commons-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From pste...@apache.org
Subject [3/3] [math] Javadoc fixes.
Date Mon, 28 Dec 2015 15:29:37 GMT
Javadoc fixes.


Project: http://git-wip-us.apache.org/repos/asf/commons-math/repo
Commit: http://git-wip-us.apache.org/repos/asf/commons-math/commit/7b62d015
Tree: http://git-wip-us.apache.org/repos/asf/commons-math/tree/7b62d015
Diff: http://git-wip-us.apache.org/repos/asf/commons-math/diff/7b62d015

Branch: refs/heads/master
Commit: 7b62d0155efebb2748918a5e4f67ac0ee2e759da
Parents: 85a4fdd
Author: Phil Steitz <phil.steitz@gmail.com>
Authored: Mon Dec 28 08:29:28 2015 -0700
Committer: Phil Steitz <phil.steitz@gmail.com>
Committed: Mon Dec 28 08:29:28 2015 -0700

----------------------------------------------------------------------
 .../gauss/LegendreHighPrecisionRuleFactory.java |   2 +-
 .../interpolation/LoessInterpolator.java        |  26 ++---
 .../interpolation/SplineInterpolator.java       |   2 +-
 .../polynomials/PolynomialFunction.java         |  10 +-
 .../polynomials/PolynomialSplineFunction.java   |   4 +-
 .../analysis/polynomials/PolynomialsUtils.java  | 100 +++++++++----------
 6 files changed, 71 insertions(+), 73 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/commons-math/blob/7b62d015/src/main/java/org/apache/commons/math4/analysis/integration/gauss/LegendreHighPrecisionRuleFactory.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math4/analysis/integration/gauss/LegendreHighPrecisionRuleFactory.java
b/src/main/java/org/apache/commons/math4/analysis/integration/gauss/LegendreHighPrecisionRuleFactory.java
index 81e6727..e4108a2 100644
--- a/src/main/java/org/apache/commons/math4/analysis/integration/gauss/LegendreHighPrecisionRuleFactory.java
+++ b/src/main/java/org/apache/commons/math4/analysis/integration/gauss/LegendreHighPrecisionRuleFactory.java
@@ -27,7 +27,7 @@ import org.apache.commons.math4.util.Pair;
  * In this implementation, the lower and upper bounds of the natural interval
  * of integration are -1 and 1, respectively.
  * The Legendre polynomials are evaluated using the recurrence relation
- * presented in <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun"
+ * presented in <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun">
  * Abramowitz and Stegun, 1964</a>.
  *
  * @since 3.1

http://git-wip-us.apache.org/repos/asf/commons-math/blob/7b62d015/src/main/java/org/apache/commons/math4/analysis/interpolation/LoessInterpolator.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math4/analysis/interpolation/LoessInterpolator.java
b/src/main/java/org/apache/commons/math4/analysis/interpolation/LoessInterpolator.java
index f256c17..1209df5 100644
--- a/src/main/java/org/apache/commons/math4/analysis/interpolation/LoessInterpolator.java
+++ b/src/main/java/org/apache/commons/math4/analysis/interpolation/LoessInterpolator.java
@@ -36,14 +36,14 @@ import org.apache.commons.math4.util.MathUtils;
  * Implements the <a href="http://en.wikipedia.org/wiki/Local_regression">
  * Local Regression Algorithm</a> (also Loess, Lowess) for interpolation of
  * real univariate functions.
- * <p/>
+ * <p>
  * For reference, see
- * <a href="http://www.math.tau.ac.il/~yekutiel/MA seminar/Cleveland 1979.pdf">
+ * <a href="http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1979.10481038">
  * William S. Cleveland - Robust Locally Weighted Regression and Smoothing
- * Scatterplots</a>
- * <p/>
+ * Scatterplots</a></p>
+ * <p>
  * This class implements both the loess method and serves as an interpolation
- * adapter to it, allowing one to build a spline on the obtained loess fit.
+ * adapter to it, allowing one to build a spline on the obtained loess fit.</p>
  *
  * @since 2.0
  */
@@ -65,16 +65,16 @@ public class LoessInterpolator
      * a particular point, this fraction of source points closest
      * to the current point is taken into account for computing
      * a least-squares regression.
-     * <p/>
-     * A sensible value is usually 0.25 to 0.5.
+     * <p>
+     * A sensible value is usually 0.25 to 0.5.</p>
      */
     private final double bandwidth;
     /**
      * The number of robustness iterations parameter: this many
      * robustness iterations are done.
-     * <p/>
+     * <p>
      * A sensible value is usually 0 (just the initial fit without any
-     * robustness iterations) to 4.
+     * robustness iterations) to 4.</p>
      */
     private final int robustnessIters;
     /**
@@ -109,10 +109,10 @@ public class LoessInterpolator
      * @param bandwidth  when computing the loess fit at
      * a particular point, this fraction of source points closest
      * to the current point is taken into account for computing
-     * a least-squares regression.</br>
+     * a least-squares regression.
      * A sensible value is usually 0.25 to 0.5, the default value is
      * {@link #DEFAULT_BANDWIDTH}.
-     * @param robustnessIters This many robustness iterations are done.</br>
+     * @param robustnessIters This many robustness iterations are done.
      * A sensible value is usually 0 (just the initial fit without any
      * robustness iterations) to 4, the default value is
      * {@link #DEFAULT_ROBUSTNESS_ITERS}.
@@ -130,10 +130,10 @@ public class LoessInterpolator
      * @param bandwidth  when computing the loess fit at
      * a particular point, this fraction of source points closest
      * to the current point is taken into account for computing
-     * a least-squares regression.</br>
+     * a least-squares regression.
      * A sensible value is usually 0.25 to 0.5, the default value is
      * {@link #DEFAULT_BANDWIDTH}.
-     * @param robustnessIters This many robustness iterations are done.</br>
+     * @param robustnessIters This many robustness iterations are done.
      * A sensible value is usually 0 (just the initial fit without any
      * robustness iterations) to 4, the default value is
      * {@link #DEFAULT_ROBUSTNESS_ITERS}.

http://git-wip-us.apache.org/repos/asf/commons-math/blob/7b62d015/src/main/java/org/apache/commons/math4/analysis/interpolation/SplineInterpolator.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math4/analysis/interpolation/SplineInterpolator.java
b/src/main/java/org/apache/commons/math4/analysis/interpolation/SplineInterpolator.java
index 99d725c..8de5532 100644
--- a/src/main/java/org/apache/commons/math4/analysis/interpolation/SplineInterpolator.java
+++ b/src/main/java/org/apache/commons/math4/analysis/interpolation/SplineInterpolator.java
@@ -29,7 +29,7 @@ import org.apache.commons.math4.util.MathArrays;
  * <p>
  * The {@link #interpolate(double[], double[])} method returns a {@link PolynomialSplineFunction}
  * consisting of n cubic polynomials, defined over the subintervals determined by the x values,
- * x[0] < x[i] ... < x[n].  The x values are referred to as "knot points."</p>
+ * @code{x[0] < x[i] ... < x[n].}  The x values are referred to as "knot points."</p>
  * <p>
  * The value of the PolynomialSplineFunction at a point x that is greater than or equal to
the smallest
  * knot point and strictly less than the largest knot point is computed by finding the subinterval
to which

http://git-wip-us.apache.org/repos/asf/commons-math/blob/7b62d015/src/main/java/org/apache/commons/math4/analysis/polynomials/PolynomialFunction.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math4/analysis/polynomials/PolynomialFunction.java
b/src/main/java/org/apache/commons/math4/analysis/polynomials/PolynomialFunction.java
index 9d40a1b..9333c1e 100644
--- a/src/main/java/org/apache/commons/math4/analysis/polynomials/PolynomialFunction.java
+++ b/src/main/java/org/apache/commons/math4/analysis/polynomials/PolynomialFunction.java
@@ -79,8 +79,8 @@ public class PolynomialFunction implements UnivariateDifferentiableFunction,
Ser
     /**
      * Compute the value of the function for the given argument.
      * <p>
-     *  The value returned is <br/>
-     *  <code>coefficients[n] * x^n + ... + coefficients[1] * x  + coefficients[0]</code>
+     *  The value returned is </p><p>
+     *  {@code coefficients[n] * x^n + ... + coefficients[1] * x  + coefficients[0]}
      * </p>
      *
      * @param x Argument for which the function value should be computed.
@@ -189,7 +189,7 @@ public class PolynomialFunction implements UnivariateDifferentiableFunction,
Ser
      * Subtract a polynomial from the instance.
      *
      * @param p Polynomial to subtract.
-     * @return a new polynomial which is the difference the instance minus {@code p}.
+     * @return a new polynomial which is the instance minus {@code p}.
      */
     public PolynomialFunction subtract(final PolynomialFunction p) {
         // identify the lowest degree polynomial
@@ -216,7 +216,7 @@ public class PolynomialFunction implements UnivariateDifferentiableFunction,
Ser
     /**
      * Negate the instance.
      *
-     * @return a new polynomial.
+     * @return a new polynomial with all coefficients negated
      */
     public PolynomialFunction negate() {
         double[] newCoefficients = new double[coefficients.length];
@@ -230,7 +230,7 @@ public class PolynomialFunction implements UnivariateDifferentiableFunction,
Ser
      * Multiply the instance by a polynomial.
      *
      * @param p Polynomial to multiply by.
-     * @return a new polynomial.
+     * @return a new polynomial equal to this times {@code p}
      */
     public PolynomialFunction multiply(final PolynomialFunction p) {
         double[] newCoefficients = new double[coefficients.length + p.coefficients.length
- 1];

http://git-wip-us.apache.org/repos/asf/commons-math/blob/7b62d015/src/main/java/org/apache/commons/math4/analysis/polynomials/PolynomialSplineFunction.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math4/analysis/polynomials/PolynomialSplineFunction.java
b/src/main/java/org/apache/commons/math4/analysis/polynomials/PolynomialSplineFunction.java
index afa7eef..b842a40 100644
--- a/src/main/java/org/apache/commons/math4/analysis/polynomials/PolynomialSplineFunction.java
+++ b/src/main/java/org/apache/commons/math4/analysis/polynomials/PolynomialSplineFunction.java
@@ -57,8 +57,8 @@ import org.apache.commons.math4.util.MathArrays;
  * than the largest one, an <code>IllegalArgumentException</code>
  * is thrown.</li>
  * <li> Let <code>j</code> be the index of the largest knot point that
is less
- * than or equal to <code>x</code>.  The value returned is <br>
- * <code>polynomials[j](x - knot[j])</code></li></ol></p>
+ * than or equal to <code>x</code>.  The value returned is
+ * {@code polynomials[j](x - knot[j])}</li></ol>
  *
  */
 public class PolynomialSplineFunction implements UnivariateDifferentiableFunction {

http://git-wip-us.apache.org/repos/asf/commons-math/blob/7b62d015/src/main/java/org/apache/commons/math4/analysis/polynomials/PolynomialsUtils.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math4/analysis/polynomials/PolynomialsUtils.java
b/src/main/java/org/apache/commons/math4/analysis/polynomials/PolynomialsUtils.java
index 346644e..c406979 100644
--- a/src/main/java/org/apache/commons/math4/analysis/polynomials/PolynomialsUtils.java
+++ b/src/main/java/org/apache/commons/math4/analysis/polynomials/PolynomialsUtils.java
@@ -90,14 +90,15 @@ public class PolynomialsUtils {
 
     /**
      * Create a Chebyshev polynomial of the first kind.
-     * <p><a href="http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html">Chebyshev
+     * <p><a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev
      * polynomials of the first kind</a> are orthogonal polynomials.
-     * They can be defined by the following recurrence relations:
-     * <pre>
-     *  T<sub>0</sub>(X)   = 1
-     *  T<sub>1</sub>(X)   = X
-     *  T<sub>k+1</sub>(X) = 2X T<sub>k</sub>(X) - T<sub>k-1</sub>(X)
-     * </pre></p>
+     * They can be defined by the following recurrence relations:</p><p>
+     * \(
+     *    T_0(x) = 1 \\
+     *    T_1(x) = x \\
+     *    T_{k+1}(x) = 2x T_k(x) - T_{k-1}(x)
+     * \)
+     * </p>
      * @param degree degree of the polynomial
      * @return Chebyshev polynomial of specified degree
      */
@@ -118,12 +119,13 @@ public class PolynomialsUtils {
      * Create a Hermite polynomial.
      * <p><a href="http://mathworld.wolfram.com/HermitePolynomial.html">Hermite
      * polynomials</a> are orthogonal polynomials.
-     * They can be defined by the following recurrence relations:
-     * <pre>
-     *  H<sub>0</sub>(X)   = 1
-     *  H<sub>1</sub>(X)   = 2X
-     *  H<sub>k+1</sub>(X) = 2X H<sub>k</sub>(X) - 2k H<sub>k-1</sub>(X)
-     * </pre></p>
+     * They can be defined by the following recurrence relations:</p><p>
+     * \(
+     *  H_0(x) = 1 \\
+     *  H_1(x) = 2x \\
+     *  H_{k+1}(x) = 2x H_k(X) - 2k H_{k-1}(x)
+     * \)
+     * </p>
 
      * @param degree degree of the polynomial
      * @return Hermite polynomial of specified degree
@@ -146,12 +148,13 @@ public class PolynomialsUtils {
      * Create a Laguerre polynomial.
      * <p><a href="http://mathworld.wolfram.com/LaguerrePolynomial.html">Laguerre
      * polynomials</a> are orthogonal polynomials.
-     * They can be defined by the following recurrence relations:
-     * <pre>
-     *        L<sub>0</sub>(X)   = 1
-     *        L<sub>1</sub>(X)   = 1 - X
-     *  (k+1) L<sub>k+1</sub>(X) = (2k + 1 - X) L<sub>k</sub>(X)
- k L<sub>k-1</sub>(X)
-     * </pre></p>
+     * They can be defined by the following recurrence relations:</p><p>
+     * \(
+     *   L_0(x) = 1 \\
+     *   L_1(x) = 1 - x \\
+     *   (k+1) L_{k+1}(x) = (2k + 1 - x) L_k(x) - k L_{k-1}(x)
+     * \)
+     * </p>
      * @param degree degree of the polynomial
      * @return Laguerre polynomial of specified degree
      */
@@ -174,12 +177,13 @@ public class PolynomialsUtils {
      * Create a Legendre polynomial.
      * <p><a href="http://mathworld.wolfram.com/LegendrePolynomial.html">Legendre
      * polynomials</a> are orthogonal polynomials.
-     * They can be defined by the following recurrence relations:
-     * <pre>
-     *        P<sub>0</sub>(X)   = 1
-     *        P<sub>1</sub>(X)   = X
-     *  (k+1) P<sub>k+1</sub>(X) = (2k+1) X P<sub>k</sub>(X) - k
P<sub>k-1</sub>(X)
-     * </pre></p>
+     * They can be defined by the following recurrence relations:</p><p>
+     * \(
+     *   P_0(x) = 1 \\
+     *   P_1(x) = x \\
+     *   (k+1) P_{k+1}(x) = (2k+1) x P_k(x) - k P_{k-1}(x)
+     * \)
+     * </p>
      * @param degree degree of the polynomial
      * @return Legendre polynomial of specified degree
      */
@@ -202,14 +206,15 @@ public class PolynomialsUtils {
      * Create a Jacobi polynomial.
      * <p><a href="http://mathworld.wolfram.com/JacobiPolynomial.html">Jacobi
      * polynomials</a> are orthogonal polynomials.
-     * They can be defined by the following recurrence relations:
-     * <pre>
-     *        P<sub>0</sub><sup>vw</sup>(X)   = 1
-     *        P<sub>-1</sub><sup>vw</sup>(X)  = 0
-     *  2k(k + v + w)(2k + v + w - 2) P<sub>k</sub><sup>vw</sup>(X)
=
-     *  (2k + v + w - 1)[(2k + v + w)(2k + v + w - 2) X + v<sup>2</sup> - w<sup>2</sup>]
P<sub>k-1</sub><sup>vw</sup>(X)
-     *  - 2(k + v - 1)(k + w - 1)(2k + v + w) P<sub>k-2</sub><sup>vw</sup>(X)
-     * </pre></p>
+     * They can be defined by the following recurrence relations:</p><p>
+     * \(
+     *    P_0^{vw}(x) = 1 \\
+     *    P_{-1}^{vw}(x) = 0 \\
+     *    2k(k + v + w)(2k + v + w - 2) P_k^{vw}(x) = \\
+     *    (2k + v + w - 1)[(2k + v + w)(2k + v + w - 2) x + v^2 - w^2] P_{k-1}^{vw}(x) \\
+     *  - 2(k + v - 1)(k + w - 1)(2k + v + w) P_{k-2}^{vw}(x)
+     * \)
+     * </p>
      * @param degree degree of the polynomial
      * @param v first exponent
      * @param w second exponent
@@ -301,27 +306,20 @@ public class PolynomialsUtils {
     }
 
     /**
-     * Compute the coefficients of the polynomial <code>P<sub>s</sub>(x)</code>
+     * Compute the coefficients of the polynomial \(P_s(x)\)
      * whose values at point {@code x} will be the same as the those from the
-     * original polynomial <code>P(x)</code> when computed at {@code x + shift}.
-     * Thus, if <code>P(x) = &Sigma;<sub>i</sub> a<sub>i</sub>
x<sup>i</sup></code>,
-     * then
-     * <pre>
-     *  <table>
-     *   <tr>
-     *    <td><code>P<sub>s</sub>(x)</td>
-     *    <td>= &Sigma;<sub>i</sub> b<sub>i</sub> x<sup>i</sup></code></td>
-     *   </tr>
-     *   <tr>
-     *    <td></td>
-     *    <td>= &Sigma;<sub>i</sub> a<sub>i</sub> (x +
shift)<sup>i</sup></code></td>
-     *   </tr>
-     *  </table>
-     * </pre>
+     * original polynomial \(P(x)\) when computed at {@code x + shift}.
+     * <p>
+     * More precisely, let \(\Delta = \) {@code shift} and let
+     * \(P_s(x) = P(x + \Delta)\).  The returned array
+     * consists of the coefficients of \(P_s\).  So if \(a_0, ..., a_{n-1}\)
+     * are the coefficients of \(P\), then the returned array
+     * \(b_0, ..., b_{n-1}\) satisfies the identity
+     * \(\sum_{i=0}^{n-1} b_i x^i = \sum_{i=0}^{n-1} a_i (x + \Delta)^i\) for all \(x\).
      *
      * @param coefficients Coefficients of the original polynomial.
      * @param shift Shift value.
-     * @return the coefficients <code>b<sub>i</sub></code> of the
shifted
+     * @return the coefficients \(b_i\) of the shifted
      * polynomial.
      */
     public static double[] shift(final double[] coefficients,
@@ -444,7 +442,7 @@ public class PolynomialsUtils {
          * Generate recurrence coefficients.
          * @param k highest degree of the polynomials used in the recurrence
          * @return an array of three coefficients such that
-         * P<sub>k+1</sub>(X) = (a[0] + a[1] X) P<sub>k</sub>(X)
- a[2] P<sub>k-1</sub>(X)
+         * \( P_{k+1}(x) = (a[0] + a[1] x) P_k(x) - a[2] P_{k-1}(x) \)
          */
         BigFraction[] generate(int k);
     }


Mime
View raw message