commons-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From l..@apache.org
Subject [01/14] [math] Updated User Guide to reflect MATH-1310 fix.
Date Sat, 02 Jan 2016 19:07:01 GMT
Repository: commons-math
Updated Branches:
  refs/heads/3.6-release 2525399e1 -> 95a9d35e7


Updated User Guide to reflect MATH-1310 fix.


Project: http://git-wip-us.apache.org/repos/asf/commons-math/repo
Commit: http://git-wip-us.apache.org/repos/asf/commons-math/commit/77f0f202
Tree: http://git-wip-us.apache.org/repos/asf/commons-math/tree/77f0f202
Diff: http://git-wip-us.apache.org/repos/asf/commons-math/diff/77f0f202

Branch: refs/heads/3.6-release
Commit: 77f0f202524935c69621e9883eb105e7fca4ecd5
Parents: d70c566
Author: Phil Steitz <phil.steitz@gmail.com>
Authored: Fri Jan 1 08:48:22 2016 -0700
Committer: Phil Steitz <phil.steitz@gmail.com>
Committed: Fri Jan 1 08:48:22 2016 -0700

----------------------------------------------------------------------
 src/site/xdoc/userguide/stat.xml | 9 ++++-----
 1 file changed, 4 insertions(+), 5 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/commons-math/blob/77f0f202/src/site/xdoc/userguide/stat.xml
----------------------------------------------------------------------
diff --git a/src/site/xdoc/userguide/stat.xml b/src/site/xdoc/userguide/stat.xml
index b93e0e1..305795c 100644
--- a/src/site/xdoc/userguide/stat.xml
+++ b/src/site/xdoc/userguide/stat.xml
@@ -915,10 +915,9 @@ new KendallsCorrelation().correlation(x, y)
            <a href="http://www.jstatsoft.org/v39/i11/"> Computing the Two-Sided Kolmogorov-Smirnov
            Distribution</a> by Richard Simard and Pierre L'Ecuyer.  In the 2-sample
case, estimation
            by default depends on the number of data points.  For small samples, the distribution
-           is computed exactly; for moderately large samples a Monte Carlo procedure is used,
and
-           for large samples a numerical approximation of the Kolmogorov distribution is
used.
-           Methods to perform each type of p-value estimation are also exposed directly.
 See
-           the class javadoc for details.</li>
+           is computed exactly and for large samples a numerical approximation of the Kolmogorov
+           distribution is used. Methods to perform each type of p-value estimation are also
exposed
+           directly.  See the class javadoc for details.</li>
           </ul>
           </p>
           <p>
@@ -1237,7 +1236,7 @@ final double d = TestUtils.kolmogorovSmirnovStatistic(x, y);
 TestUtils.exactP(d, x.length, y.length, false)
           </source>
           assuming that the non-strict form of the null hypothesis is desired. Note, however,
-          that exact computation for anything but very small samples takes a very long time.
   
+          that exact computation for large samples takes a long time.
           </dd>
         </dl>
         </p>


Mime
View raw message