < 10; i++) {
+            // Imaginary double to complex, 2d
+            TestUtils.assertEquals(msg, ci2d[i], ComplexUtils.imaginary2Complex(d2d[i]),Math.ulp(1.0));
+            // Imaginary float to complex, 2d
+            TestUtils.assertEquals(msg, ci2d[i], ComplexUtils.imaginary2Complex(f2d[i]),Math.ulp(1.0));
+        }
+        // 3d
+        for (int i = 0; i < 10; i++) {
+            for (int j = 0; j < 10; j++) {
+                // Imaginary double to complex, 3d
+                TestUtils.assertEquals(msg, ci3d[i][j], ComplexUtils.imaginary2Complex(d3d[i][j]),Math.ulp(1.0));
+                // Imaginary float to complex, 3d
+                TestUtils.assertEquals(msg, ci3d[i][j], ComplexUtils.imaginary2Complex(f3d[i][j]),Math.ulp(1.0));
+            }
+        }
+        if (!msg.equals("")) {
+            throw new RuntimeException(msg);
+        }
+    }
+
+    @Test
+    public void testComplexToImaginary() {
+        setArrays();
+        // Imaginary complex to double, whole array
+        TestUtils.assertEquals(msg, si, ComplexUtils.complex2Imaginary(c),Math.ulp(1.0));
+        // Imaginary complex to float, whole array
+        TestUtils.assertEquals(msg, sfi, ComplexUtils.complex2ImaginaryFloat(c),Math.ulp(1.0f));
+        // 2d
+        for (int i = 0; i < 10; i++) {
+            // Imaginary complex to double, 2d
+            TestUtils.assertEquals(msg, si2d[i], ComplexUtils.complex2Imaginary(c2d[i]),Math.ulp(1.0));
+            // Imaginary complex to float, 2d
+            TestUtils.assertEquals(msg, sfi2d[i], ComplexUtils.complex2ImaginaryFloat(c2d[i]),Math.ulp(1.0f));
+        }
+        // 3d
+        for (int i = 0; i < 10; i++) {
+            for (int j = 0; j < 10; j++) {
+                // Imaginary complex to double, 3d
+                TestUtils.assertEquals(msg, si3d[i][j], ComplexUtils.complex2Imaginary(c3d[i][j]),Math.ulp(1.0));
+                // Imaginary complex to float, 3d
+                TestUtils.assertEquals(msg, sfi3d[i][j], ComplexUtils.complex2ImaginaryFloat(c3d[i][j]),Math.ulp(1.0f));
+            }
+        }
+        if (!msg.equals("")) {
+            throw new RuntimeException(msg);
+        }
+    }
+
+    // INTERLEAVED <-> COMPLEX
+
+    @Test
+    public void testInterleavedToComplex() {
+        setArrays();
+        // Interleaved double to complex, whole array
+        TestUtils.assertEquals(msg, c, ComplexUtils.interleaved2Complex(di),Math.ulp(1.0));
+        // Interleaved float to complex, whole array
+        TestUtils.assertEquals(msg, c, ComplexUtils.interleaved2Complex(fi),Math.ulp(1.0));
+        // 2d
+        for (int i = 0; i < 10; i++) {
+            // Interleaved double to complex, 2d
+            TestUtils.assertEquals(msg, c2d[i], ComplexUtils.interleaved2Complex(di2d[i]),Math.ulp(1.0));
+            // Interleaved float to complex, 2d
+            TestUtils.assertEquals(msg, c2d[i], ComplexUtils.interleaved2Complex(fi2d[i]),Math.ulp(1.0));
+        }
+        // 3d
+        for (int i = 0; i < 10; i++) {
+            for (int j = 0; j < 10; j++) {
+                // Interleaved double to complex, 3d
+                TestUtils.assertEquals(msg, c3d[i][j], ComplexUtils.interleaved2Complex(di3d[i][j]),Math.ulp(1.0));
+                // Interleaved float to complex, 3d
+                TestUtils.assertEquals(msg, c3d[i][j], ComplexUtils.interleaved2Complex(fi3d[i][j]),Math.ulp(1.0));
+            }
+        }
+        if (!msg.equals("")) {
+            throw new RuntimeException(msg);
+        }
+    }
+
+    @Test
+    public void testComplexToInterleaved() {
+        setArrays();
+        TestUtils.assertEquals(msg, di, ComplexUtils.complex2Interleaved(c),Math.ulp(1.0));
+        // Interleaved complex to float, whole array
+        TestUtils.assertEquals(msg, fi, ComplexUtils.complex2InterleavedFloat(c),Math.ulp(1.0f));
+        // 2d
+        for (int i = 0; i < 10; i++) {
+            // Interleaved complex to double, 2d
+            TestUtils.assertEquals(msg, di2d[i], ComplexUtils.complex2Interleaved(c2d[i]),Math.ulp(1.0));
+            // Interleaved complex to float, 2d
+            TestUtils.assertEquals(msg, fi2d[i], ComplexUtils.complex2InterleavedFloat(c2d[i]),Math.ulp(1.0f));
+        }
+        // 3d
+        for (int i = 0; i < 10; i++) {
+            for (int j = 0; j < 10; j++) {
+                // Interleaved complex to double, 3d
+                TestUtils.assertEquals(msg, di3d[i][j], ComplexUtils.complex2Interleaved(c3d[i][j]),Math.ulp(1.0));
+                // Interleaved complex to float, 3d
+                TestUtils.assertEquals(msg, fi3d[i][j], ComplexUtils.complex2InterleavedFloat(c3d[i][j]),Math.ulp(1.0f));
+            }
+        }
+        if (!msg.equals("")) {
+            throw new RuntimeException(msg);
+        }
+    }
+
+    // SPLIT TO COMPLEX
+    @Test
+    public void testSplit2Complex() {
+        setArrays();
+        // Split double to complex, whole array
+        TestUtils.assertEquals(msg, c, ComplexUtils.split2Complex(sr, si),Math.ulp(1.0));
+
+        // 2d
+        for (int i = 0; i < 10; i++) {
+            // Split double to complex, 2d
+            TestUtils.assertEquals(msg, c2d[i], ComplexUtils.split2Complex(sr2d[i], si2d[i]),Math.ulp(1.0));
+        }
+        // 3d
+        for (int i = 0; i < 10; i++) {
+            for (int j = 0; j < 10; j++) {
+                // Split double to complex, 3d
+                TestUtils.assertEquals(msg, c3d[i][j], ComplexUtils.split2Complex(sr3d[i][j], si3d[i][j]),Math.ulp(1.0));
+            }
+        }
+        if (!msg.equals("")) {
+            throw new RuntimeException(msg);
+        }
+    }
+
+    // INITIALIZATION METHODS
+
+    @Test
+    public void testInitialize() {
+        Complex[] c = new Complex[10];
+        ComplexUtils.initialize(c);
+        for (Complex cc : c) {
+            TestUtils.assertEquals(new Complex(0, 0), cc, Math.ulp(0));
+        }
+    }
+}

http://git-wip-us.apache.org/repos/asf/commons-numbers/blob/c4541327/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/RootsOfUnityTest.java
----------------------------------------------------------------------
diff --git a/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/RootsOfUnityTest.java b/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/RootsOfUnityTest.java
new file mode 100644
index 0000000..df40f99
--- /dev/null
+++ b/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/RootsOfUnityTest.java
@@ -0,0 +1,84 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.numbers.complex;
+
+import org.junit.Assert;
+import org.junit.Test;
+
+
+/**
+ * Unit tests for the {@link RootsOfUnity} class.
+ *
+ */
+public class RootsOfUnityTest {
+    @Test(expected = IllegalArgumentException.class)
+    public void testPrecondition() {
+        new RootsOfUnity(0);
+    }
+    @Test(expected = IndexOutOfBoundsException.class)
+    public void testGetRootPrecondition1() {
+        final int n = 3;
+        final RootsOfUnity roots = new RootsOfUnity(n);
+        roots.getRoot(-1);
+    }
+    @Test(expected = IndexOutOfBoundsException.class)
+    public void testGetRootPrecondition2() {
+        final int n = -2;
+        final RootsOfUnity roots = new RootsOfUnity(n);
+        roots.getRoot(2);
+    }
+
+    @Test
+    public void testGetNumberOfRoots1() {
+        final int n = 5;
+        final RootsOfUnity roots = new RootsOfUnity(n);
+        Assert.assertEquals(n, roots.getNumberOfRoots());
+        Assert.assertTrue(roots.isCounterClockwise());
+    }
+    @Test
+    public void testGetNumberOfRoots2() {
+        final int n = -4;
+        final RootsOfUnity roots = new RootsOfUnity(n);
+        Assert.assertEquals(Math.abs(n), roots.getNumberOfRoots());
+        Assert.assertFalse(roots.isCounterClockwise());
+    }
+
+    @Test
+    public void testComputeRoots() {
+        final double tol = Math.ulp(1d);
+        final org.apache.commons.math3.complex.RootsOfUnity cmRoots =
+            new org.apache.commons.math3.complex.RootsOfUnity();
+        for (int n = -10; n < 11; n++) {
+            final int absN = Math.abs(n);
+            if (n != 0) {
+                cmRoots.computeRoots(n);
+                final RootsOfUnity roots = new RootsOfUnity(n);
+                for (int k = 0; k < absN; k++) {
+                    final Complex z = roots.getRoot(k);
+                    Assert.assertEquals("n=" + n + " k=" + k,
+                                        cmRoots.getReal(k),
+                                        z.getReal(),
+                                        tol);
+                    Assert.assertEquals("n=" + n + " k=" + k,
+                                        cmRoots.getImaginary(k),
+                                        z.getImaginary(),
+                                        tol);
+                }
+            }
+        }
+    }
+}


Mime
View raw message