commons-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From t.@apache.org
Subject [41/82] [partial] [math] Update for next development iteration: commons-math4
Date Mon, 16 Feb 2015 22:40:11 GMT
http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolatingFunction.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolatingFunction.java b/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolatingFunction.java
deleted file mode 100644
index 4260606..0000000
--- a/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolatingFunction.java
+++ /dev/null
@@ -1,482 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.analysis.interpolation;
-
-import org.apache.commons.math3.analysis.TrivariateFunction;
-import org.apache.commons.math3.exception.DimensionMismatchException;
-import org.apache.commons.math3.exception.NoDataException;
-import org.apache.commons.math3.exception.OutOfRangeException;
-import org.apache.commons.math3.exception.NonMonotonicSequenceException;
-import org.apache.commons.math3.util.MathArrays;
-
-/**
- * Function that implements the
- * <a href="http://en.wikipedia.org/wiki/Tricubic_interpolation">
- * tricubic spline interpolation</a>, as proposed in
- * <quote>
- *  Tricubic interpolation in three dimensions<br/>
- *  F. Lekien and J. Marsden<br/>
- *  <em>Int. J. Numer. Meth. Engng</em> 2005; <b>63</b>:455-471
- * </quote>
- *
- * @since 2.2
- * @deprecated To be removed in 4.0 (see MATH-1166).
- */
-@Deprecated
-public class TricubicSplineInterpolatingFunction
-    implements TrivariateFunction {
-    /**
-     * Matrix to compute the spline coefficients from the function values
-     * and function derivatives values
-     */
-    private static final double[][] AINV = {
-        { 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { -3,3,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 2,-2,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { -3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 9,-9,-9,9,0,0,0,0,6,3,-6,-3,0,0,0,0,6,-6,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,4,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { -6,6,6,-6,0,0,0,0,-3,-3,3,3,0,0,0,0,-4,4,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { -6,6,6,-6,0,0,0,0,-4,-2,4,2,0,0,0,0,-3,3,-3,3,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 4,-4,-4,4,0,0,0,0,2,2,-2,-2,0,0,0,0,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,0,1,1,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,-9,-9,9,0,0,0,0,0,0,0,0,0,0,0,0,6,3,-6,-3,0,0,0,0,6,-6,3,-3,0,0,0,0,4,2,2,1,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,3,3,0,0,0,0,-4,4,-2,2,0,0,0,0,-2,-2,-1,-1,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,-4,-2,4,2,0,0,0,0,-3,3,-3,3,0,0,0,0,-2,-1,-2,-1,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,2,-2,2,-2,0,0,0,0,1,1,1,1,0,0,0,0 },
-        {-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 9,-9,0,0,-9,9,0,0,6,3,0,0,-6,-3,0,0,0,0,0,0,0,0,0,0,6,-6,0,0,3,-3,0,0,0,0,0,0,0,0,0,0,4,2,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { -6,6,0,0,6,-6,0,0,-3,-3,0,0,3,3,0,0,0,0,0,0,0,0,0,0,-4,4,0,0,-2,2,0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,-9,0,0,-9,9,0,0,0,0,0,0,0,0,0,0,6,3,0,0,-6,-3,0,0,0,0,0,0,0,0,0,0,6,-6,0,0,3,-3,0,0,4,2,0,0,2,1,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,0,0,6,-6,0,0,0,0,0,0,0,0,0,0,-3,-3,0,0,3,3,0,0,0,0,0,0,0,0,0,0,-4,4,0,0,-2,2,0,0,-2,-2,0,0,-1,-1,0,0 },
-        { 9,0,-9,0,-9,0,9,0,0,0,0,0,0,0,0,0,6,0,3,0,-6,0,-3,0,6,0,-6,0,3,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,2,0,2,0,1,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,9,0,-9,0,-9,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,3,0,-6,0,-3,0,6,0,-6,0,3,0,-3,0,0,0,0,0,0,0,0,0,4,0,2,0,2,0,1,0 },
-        { -27,27,27,-27,27,-27,-27,27,-18,-9,18,9,18,9,-18,-9,-18,18,-9,9,18,-18,9,-9,-18,18,18,-18,-9,9,9,-9,-12,-6,-6,-3,12,6,6,3,-12,-6,12,6,-6,-3,6,3,-12,12,-6,6,-6,6,-3,3,-8,-4,-4,-2,-4,-2,-2,-1 },
-        { 18,-18,-18,18,-18,18,18,-18,9,9,-9,-9,-9,-9,9,9,12,-12,6,-6,-12,12,-6,6,12,-12,-12,12,6,-6,-6,6,6,6,3,3,-6,-6,-3,-3,6,6,-6,-6,3,3,-3,-3,8,-8,4,-4,4,-4,2,-2,4,4,2,2,2,2,1,1 },
-        { -6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,-3,0,-3,0,3,0,3,0,-4,0,4,0,-2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-2,0,-1,0,-1,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,-6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,-3,0,3,0,3,0,-4,0,4,0,-2,0,2,0,0,0,0,0,0,0,0,0,-2,0,-2,0,-1,0,-1,0 },
-        { 18,-18,-18,18,-18,18,18,-18,12,6,-12,-6,-12,-6,12,6,9,-9,9,-9,-9,9,-9,9,12,-12,-12,12,6,-6,-6,6,6,3,6,3,-6,-3,-6,-3,8,4,-8,-4,4,2,-4,-2,6,-6,6,-6,3,-3,3,-3,4,2,4,2,2,1,2,1 },
-        { -12,12,12,-12,12,-12,-12,12,-6,-6,6,6,6,6,-6,-6,-6,6,-6,6,6,-6,6,-6,-8,8,8,-8,-4,4,4,-4,-3,-3,-3,-3,3,3,3,3,-4,-4,4,4,-2,-2,2,2,-4,4,-4,4,-2,2,-2,2,-2,-2,-2,-2,-1,-1,-1,-1 },
-        { 2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { -6,6,0,0,6,-6,0,0,-4,-2,0,0,4,2,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,-3,3,0,0,0,0,0,0,0,0,0,0,-2,-1,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 4,-4,0,0,-4,4,0,0,2,2,0,0,-2,-2,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,0,0,6,-6,0,0,0,0,0,0,0,0,0,0,-4,-2,0,0,4,2,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,-3,3,0,0,-2,-1,0,0,-2,-1,0,0 },
-        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,0,0,-4,4,0,0,0,0,0,0,0,0,0,0,2,2,0,0,-2,-2,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,2,-2,0,0,1,1,0,0,1,1,0,0 },
-        { -6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,-4,0,-2,0,4,0,2,0,-3,0,3,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,-2,0,-1,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,-6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,0,-2,0,4,0,2,0,-3,0,3,0,-3,0,3,0,0,0,0,0,0,0,0,0,-2,0,-1,0,-2,0,-1,0 },
-        { 18,-18,-18,18,-18,18,18,-18,12,6,-12,-6,-12,-6,12,6,12,-12,6,-6,-12,12,-6,6,9,-9,-9,9,9,-9,-9,9,8,4,4,2,-8,-4,-4,-2,6,3,-6,-3,6,3,-6,-3,6,-6,3,-3,6,-6,3,-3,4,2,2,1,4,2,2,1 },
-        { -12,12,12,-12,12,-12,-12,12,-6,-6,6,6,6,6,-6,-6,-8,8,-4,4,8,-8,4,-4,-6,6,6,-6,-6,6,6,-6,-4,-4,-2,-2,4,4,2,2,-3,-3,3,3,-3,-3,3,3,-4,4,-2,2,-4,4,-2,2,-2,-2,-1,-1,-2,-2,-1,-1 },
-        { 4,0,-4,0,-4,0,4,0,0,0,0,0,0,0,0,0,2,0,2,0,-2,0,-2,0,2,0,-2,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0 },
-        { 0,0,0,0,0,0,0,0,4,0,-4,0,-4,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,2,0,-2,0,-2,0,2,0,-2,0,2,0,-2,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0 },
-        { -12,12,12,-12,12,-12,-12,12,-8,-4,8,4,8,4,-8,-4,-6,6,-6,6,6,-6,6,-6,-6,6,6,-6,-6,6,6,-6,-4,-2,-4,-2,4,2,4,2,-4,-2,4,2,-4,-2,4,2,-3,3,-3,3,-3,3,-3,3,-2,-1,-2,-1,-2,-1,-2,-1 },
-        { 8,-8,-8,8,-8,8,8,-8,4,4,-4,-4,-4,-4,4,4,4,-4,4,-4,-4,4,-4,4,4,-4,-4,4,4,-4,-4,4,2,2,2,2,-2,-2,-2,-2,2,2,-2,-2,2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,1,1,1,1,1,1,1,1 }
-    };
-
-    /** Samples x-coordinates */
-    private final double[] xval;
-    /** Samples y-coordinates */
-    private final double[] yval;
-    /** Samples z-coordinates */
-    private final double[] zval;
-    /** Set of cubic splines pacthing the whole data grid */
-    private final TricubicSplineFunction[][][] splines;
-
-    /**
-     * @param x Sample values of the x-coordinate, in increasing order.
-     * @param y Sample values of the y-coordinate, in increasing order.
-     * @param z Sample values of the y-coordinate, in increasing order.
-     * @param f Values of the function on every grid point.
-     * @param dFdX Values of the partial derivative of function with respect to x on every grid point.
-     * @param dFdY Values of the partial derivative of function with respect to y on every grid point.
-     * @param dFdZ Values of the partial derivative of function with respect to z on every grid point.
-     * @param d2FdXdY Values of the cross partial derivative of function on every grid point.
-     * @param d2FdXdZ Values of the cross partial derivative of function on every grid point.
-     * @param d2FdYdZ Values of the cross partial derivative of function on every grid point.
-     * @param d3FdXdYdZ Values of the cross partial derivative of function on every grid point.
-     * @throws NoDataException if any of the arrays has zero length.
-     * @throws DimensionMismatchException if the various arrays do not contain the expected number of elements.
-     * @throws NonMonotonicSequenceException if {@code x}, {@code y} or {@code z} are not strictly increasing.
-     */
-    public TricubicSplineInterpolatingFunction(double[] x,
-                                               double[] y,
-                                               double[] z,
-                                               double[][][] f,
-                                               double[][][] dFdX,
-                                               double[][][] dFdY,
-                                               double[][][] dFdZ,
-                                               double[][][] d2FdXdY,
-                                               double[][][] d2FdXdZ,
-                                               double[][][] d2FdYdZ,
-                                               double[][][] d3FdXdYdZ)
-        throws NoDataException,
-               DimensionMismatchException,
-               NonMonotonicSequenceException {
-        final int xLen = x.length;
-        final int yLen = y.length;
-        final int zLen = z.length;
-
-        if (xLen == 0 || yLen == 0 || z.length == 0 || f.length == 0 || f[0].length == 0) {
-            throw new NoDataException();
-        }
-        if (xLen != f.length) {
-            throw new DimensionMismatchException(xLen, f.length);
-        }
-        if (xLen != dFdX.length) {
-            throw new DimensionMismatchException(xLen, dFdX.length);
-        }
-        if (xLen != dFdY.length) {
-            throw new DimensionMismatchException(xLen, dFdY.length);
-        }
-        if (xLen != dFdZ.length) {
-            throw new DimensionMismatchException(xLen, dFdZ.length);
-        }
-        if (xLen != d2FdXdY.length) {
-            throw new DimensionMismatchException(xLen, d2FdXdY.length);
-        }
-        if (xLen != d2FdXdZ.length) {
-            throw new DimensionMismatchException(xLen, d2FdXdZ.length);
-        }
-        if (xLen != d2FdYdZ.length) {
-            throw new DimensionMismatchException(xLen, d2FdYdZ.length);
-        }
-        if (xLen != d3FdXdYdZ.length) {
-            throw new DimensionMismatchException(xLen, d3FdXdYdZ.length);
-        }
-
-        MathArrays.checkOrder(x);
-        MathArrays.checkOrder(y);
-        MathArrays.checkOrder(z);
-
-        xval = x.clone();
-        yval = y.clone();
-        zval = z.clone();
-
-        final int lastI = xLen - 1;
-        final int lastJ = yLen - 1;
-        final int lastK = zLen - 1;
-        splines = new TricubicSplineFunction[lastI][lastJ][lastK];
-
-        for (int i = 0; i < lastI; i++) {
-            if (f[i].length != yLen) {
-                throw new DimensionMismatchException(f[i].length, yLen);
-            }
-            if (dFdX[i].length != yLen) {
-                throw new DimensionMismatchException(dFdX[i].length, yLen);
-            }
-            if (dFdY[i].length != yLen) {
-                throw new DimensionMismatchException(dFdY[i].length, yLen);
-            }
-            if (dFdZ[i].length != yLen) {
-                throw new DimensionMismatchException(dFdZ[i].length, yLen);
-            }
-            if (d2FdXdY[i].length != yLen) {
-                throw new DimensionMismatchException(d2FdXdY[i].length, yLen);
-            }
-            if (d2FdXdZ[i].length != yLen) {
-                throw new DimensionMismatchException(d2FdXdZ[i].length, yLen);
-            }
-            if (d2FdYdZ[i].length != yLen) {
-                throw new DimensionMismatchException(d2FdYdZ[i].length, yLen);
-            }
-            if (d3FdXdYdZ[i].length != yLen) {
-                throw new DimensionMismatchException(d3FdXdYdZ[i].length, yLen);
-            }
-
-            final int ip1 = i + 1;
-            for (int j = 0; j < lastJ; j++) {
-                if (f[i][j].length != zLen) {
-                    throw new DimensionMismatchException(f[i][j].length, zLen);
-                }
-                if (dFdX[i][j].length != zLen) {
-                    throw new DimensionMismatchException(dFdX[i][j].length, zLen);
-                }
-                if (dFdY[i][j].length != zLen) {
-                    throw new DimensionMismatchException(dFdY[i][j].length, zLen);
-                }
-                if (dFdZ[i][j].length != zLen) {
-                    throw new DimensionMismatchException(dFdZ[i][j].length, zLen);
-                }
-                if (d2FdXdY[i][j].length != zLen) {
-                    throw new DimensionMismatchException(d2FdXdY[i][j].length, zLen);
-                }
-                if (d2FdXdZ[i][j].length != zLen) {
-                    throw new DimensionMismatchException(d2FdXdZ[i][j].length, zLen);
-                }
-                if (d2FdYdZ[i][j].length != zLen) {
-                    throw new DimensionMismatchException(d2FdYdZ[i][j].length, zLen);
-                }
-                if (d3FdXdYdZ[i][j].length != zLen) {
-                    throw new DimensionMismatchException(d3FdXdYdZ[i][j].length, zLen);
-                }
-
-                final int jp1 = j + 1;
-                for (int k = 0; k < lastK; k++) {
-                    final int kp1 = k + 1;
-
-                    final double[] beta = new double[] {
-                        f[i][j][k], f[ip1][j][k],
-                        f[i][jp1][k], f[ip1][jp1][k],
-                        f[i][j][kp1], f[ip1][j][kp1],
-                        f[i][jp1][kp1], f[ip1][jp1][kp1],
-
-                        dFdX[i][j][k], dFdX[ip1][j][k],
-                        dFdX[i][jp1][k], dFdX[ip1][jp1][k],
-                        dFdX[i][j][kp1], dFdX[ip1][j][kp1],
-                        dFdX[i][jp1][kp1], dFdX[ip1][jp1][kp1],
-
-                        dFdY[i][j][k], dFdY[ip1][j][k],
-                        dFdY[i][jp1][k], dFdY[ip1][jp1][k],
-                        dFdY[i][j][kp1], dFdY[ip1][j][kp1],
-                        dFdY[i][jp1][kp1], dFdY[ip1][jp1][kp1],
-
-                        dFdZ[i][j][k], dFdZ[ip1][j][k],
-                        dFdZ[i][jp1][k], dFdZ[ip1][jp1][k],
-                        dFdZ[i][j][kp1], dFdZ[ip1][j][kp1],
-                        dFdZ[i][jp1][kp1], dFdZ[ip1][jp1][kp1],
-
-                        d2FdXdY[i][j][k], d2FdXdY[ip1][j][k],
-                        d2FdXdY[i][jp1][k], d2FdXdY[ip1][jp1][k],
-                        d2FdXdY[i][j][kp1], d2FdXdY[ip1][j][kp1],
-                        d2FdXdY[i][jp1][kp1], d2FdXdY[ip1][jp1][kp1],
-
-                        d2FdXdZ[i][j][k], d2FdXdZ[ip1][j][k],
-                        d2FdXdZ[i][jp1][k], d2FdXdZ[ip1][jp1][k],
-                        d2FdXdZ[i][j][kp1], d2FdXdZ[ip1][j][kp1],
-                        d2FdXdZ[i][jp1][kp1], d2FdXdZ[ip1][jp1][kp1],
-
-                        d2FdYdZ[i][j][k], d2FdYdZ[ip1][j][k],
-                        d2FdYdZ[i][jp1][k], d2FdYdZ[ip1][jp1][k],
-                        d2FdYdZ[i][j][kp1], d2FdYdZ[ip1][j][kp1],
-                        d2FdYdZ[i][jp1][kp1], d2FdYdZ[ip1][jp1][kp1],
-
-                        d3FdXdYdZ[i][j][k], d3FdXdYdZ[ip1][j][k],
-                        d3FdXdYdZ[i][jp1][k], d3FdXdYdZ[ip1][jp1][k],
-                        d3FdXdYdZ[i][j][kp1], d3FdXdYdZ[ip1][j][kp1],
-                        d3FdXdYdZ[i][jp1][kp1], d3FdXdYdZ[ip1][jp1][kp1],
-                    };
-
-                    splines[i][j][k] = new TricubicSplineFunction(computeSplineCoefficients(beta));
-                }
-            }
-        }
-    }
-
-    /**
-     * {@inheritDoc}
-     *
-     * @throws OutOfRangeException if any of the variables is outside its interpolation range.
-     */
-    public double value(double x, double y, double z)
-        throws OutOfRangeException {
-        final int i = searchIndex(x, xval);
-        if (i == -1) {
-            throw new OutOfRangeException(x, xval[0], xval[xval.length - 1]);
-        }
-        final int j = searchIndex(y, yval);
-        if (j == -1) {
-            throw new OutOfRangeException(y, yval[0], yval[yval.length - 1]);
-        }
-        final int k = searchIndex(z, zval);
-        if (k == -1) {
-            throw new OutOfRangeException(z, zval[0], zval[zval.length - 1]);
-        }
-
-        final double xN = (x - xval[i]) / (xval[i + 1] - xval[i]);
-        final double yN = (y - yval[j]) / (yval[j + 1] - yval[j]);
-        final double zN = (z - zval[k]) / (zval[k + 1] - zval[k]);
-
-        return splines[i][j][k].value(xN, yN, zN);
-    }
-
-    /**
-     * @param c Coordinate.
-     * @param val Coordinate samples.
-     * @return the index in {@code val} corresponding to the interval containing {@code c}, or {@code -1}
-     *   if {@code c} is out of the range defined by the end values of {@code val}.
-     */
-    private int searchIndex(double c, double[] val) {
-        if (c < val[0]) {
-            return -1;
-        }
-
-        final int max = val.length;
-        for (int i = 1; i < max; i++) {
-            if (c <= val[i]) {
-                return i - 1;
-            }
-        }
-
-        return -1;
-    }
-
-    /**
-     * Compute the spline coefficients from the list of function values and
-     * function partial derivatives values at the four corners of a grid
-     * element. They must be specified in the following order:
-     * <ul>
-     *  <li>f(0,0,0)</li>
-     *  <li>f(1,0,0)</li>
-     *  <li>f(0,1,0)</li>
-     *  <li>f(1,1,0)</li>
-     *  <li>f(0,0,1)</li>
-     *  <li>f(1,0,1)</li>
-     *  <li>f(0,1,1)</li>
-     *  <li>f(1,1,1)</li>
-     *
-     *  <li>f<sub>x</sub>(0,0,0)</li>
-     *  <li>... <em>(same order as above)</em></li>
-     *  <li>f<sub>x</sub>(1,1,1)</li>
-     *
-     *  <li>f<sub>y</sub>(0,0,0)</li>
-     *  <li>... <em>(same order as above)</em></li>
-     *  <li>f<sub>y</sub>(1,1,1)</li>
-     *
-     *  <li>f<sub>z</sub>(0,0,0)</li>
-     *  <li>... <em>(same order as above)</em></li>
-     *  <li>f<sub>z</sub>(1,1,1)</li>
-     *
-     *  <li>f<sub>xy</sub>(0,0,0)</li>
-     *  <li>... <em>(same order as above)</em></li>
-     *  <li>f<sub>xy</sub>(1,1,1)</li>
-     *
-     *  <li>f<sub>xz</sub>(0,0,0)</li>
-     *  <li>... <em>(same order as above)</em></li>
-     *  <li>f<sub>xz</sub>(1,1,1)</li>
-     *
-     *  <li>f<sub>yz</sub>(0,0,0)</li>
-     *  <li>... <em>(same order as above)</em></li>
-     *  <li>f<sub>yz</sub>(1,1,1)</li>
-     *
-     *  <li>f<sub>xyz</sub>(0,0,0)</li>
-     *  <li>... <em>(same order as above)</em></li>
-     *  <li>f<sub>xyz</sub>(1,1,1)</li>
-     * </ul>
-     * where the subscripts indicate the partial derivative with respect to
-     * the corresponding variable(s).
-     *
-     * @param beta List of function values and function partial derivatives values.
-     * @return the spline coefficients.
-     */
-    private double[] computeSplineCoefficients(double[] beta) {
-        final int sz = 64;
-        final double[] a = new double[sz];
-
-        for (int i = 0; i < sz; i++) {
-            double result = 0;
-            final double[] row = AINV[i];
-            for (int j = 0; j < sz; j++) {
-                result += row[j] * beta[j];
-            }
-            a[i] = result;
-        }
-
-        return a;
-    }
-}
-
-/**
- * 3D-spline function.
- *
- */
-class TricubicSplineFunction
-    implements TrivariateFunction {
-    /** Number of points. */
-    private static final short N = 4;
-    /** Coefficients */
-    private final double[][][] a = new double[N][N][N];
-
-    /**
-     * @param aV List of spline coefficients.
-     */
-    public TricubicSplineFunction(double[] aV) {
-        for (int i = 0; i < N; i++) {
-            for (int j = 0; j < N; j++) {
-                for (int k = 0; k < N; k++) {
-                    a[i][j][k] = aV[i + N * (j + N * k)];
-                }
-            }
-        }
-    }
-
-    /**
-     * @param x x-coordinate of the interpolation point.
-     * @param y y-coordinate of the interpolation point.
-     * @param z z-coordinate of the interpolation point.
-     * @return the interpolated value.
-     * @throws OutOfRangeException if {@code x}, {@code y} or
-     * {@code z} are not in the interval {@code [0, 1]}.
-     */
-    public double value(double x, double y, double z)
-        throws OutOfRangeException {
-        if (x < 0 || x > 1) {
-            throw new OutOfRangeException(x, 0, 1);
-        }
-        if (y < 0 || y > 1) {
-            throw new OutOfRangeException(y, 0, 1);
-        }
-        if (z < 0 || z > 1) {
-            throw new OutOfRangeException(z, 0, 1);
-        }
-
-        final double x2 = x * x;
-        final double x3 = x2 * x;
-        final double[] pX = { 1, x, x2, x3 };
-
-        final double y2 = y * y;
-        final double y3 = y2 * y;
-        final double[] pY = { 1, y, y2, y3 };
-
-        final double z2 = z * z;
-        final double z3 = z2 * z;
-        final double[] pZ = { 1, z, z2, z3 };
-
-        double result = 0;
-        for (int i = 0; i < N; i++) {
-            for (int j = 0; j < N; j++) {
-                for (int k = 0; k < N; k++) {
-                    result += a[i][j][k] * pX[i] * pY[j] * pZ[k];
-                }
-            }
-        }
-
-        return result;
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolator.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolator.java b/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolator.java
deleted file mode 100644
index da19986..0000000
--- a/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolator.java
+++ /dev/null
@@ -1,201 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.analysis.interpolation;
-
-import org.apache.commons.math3.exception.DimensionMismatchException;
-import org.apache.commons.math3.exception.NoDataException;
-import org.apache.commons.math3.exception.NonMonotonicSequenceException;
-import org.apache.commons.math3.exception.NumberIsTooSmallException;
-import org.apache.commons.math3.util.MathArrays;
-
-/**
- * Generates a tricubic interpolating function.
- *
- * @since 2.2
- * @deprecated To be removed in 4.0 (see MATH-1166).
- */
-@Deprecated
-public class TricubicSplineInterpolator
-    implements TrivariateGridInterpolator {
-    /**
-     * {@inheritDoc}
-     */
-    public TricubicSplineInterpolatingFunction interpolate(final double[] xval,
-                                                           final double[] yval,
-                                                           final double[] zval,
-                                                           final double[][][] fval)
-        throws NoDataException, NumberIsTooSmallException,
-               DimensionMismatchException, NonMonotonicSequenceException {
-        if (xval.length == 0 || yval.length == 0 || zval.length == 0 || fval.length == 0) {
-            throw new NoDataException();
-        }
-        if (xval.length != fval.length) {
-            throw new DimensionMismatchException(xval.length, fval.length);
-        }
-
-        MathArrays.checkOrder(xval);
-        MathArrays.checkOrder(yval);
-        MathArrays.checkOrder(zval);
-
-        final int xLen = xval.length;
-        final int yLen = yval.length;
-        final int zLen = zval.length;
-
-        // Samples, re-ordered as (z, x, y) and (y, z, x) tuplets
-        // fvalXY[k][i][j] = f(xval[i], yval[j], zval[k])
-        // fvalZX[j][k][i] = f(xval[i], yval[j], zval[k])
-        final double[][][] fvalXY = new double[zLen][xLen][yLen];
-        final double[][][] fvalZX = new double[yLen][zLen][xLen];
-        for (int i = 0; i < xLen; i++) {
-            if (fval[i].length != yLen) {
-                throw new DimensionMismatchException(fval[i].length, yLen);
-            }
-
-            for (int j = 0; j < yLen; j++) {
-                if (fval[i][j].length != zLen) {
-                    throw new DimensionMismatchException(fval[i][j].length, zLen);
-                }
-
-                for (int k = 0; k < zLen; k++) {
-                    final double v = fval[i][j][k];
-                    fvalXY[k][i][j] = v;
-                    fvalZX[j][k][i] = v;
-                }
-            }
-        }
-
-        final BicubicSplineInterpolator bsi = new BicubicSplineInterpolator(true);
-
-        // For each line x[i] (0 <= i < xLen), construct a 2D spline in y and z
-        final BicubicSplineInterpolatingFunction[] xSplineYZ
-            = new BicubicSplineInterpolatingFunction[xLen];
-        for (int i = 0; i < xLen; i++) {
-            xSplineYZ[i] = bsi.interpolate(yval, zval, fval[i]);
-        }
-
-        // For each line y[j] (0 <= j < yLen), construct a 2D spline in z and x
-        final BicubicSplineInterpolatingFunction[] ySplineZX
-            = new BicubicSplineInterpolatingFunction[yLen];
-        for (int j = 0; j < yLen; j++) {
-            ySplineZX[j] = bsi.interpolate(zval, xval, fvalZX[j]);
-        }
-
-        // For each line z[k] (0 <= k < zLen), construct a 2D spline in x and y
-        final BicubicSplineInterpolatingFunction[] zSplineXY
-            = new BicubicSplineInterpolatingFunction[zLen];
-        for (int k = 0; k < zLen; k++) {
-            zSplineXY[k] = bsi.interpolate(xval, yval, fvalXY[k]);
-        }
-
-        // Partial derivatives wrt x and wrt y
-        final double[][][] dFdX = new double[xLen][yLen][zLen];
-        final double[][][] dFdY = new double[xLen][yLen][zLen];
-        final double[][][] d2FdXdY = new double[xLen][yLen][zLen];
-        for (int k = 0; k < zLen; k++) {
-            final BicubicSplineInterpolatingFunction f = zSplineXY[k];
-            for (int i = 0; i < xLen; i++) {
-                final double x = xval[i];
-                for (int j = 0; j < yLen; j++) {
-                    final double y = yval[j];
-                    dFdX[i][j][k] = f.partialDerivativeX(x, y);
-                    dFdY[i][j][k] = f.partialDerivativeY(x, y);
-                    d2FdXdY[i][j][k] = f.partialDerivativeXY(x, y);
-                }
-            }
-        }
-
-        // Partial derivatives wrt y and wrt z
-        final double[][][] dFdZ = new double[xLen][yLen][zLen];
-        final double[][][] d2FdYdZ = new double[xLen][yLen][zLen];
-        for (int i = 0; i < xLen; i++) {
-            final BicubicSplineInterpolatingFunction f = xSplineYZ[i];
-            for (int j = 0; j < yLen; j++) {
-                final double y = yval[j];
-                for (int k = 0; k < zLen; k++) {
-                    final double z = zval[k];
-                    dFdZ[i][j][k] = f.partialDerivativeY(y, z);
-                    d2FdYdZ[i][j][k] = f.partialDerivativeXY(y, z);
-                }
-            }
-        }
-
-        // Partial derivatives wrt x and wrt z
-        final double[][][] d2FdZdX = new double[xLen][yLen][zLen];
-        for (int j = 0; j < yLen; j++) {
-            final BicubicSplineInterpolatingFunction f = ySplineZX[j];
-            for (int k = 0; k < zLen; k++) {
-                final double z = zval[k];
-                for (int i = 0; i < xLen; i++) {
-                    final double x = xval[i];
-                    d2FdZdX[i][j][k] = f.partialDerivativeXY(z, x);
-                }
-            }
-        }
-
-        // Third partial cross-derivatives
-        final double[][][] d3FdXdYdZ = new double[xLen][yLen][zLen];
-        for (int i = 0; i < xLen ; i++) {
-            final int nI = nextIndex(i, xLen);
-            final int pI = previousIndex(i);
-            for (int j = 0; j < yLen; j++) {
-                final int nJ = nextIndex(j, yLen);
-                final int pJ = previousIndex(j);
-                for (int k = 0; k < zLen; k++) {
-                    final int nK = nextIndex(k, zLen);
-                    final int pK = previousIndex(k);
-
-                    // XXX Not sure about this formula
-                    d3FdXdYdZ[i][j][k] = (fval[nI][nJ][nK] - fval[nI][pJ][nK] -
-                                          fval[pI][nJ][nK] + fval[pI][pJ][nK] -
-                                          fval[nI][nJ][pK] + fval[nI][pJ][pK] +
-                                          fval[pI][nJ][pK] - fval[pI][pJ][pK]) /
-                        ((xval[nI] - xval[pI]) * (yval[nJ] - yval[pJ]) * (zval[nK] - zval[pK])) ;
-                }
-            }
-        }
-
-        // Create the interpolating splines
-        return new TricubicSplineInterpolatingFunction(xval, yval, zval, fval,
-                                                       dFdX, dFdY, dFdZ,
-                                                       d2FdXdY, d2FdZdX, d2FdYdZ,
-                                                       d3FdXdYdZ);
-    }
-
-    /**
-     * Compute the next index of an array, clipping if necessary.
-     * It is assumed (but not checked) that {@code i} is larger than or equal to 0}.
-     *
-     * @param i Index
-     * @param max Upper limit of the array
-     * @return the next index
-     */
-    private int nextIndex(int i, int max) {
-        final int index = i + 1;
-        return index < max ? index : index - 1;
-    }
-    /**
-     * Compute the previous index of an array, clipping if necessary.
-     * It is assumed (but not checked) that {@code i} is smaller than the size of the array.
-     *
-     * @param i Index
-     * @return the previous index
-     */
-    private int previousIndex(int i) {
-        final int index = i - 1;
-        return index >= 0 ? index : 0;
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/analysis/interpolation/TrivariateGridInterpolator.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/analysis/interpolation/TrivariateGridInterpolator.java b/src/main/java/org/apache/commons/math3/analysis/interpolation/TrivariateGridInterpolator.java
deleted file mode 100644
index ec69715..0000000
--- a/src/main/java/org/apache/commons/math3/analysis/interpolation/TrivariateGridInterpolator.java
+++ /dev/null
@@ -1,54 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.analysis.interpolation;
-
-import org.apache.commons.math3.analysis.TrivariateFunction;
-import org.apache.commons.math3.exception.DimensionMismatchException;
-import org.apache.commons.math3.exception.NoDataException;
-import org.apache.commons.math3.exception.NonMonotonicSequenceException;
-import org.apache.commons.math3.exception.NumberIsTooSmallException;
-
-/**
- * Interface representing a trivariate real interpolating function where the
- * sample points must be specified on a regular grid.
- *
- * @since 2.2
- */
-public interface TrivariateGridInterpolator {
-    /**
-     * Compute an interpolating function for the dataset.
-     *
-     * @param xval All the x-coordinates of the interpolation points, sorted
-     * in increasing order.
-     * @param yval All the y-coordinates of the interpolation points, sorted
-     * in increasing order.
-     * @param zval All the z-coordinates of the interpolation points, sorted
-     * in increasing order.
-     * @param fval the values of the interpolation points on all the grid knots:
-     * {@code fval[i][j][k] = f(xval[i], yval[j], zval[k])}.
-     * @return a function that interpolates the data set.
-     * @throws NoDataException if any of the arrays has zero length.
-     * @throws DimensionMismatchException if the array lengths are inconsistent.
-     * @throws NonMonotonicSequenceException if arrays are not sorted
-     * @throws NumberIsTooSmallException if the number of points is too small for
-     * the order of the interpolation
-     */
-    TrivariateFunction interpolate(double[] xval, double[] yval, double[] zval,
-                                   double[][][] fval)
-        throws NoDataException, NumberIsTooSmallException,
-               DimensionMismatchException, NonMonotonicSequenceException;
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/analysis/interpolation/UnivariateInterpolator.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/analysis/interpolation/UnivariateInterpolator.java b/src/main/java/org/apache/commons/math3/analysis/interpolation/UnivariateInterpolator.java
deleted file mode 100644
index f7a1bd1..0000000
--- a/src/main/java/org/apache/commons/math3/analysis/interpolation/UnivariateInterpolator.java
+++ /dev/null
@@ -1,41 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.analysis.interpolation;
-
-import org.apache.commons.math3.analysis.UnivariateFunction;
-import org.apache.commons.math3.exception.DimensionMismatchException;
-import org.apache.commons.math3.exception.MathIllegalArgumentException;
-
-/**
- * Interface representing a univariate real interpolating function.
- *
- */
-public interface UnivariateInterpolator {
-    /**
-     * Compute an interpolating function for the dataset.
-     *
-     * @param xval Arguments for the interpolation points.
-     * @param yval Values for the interpolation points.
-     * @return a function which interpolates the dataset.
-     * @throws MathIllegalArgumentException
-     * if the arguments violate assumptions made by the interpolation
-     * algorithm.
-     * @throws DimensionMismatchException if arrays lengthes do not match
-     */
-    UnivariateFunction interpolate(double xval[], double yval[])
-        throws MathIllegalArgumentException, DimensionMismatchException;
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/analysis/interpolation/UnivariatePeriodicInterpolator.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/analysis/interpolation/UnivariatePeriodicInterpolator.java b/src/main/java/org/apache/commons/math3/analysis/interpolation/UnivariatePeriodicInterpolator.java
deleted file mode 100644
index 6b788b1..0000000
--- a/src/main/java/org/apache/commons/math3/analysis/interpolation/UnivariatePeriodicInterpolator.java
+++ /dev/null
@@ -1,123 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.analysis.interpolation;
-
-import org.apache.commons.math3.analysis.UnivariateFunction;
-import org.apache.commons.math3.util.MathUtils;
-import org.apache.commons.math3.util.MathArrays;
-import org.apache.commons.math3.exception.MathIllegalArgumentException;
-import org.apache.commons.math3.exception.NonMonotonicSequenceException;
-import org.apache.commons.math3.exception.NumberIsTooSmallException;
-
-/**
- * Adapter for classes implementing the {@link UnivariateInterpolator}
- * interface.
- * The data to be interpolated is assumed to be periodic. Thus values that are
- * outside of the range can be passed to the interpolation function: They will
- * be wrapped into the initial range before being passed to the class that
- * actually computes the interpolation.
- *
- */
-public class UnivariatePeriodicInterpolator
-    implements UnivariateInterpolator {
-    /** Default number of extension points of the samples array. */
-    public static final int DEFAULT_EXTEND = 5;
-    /** Interpolator. */
-    private final UnivariateInterpolator interpolator;
-    /** Period. */
-    private final double period;
-    /** Number of extension points. */
-    private final int extend;
-
-    /**
-     * Builds an interpolator.
-     *
-     * @param interpolator Interpolator.
-     * @param period Period.
-     * @param extend Number of points to be appended at the beginning and
-     * end of the sample arrays in order to avoid interpolation failure at
-     * the (periodic) boundaries of the orginal interval. The value is the
-     * number of sample points which the original {@code interpolator} needs
-     * on each side of the interpolated point.
-     */
-    public UnivariatePeriodicInterpolator(UnivariateInterpolator interpolator,
-                                          double period,
-                                          int extend) {
-        this.interpolator = interpolator;
-        this.period = period;
-        this.extend = extend;
-    }
-
-    /**
-     * Builds an interpolator.
-     * Uses {@link #DEFAULT_EXTEND} as the number of extension points on each side
-     * of the original abscissae range.
-     *
-     * @param interpolator Interpolator.
-     * @param period Period.
-     */
-    public UnivariatePeriodicInterpolator(UnivariateInterpolator interpolator,
-                                          double period) {
-        this(interpolator, period, DEFAULT_EXTEND);
-    }
-
-    /**
-     * {@inheritDoc}
-     *
-     * @throws NumberIsTooSmallException if the number of extension points
-     * is larger than the size of {@code xval}.
-     */
-    public UnivariateFunction interpolate(double[] xval,
-                                          double[] yval)
-        throws NumberIsTooSmallException, NonMonotonicSequenceException {
-        if (xval.length < extend) {
-            throw new NumberIsTooSmallException(xval.length, extend, true);
-        }
-
-        MathArrays.checkOrder(xval);
-        final double offset = xval[0];
-
-        final int len = xval.length + extend * 2;
-        final double[] x = new double[len];
-        final double[] y = new double[len];
-        for (int i = 0; i < xval.length; i++) {
-            final int index = i + extend;
-            x[index] = MathUtils.reduce(xval[i], period, offset);
-            y[index] = yval[i];
-        }
-
-        // Wrap to enable interpolation at the boundaries.
-        for (int i = 0; i < extend; i++) {
-            int index = xval.length - extend + i;
-            x[i] = MathUtils.reduce(xval[index], period, offset) - period;
-            y[i] = yval[index];
-
-            index = len - extend + i;
-            x[index] = MathUtils.reduce(xval[i], period, offset) + period;
-            y[index] = yval[i];
-        }
-
-        MathArrays.sortInPlace(x, y);
-
-        final UnivariateFunction f = interpolator.interpolate(x, y);
-        return new UnivariateFunction() {
-            public double value(final double x) throws MathIllegalArgumentException {
-                return f.value(MathUtils.reduce(x, period, offset));
-            }
-        };
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/analysis/interpolation/package-info.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/analysis/interpolation/package-info.java b/src/main/java/org/apache/commons/math3/analysis/interpolation/package-info.java
deleted file mode 100644
index b4b25dd..0000000
--- a/src/main/java/org/apache/commons/math3/analysis/interpolation/package-info.java
+++ /dev/null
@@ -1,22 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-/**
- *
- *     Univariate real functions interpolation algorithms.
- *
- */
-package org.apache.commons.math3.analysis.interpolation;

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/analysis/package-info.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/analysis/package-info.java b/src/main/java/org/apache/commons/math3/analysis/package-info.java
deleted file mode 100644
index 46e0477..0000000
--- a/src/main/java/org/apache/commons/math3/analysis/package-info.java
+++ /dev/null
@@ -1,32 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-/**
- *
- *    <p>
- *      Parent package for common numerical analysis procedures, including root finding,
- *      function interpolation and integration. Note that optimization (i.e. minimization
- *      and maximization) is a separate top-level package.
- *    </p>
- *    <p>
- *      Function interfaces are intended to be implemented by user code to represent
- *      domain problems. The algorithms provided by the library operate on these
- *      functions to find their roots, or integrate them, or ... Functions can be multivariate
- *      or univariate, real vectorial or matrix-valued, and they can be differentiable or not.
- *    </p>
- *
- */
-package org.apache.commons.math3.analysis;

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunction.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunction.java b/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunction.java
deleted file mode 100644
index d424a88..0000000
--- a/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunction.java
+++ /dev/null
@@ -1,412 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.analysis.polynomials;
-
-import java.io.Serializable;
-import java.util.Arrays;
-
-import org.apache.commons.math3.exception.util.LocalizedFormats;
-import org.apache.commons.math3.exception.NoDataException;
-import org.apache.commons.math3.exception.NullArgumentException;
-import org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
-import org.apache.commons.math3.analysis.UnivariateFunction;
-import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
-import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
-import org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
-import org.apache.commons.math3.util.FastMath;
-import org.apache.commons.math3.util.MathUtils;
-
-/**
- * Immutable representation of a real polynomial function with real coefficients.
- * <p>
- * <a href="http://mathworld.wolfram.com/HornersMethod.html">Horner's Method</a>
- * is used to evaluate the function.</p>
- *
- */
-public class PolynomialFunction implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction, Serializable {
-    /**
-     * Serialization identifier
-     */
-    private static final long serialVersionUID = -7726511984200295583L;
-    /**
-     * The coefficients of the polynomial, ordered by degree -- i.e.,
-     * coefficients[0] is the constant term and coefficients[n] is the
-     * coefficient of x^n where n is the degree of the polynomial.
-     */
-    private final double coefficients[];
-
-    /**
-     * Construct a polynomial with the given coefficients.  The first element
-     * of the coefficients array is the constant term.  Higher degree
-     * coefficients follow in sequence.  The degree of the resulting polynomial
-     * is the index of the last non-null element of the array, or 0 if all elements
-     * are null.
-     * <p>
-     * The constructor makes a copy of the input array and assigns the copy to
-     * the coefficients property.</p>
-     *
-     * @param c Polynomial coefficients.
-     * @throws NullArgumentException if {@code c} is {@code null}.
-     * @throws NoDataException if {@code c} is empty.
-     */
-    public PolynomialFunction(double c[])
-        throws NullArgumentException, NoDataException {
-        super();
-        MathUtils.checkNotNull(c);
-        int n = c.length;
-        if (n == 0) {
-            throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
-        }
-        while ((n > 1) && (c[n - 1] == 0)) {
-            --n;
-        }
-        this.coefficients = new double[n];
-        System.arraycopy(c, 0, this.coefficients, 0, n);
-    }
-
-    /**
-     * Compute the value of the function for the given argument.
-     * <p>
-     *  The value returned is <br/>
-     *  <code>coefficients[n] * x^n + ... + coefficients[1] * x  + coefficients[0]</code>
-     * </p>
-     *
-     * @param x Argument for which the function value should be computed.
-     * @return the value of the polynomial at the given point.
-     * @see UnivariateFunction#value(double)
-     */
-    public double value(double x) {
-       return evaluate(coefficients, x);
-    }
-
-    /**
-     * Returns the degree of the polynomial.
-     *
-     * @return the degree of the polynomial.
-     */
-    public int degree() {
-        return coefficients.length - 1;
-    }
-
-    /**
-     * Returns a copy of the coefficients array.
-     * <p>
-     * Changes made to the returned copy will not affect the coefficients of
-     * the polynomial.</p>
-     *
-     * @return a fresh copy of the coefficients array.
-     */
-    public double[] getCoefficients() {
-        return coefficients.clone();
-    }
-
-    /**
-     * Uses Horner's Method to evaluate the polynomial with the given coefficients at
-     * the argument.
-     *
-     * @param coefficients Coefficients of the polynomial to evaluate.
-     * @param argument Input value.
-     * @return the value of the polynomial.
-     * @throws NoDataException if {@code coefficients} is empty.
-     * @throws NullArgumentException if {@code coefficients} is {@code null}.
-     */
-    protected static double evaluate(double[] coefficients, double argument)
-        throws NullArgumentException, NoDataException {
-        MathUtils.checkNotNull(coefficients);
-        int n = coefficients.length;
-        if (n == 0) {
-            throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
-        }
-        double result = coefficients[n - 1];
-        for (int j = n - 2; j >= 0; j--) {
-            result = argument * result + coefficients[j];
-        }
-        return result;
-    }
-
-
-    /** {@inheritDoc}
-     * @since 3.1
-     * @throws NoDataException if {@code coefficients} is empty.
-     * @throws NullArgumentException if {@code coefficients} is {@code null}.
-     */
-    public DerivativeStructure value(final DerivativeStructure t)
-        throws NullArgumentException, NoDataException {
-        MathUtils.checkNotNull(coefficients);
-        int n = coefficients.length;
-        if (n == 0) {
-            throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
-        }
-        DerivativeStructure result =
-                new DerivativeStructure(t.getFreeParameters(), t.getOrder(), coefficients[n - 1]);
-        for (int j = n - 2; j >= 0; j--) {
-            result = result.multiply(t).add(coefficients[j]);
-        }
-        return result;
-    }
-
-    /**
-     * Add a polynomial to the instance.
-     *
-     * @param p Polynomial to add.
-     * @return a new polynomial which is the sum of the instance and {@code p}.
-     */
-    public PolynomialFunction add(final PolynomialFunction p) {
-        // identify the lowest degree polynomial
-        final int lowLength  = FastMath.min(coefficients.length, p.coefficients.length);
-        final int highLength = FastMath.max(coefficients.length, p.coefficients.length);
-
-        // build the coefficients array
-        double[] newCoefficients = new double[highLength];
-        for (int i = 0; i < lowLength; ++i) {
-            newCoefficients[i] = coefficients[i] + p.coefficients[i];
-        }
-        System.arraycopy((coefficients.length < p.coefficients.length) ?
-                         p.coefficients : coefficients,
-                         lowLength,
-                         newCoefficients, lowLength,
-                         highLength - lowLength);
-
-        return new PolynomialFunction(newCoefficients);
-    }
-
-    /**
-     * Subtract a polynomial from the instance.
-     *
-     * @param p Polynomial to subtract.
-     * @return a new polynomial which is the difference the instance minus {@code p}.
-     */
-    public PolynomialFunction subtract(final PolynomialFunction p) {
-        // identify the lowest degree polynomial
-        int lowLength  = FastMath.min(coefficients.length, p.coefficients.length);
-        int highLength = FastMath.max(coefficients.length, p.coefficients.length);
-
-        // build the coefficients array
-        double[] newCoefficients = new double[highLength];
-        for (int i = 0; i < lowLength; ++i) {
-            newCoefficients[i] = coefficients[i] - p.coefficients[i];
-        }
-        if (coefficients.length < p.coefficients.length) {
-            for (int i = lowLength; i < highLength; ++i) {
-                newCoefficients[i] = -p.coefficients[i];
-            }
-        } else {
-            System.arraycopy(coefficients, lowLength, newCoefficients, lowLength,
-                             highLength - lowLength);
-        }
-
-        return new PolynomialFunction(newCoefficients);
-    }
-
-    /**
-     * Negate the instance.
-     *
-     * @return a new polynomial.
-     */
-    public PolynomialFunction negate() {
-        double[] newCoefficients = new double[coefficients.length];
-        for (int i = 0; i < coefficients.length; ++i) {
-            newCoefficients[i] = -coefficients[i];
-        }
-        return new PolynomialFunction(newCoefficients);
-    }
-
-    /**
-     * Multiply the instance by a polynomial.
-     *
-     * @param p Polynomial to multiply by.
-     * @return a new polynomial.
-     */
-    public PolynomialFunction multiply(final PolynomialFunction p) {
-        double[] newCoefficients = new double[coefficients.length + p.coefficients.length - 1];
-
-        for (int i = 0; i < newCoefficients.length; ++i) {
-            newCoefficients[i] = 0.0;
-            for (int j = FastMath.max(0, i + 1 - p.coefficients.length);
-                 j < FastMath.min(coefficients.length, i + 1);
-                 ++j) {
-                newCoefficients[i] += coefficients[j] * p.coefficients[i-j];
-            }
-        }
-
-        return new PolynomialFunction(newCoefficients);
-    }
-
-    /**
-     * Returns the coefficients of the derivative of the polynomial with the given coefficients.
-     *
-     * @param coefficients Coefficients of the polynomial to differentiate.
-     * @return the coefficients of the derivative or {@code null} if coefficients has length 1.
-     * @throws NoDataException if {@code coefficients} is empty.
-     * @throws NullArgumentException if {@code coefficients} is {@code null}.
-     */
-    protected static double[] differentiate(double[] coefficients)
-        throws NullArgumentException, NoDataException {
-        MathUtils.checkNotNull(coefficients);
-        int n = coefficients.length;
-        if (n == 0) {
-            throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
-        }
-        if (n == 1) {
-            return new double[]{0};
-        }
-        double[] result = new double[n - 1];
-        for (int i = n - 1; i > 0; i--) {
-            result[i - 1] = i * coefficients[i];
-        }
-        return result;
-    }
-
-    /**
-     * Returns the derivative as a {@link PolynomialFunction}.
-     *
-     * @return the derivative polynomial.
-     */
-    public PolynomialFunction polynomialDerivative() {
-        return new PolynomialFunction(differentiate(coefficients));
-    }
-
-    /**
-     * Returns the derivative as a {@link UnivariateFunction}.
-     *
-     * @return the derivative function.
-     */
-    public UnivariateFunction derivative() {
-        return polynomialDerivative();
-    }
-
-    /**
-     * Returns a string representation of the polynomial.
-     *
-     * <p>The representation is user oriented. Terms are displayed lowest
-     * degrees first. The multiplications signs, coefficients equals to
-     * one and null terms are not displayed (except if the polynomial is 0,
-     * in which case the 0 constant term is displayed). Addition of terms
-     * with negative coefficients are replaced by subtraction of terms
-     * with positive coefficients except for the first displayed term
-     * (i.e. we display <code>-3</code> for a constant negative polynomial,
-     * but <code>1 - 3 x + x^2</code> if the negative coefficient is not
-     * the first one displayed).</p>
-     *
-     * @return a string representation of the polynomial.
-     */
-    @Override
-    public String toString() {
-        StringBuilder s = new StringBuilder();
-        if (coefficients[0] == 0.0) {
-            if (coefficients.length == 1) {
-                return "0";
-            }
-        } else {
-            s.append(toString(coefficients[0]));
-        }
-
-        for (int i = 1; i < coefficients.length; ++i) {
-            if (coefficients[i] != 0) {
-                if (s.length() > 0) {
-                    if (coefficients[i] < 0) {
-                        s.append(" - ");
-                    } else {
-                        s.append(" + ");
-                    }
-                } else {
-                    if (coefficients[i] < 0) {
-                        s.append("-");
-                    }
-                }
-
-                double absAi = FastMath.abs(coefficients[i]);
-                if ((absAi - 1) != 0) {
-                    s.append(toString(absAi));
-                    s.append(' ');
-                }
-
-                s.append("x");
-                if (i > 1) {
-                    s.append('^');
-                    s.append(Integer.toString(i));
-                }
-            }
-        }
-
-        return s.toString();
-    }
-
-    /**
-     * Creates a string representing a coefficient, removing ".0" endings.
-     *
-     * @param coeff Coefficient.
-     * @return a string representation of {@code coeff}.
-     */
-    private static String toString(double coeff) {
-        final String c = Double.toString(coeff);
-        if (c.endsWith(".0")) {
-            return c.substring(0, c.length() - 2);
-        } else {
-            return c;
-        }
-    }
-
-    /** {@inheritDoc} */
-    @Override
-    public int hashCode() {
-        final int prime = 31;
-        int result = 1;
-        result = prime * result + Arrays.hashCode(coefficients);
-        return result;
-    }
-
-    /** {@inheritDoc} */
-    @Override
-    public boolean equals(Object obj) {
-        if (this == obj) {
-            return true;
-        }
-        if (!(obj instanceof PolynomialFunction)) {
-            return false;
-        }
-        PolynomialFunction other = (PolynomialFunction) obj;
-        if (!Arrays.equals(coefficients, other.coefficients)) {
-            return false;
-        }
-        return true;
-    }
-
-    /**
-     * Dedicated parametric polynomial class.
-     *
-     * @since 3.0
-     */
-    public static class Parametric implements ParametricUnivariateFunction {
-        /** {@inheritDoc} */
-        public double[] gradient(double x, double ... parameters) {
-            final double[] gradient = new double[parameters.length];
-            double xn = 1.0;
-            for (int i = 0; i < parameters.length; ++i) {
-                gradient[i] = xn;
-                xn *= x;
-            }
-            return gradient;
-        }
-
-        /** {@inheritDoc} */
-        public double value(final double x, final double ... parameters)
-            throws NoDataException {
-            return PolynomialFunction.evaluate(parameters, x);
-        }
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunctionLagrangeForm.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunctionLagrangeForm.java b/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunctionLagrangeForm.java
deleted file mode 100644
index 9d812df..0000000
--- a/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunctionLagrangeForm.java
+++ /dev/null
@@ -1,326 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.analysis.polynomials;
-
-import org.apache.commons.math3.analysis.UnivariateFunction;
-import org.apache.commons.math3.util.FastMath;
-import org.apache.commons.math3.util.MathArrays;
-import org.apache.commons.math3.exception.DimensionMismatchException;
-import org.apache.commons.math3.exception.NonMonotonicSequenceException;
-import org.apache.commons.math3.exception.NumberIsTooSmallException;
-import org.apache.commons.math3.exception.util.LocalizedFormats;
-
-/**
- * Implements the representation of a real polynomial function in
- * <a href="http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html">
- * Lagrange Form</a>. For reference, see <b>Introduction to Numerical
- * Analysis</b>, ISBN 038795452X, chapter 2.
- * <p>
- * The approximated function should be smooth enough for Lagrange polynomial
- * to work well. Otherwise, consider using splines instead.</p>
- *
- * @since 1.2
- */
-public class PolynomialFunctionLagrangeForm implements UnivariateFunction {
-    /**
-     * The coefficients of the polynomial, ordered by degree -- i.e.
-     * coefficients[0] is the constant term and coefficients[n] is the
-     * coefficient of x^n where n is the degree of the polynomial.
-     */
-    private double coefficients[];
-    /**
-     * Interpolating points (abscissas).
-     */
-    private final double x[];
-    /**
-     * Function values at interpolating points.
-     */
-    private final double y[];
-    /**
-     * Whether the polynomial coefficients are available.
-     */
-    private boolean coefficientsComputed;
-
-    /**
-     * Construct a Lagrange polynomial with the given abscissas and function
-     * values. The order of interpolating points are not important.
-     * <p>
-     * The constructor makes copy of the input arrays and assigns them.</p>
-     *
-     * @param x interpolating points
-     * @param y function values at interpolating points
-     * @throws DimensionMismatchException if the array lengths are different.
-     * @throws NumberIsTooSmallException if the number of points is less than 2.
-     * @throws NonMonotonicSequenceException
-     * if two abscissae have the same value.
-     */
-    public PolynomialFunctionLagrangeForm(double x[], double y[])
-        throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException {
-        this.x = new double[x.length];
-        this.y = new double[y.length];
-        System.arraycopy(x, 0, this.x, 0, x.length);
-        System.arraycopy(y, 0, this.y, 0, y.length);
-        coefficientsComputed = false;
-
-        if (!verifyInterpolationArray(x, y, false)) {
-            MathArrays.sortInPlace(this.x, this.y);
-            // Second check in case some abscissa is duplicated.
-            verifyInterpolationArray(this.x, this.y, true);
-        }
-    }
-
-    /**
-     * Calculate the function value at the given point.
-     *
-     * @param z Point at which the function value is to be computed.
-     * @return the function value.
-     * @throws DimensionMismatchException if {@code x} and {@code y} have
-     * different lengths.
-     * @throws org.apache.commons.math3.exception.NonMonotonicSequenceException
-     * if {@code x} is not sorted in strictly increasing order.
-     * @throws NumberIsTooSmallException if the size of {@code x} is less
-     * than 2.
-     */
-    public double value(double z) {
-        return evaluateInternal(x, y, z);
-    }
-
-    /**
-     * Returns the degree of the polynomial.
-     *
-     * @return the degree of the polynomial
-     */
-    public int degree() {
-        return x.length - 1;
-    }
-
-    /**
-     * Returns a copy of the interpolating points array.
-     * <p>
-     * Changes made to the returned copy will not affect the polynomial.</p>
-     *
-     * @return a fresh copy of the interpolating points array
-     */
-    public double[] getInterpolatingPoints() {
-        double[] out = new double[x.length];
-        System.arraycopy(x, 0, out, 0, x.length);
-        return out;
-    }
-
-    /**
-     * Returns a copy of the interpolating values array.
-     * <p>
-     * Changes made to the returned copy will not affect the polynomial.</p>
-     *
-     * @return a fresh copy of the interpolating values array
-     */
-    public double[] getInterpolatingValues() {
-        double[] out = new double[y.length];
-        System.arraycopy(y, 0, out, 0, y.length);
-        return out;
-    }
-
-    /**
-     * Returns a copy of the coefficients array.
-     * <p>
-     * Changes made to the returned copy will not affect the polynomial.</p>
-     * <p>
-     * Note that coefficients computation can be ill-conditioned. Use with caution
-     * and only when it is necessary.</p>
-     *
-     * @return a fresh copy of the coefficients array
-     */
-    public double[] getCoefficients() {
-        if (!coefficientsComputed) {
-            computeCoefficients();
-        }
-        double[] out = new double[coefficients.length];
-        System.arraycopy(coefficients, 0, out, 0, coefficients.length);
-        return out;
-    }
-
-    /**
-     * Evaluate the Lagrange polynomial using
-     * <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
-     * Neville's Algorithm</a>. It takes O(n^2) time.
-     *
-     * @param x Interpolating points array.
-     * @param y Interpolating values array.
-     * @param z Point at which the function value is to be computed.
-     * @return the function value.
-     * @throws DimensionMismatchException if {@code x} and {@code y} have
-     * different lengths.
-     * @throws NonMonotonicSequenceException
-     * if {@code x} is not sorted in strictly increasing order.
-     * @throws NumberIsTooSmallException if the size of {@code x} is less
-     * than 2.
-     */
-    public static double evaluate(double x[], double y[], double z)
-        throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException {
-        if (verifyInterpolationArray(x, y, false)) {
-            return evaluateInternal(x, y, z);
-        }
-
-        // Array is not sorted.
-        final double[] xNew = new double[x.length];
-        final double[] yNew = new double[y.length];
-        System.arraycopy(x, 0, xNew, 0, x.length);
-        System.arraycopy(y, 0, yNew, 0, y.length);
-
-        MathArrays.sortInPlace(xNew, yNew);
-        // Second check in case some abscissa is duplicated.
-        verifyInterpolationArray(xNew, yNew, true);
-        return evaluateInternal(xNew, yNew, z);
-    }
-
-    /**
-     * Evaluate the Lagrange polynomial using
-     * <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
-     * Neville's Algorithm</a>. It takes O(n^2) time.
-     *
-     * @param x Interpolating points array.
-     * @param y Interpolating values array.
-     * @param z Point at which the function value is to be computed.
-     * @return the function value.
-     * @throws DimensionMismatchException if {@code x} and {@code y} have
-     * different lengths.
-     * @throws org.apache.commons.math3.exception.NonMonotonicSequenceException
-     * if {@code x} is not sorted in strictly increasing order.
-     * @throws NumberIsTooSmallException if the size of {@code x} is less
-     * than 2.
-     */
-    private static double evaluateInternal(double x[], double y[], double z) {
-        int nearest = 0;
-        final int n = x.length;
-        final double[] c = new double[n];
-        final double[] d = new double[n];
-        double min_dist = Double.POSITIVE_INFINITY;
-        for (int i = 0; i < n; i++) {
-            // initialize the difference arrays
-            c[i] = y[i];
-            d[i] = y[i];
-            // find out the abscissa closest to z
-            final double dist = FastMath.abs(z - x[i]);
-            if (dist < min_dist) {
-                nearest = i;
-                min_dist = dist;
-            }
-        }
-
-        // initial approximation to the function value at z
-        double value = y[nearest];
-
-        for (int i = 1; i < n; i++) {
-            for (int j = 0; j < n-i; j++) {
-                final double tc = x[j] - z;
-                final double td = x[i+j] - z;
-                final double divider = x[j] - x[i+j];
-                // update the difference arrays
-                final double w = (c[j+1] - d[j]) / divider;
-                c[j] = tc * w;
-                d[j] = td * w;
-            }
-            // sum up the difference terms to get the final value
-            if (nearest < 0.5*(n-i+1)) {
-                value += c[nearest];    // fork down
-            } else {
-                nearest--;
-                value += d[nearest];    // fork up
-            }
-        }
-
-        return value;
-    }
-
-    /**
-     * Calculate the coefficients of Lagrange polynomial from the
-     * interpolation data. It takes O(n^2) time.
-     * Note that this computation can be ill-conditioned: Use with caution
-     * and only when it is necessary.
-     */
-    protected void computeCoefficients() {
-        final int n = degree() + 1;
-        coefficients = new double[n];
-        for (int i = 0; i < n; i++) {
-            coefficients[i] = 0.0;
-        }
-
-        // c[] are the coefficients of P(x) = (x-x[0])(x-x[1])...(x-x[n-1])
-        final double[] c = new double[n+1];
-        c[0] = 1.0;
-        for (int i = 0; i < n; i++) {
-            for (int j = i; j > 0; j--) {
-                c[j] = c[j-1] - c[j] * x[i];
-            }
-            c[0] *= -x[i];
-            c[i+1] = 1;
-        }
-
-        final double[] tc = new double[n];
-        for (int i = 0; i < n; i++) {
-            // d = (x[i]-x[0])...(x[i]-x[i-1])(x[i]-x[i+1])...(x[i]-x[n-1])
-            double d = 1;
-            for (int j = 0; j < n; j++) {
-                if (i != j) {
-                    d *= x[i] - x[j];
-                }
-            }
-            final double t = y[i] / d;
-            // Lagrange polynomial is the sum of n terms, each of which is a
-            // polynomial of degree n-1. tc[] are the coefficients of the i-th
-            // numerator Pi(x) = (x-x[0])...(x-x[i-1])(x-x[i+1])...(x-x[n-1]).
-            tc[n-1] = c[n];     // actually c[n] = 1
-            coefficients[n-1] += t * tc[n-1];
-            for (int j = n-2; j >= 0; j--) {
-                tc[j] = c[j+1] + tc[j+1] * x[i];
-                coefficients[j] += t * tc[j];
-            }
-        }
-
-        coefficientsComputed = true;
-    }
-
-    /**
-     * Check that the interpolation arrays are valid.
-     * The arrays features checked by this method are that both arrays have the
-     * same length and this length is at least 2.
-     *
-     * @param x Interpolating points array.
-     * @param y Interpolating values array.
-     * @param abort Whether to throw an exception if {@code x} is not sorted.
-     * @throws DimensionMismatchException if the array lengths are different.
-     * @throws NumberIsTooSmallException if the number of points is less than 2.
-     * @throws org.apache.commons.math3.exception.NonMonotonicSequenceException
-     * if {@code x} is not sorted in strictly increasing order and {@code abort}
-     * is {@code true}.
-     * @return {@code false} if the {@code x} is not sorted in increasing order,
-     * {@code true} otherwise.
-     * @see #evaluate(double[], double[], double)
-     * @see #computeCoefficients()
-     */
-    public static boolean verifyInterpolationArray(double x[], double y[], boolean abort)
-        throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException {
-        if (x.length != y.length) {
-            throw new DimensionMismatchException(x.length, y.length);
-        }
-        if (x.length < 2) {
-            throw new NumberIsTooSmallException(LocalizedFormats.WRONG_NUMBER_OF_POINTS, 2, x.length, true);
-        }
-
-        return MathArrays.checkOrder(x, MathArrays.OrderDirection.INCREASING, true, abort);
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunctionNewtonForm.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunctionNewtonForm.java b/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunctionNewtonForm.java
deleted file mode 100644
index fc2f1fd..0000000
--- a/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunctionNewtonForm.java
+++ /dev/null
@@ -1,245 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.analysis.polynomials;
-
-import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
-import org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
-import org.apache.commons.math3.exception.DimensionMismatchException;
-import org.apache.commons.math3.exception.NoDataException;
-import org.apache.commons.math3.exception.NullArgumentException;
-import org.apache.commons.math3.exception.util.LocalizedFormats;
-import org.apache.commons.math3.util.MathUtils;
-
-/**
- * Implements the representation of a real polynomial function in
- * Newton Form. For reference, see <b>Elementary Numerical Analysis</b>,
- * ISBN 0070124477, chapter 2.
- * <p>
- * The formula of polynomial in Newton form is
- *     p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... +
- *            a[n](x-c[0])(x-c[1])...(x-c[n-1])
- * Note that the length of a[] is one more than the length of c[]</p>
- *
- * @since 1.2
- */
-public class PolynomialFunctionNewtonForm implements UnivariateDifferentiableFunction {
-
-    /**
-     * The coefficients of the polynomial, ordered by degree -- i.e.
-     * coefficients[0] is the constant term and coefficients[n] is the
-     * coefficient of x^n where n is the degree of the polynomial.
-     */
-    private double coefficients[];
-
-    /**
-     * Centers of the Newton polynomial.
-     */
-    private final double c[];
-
-    /**
-     * When all c[i] = 0, a[] becomes normal polynomial coefficients,
-     * i.e. a[i] = coefficients[i].
-     */
-    private final double a[];
-
-    /**
-     * Whether the polynomial coefficients are available.
-     */
-    private boolean coefficientsComputed;
-
-    /**
-     * Construct a Newton polynomial with the given a[] and c[]. The order of
-     * centers are important in that if c[] shuffle, then values of a[] would
-     * completely change, not just a permutation of old a[].
-     * <p>
-     * The constructor makes copy of the input arrays and assigns them.</p>
-     *
-     * @param a Coefficients in Newton form formula.
-     * @param c Centers.
-     * @throws NullArgumentException if any argument is {@code null}.
-     * @throws NoDataException if any array has zero length.
-     * @throws DimensionMismatchException if the size difference between
-     * {@code a} and {@code c} is not equal to 1.
-     */
-    public PolynomialFunctionNewtonForm(double a[], double c[])
-        throws NullArgumentException, NoDataException, DimensionMismatchException {
-
-        verifyInputArray(a, c);
-        this.a = new double[a.length];
-        this.c = new double[c.length];
-        System.arraycopy(a, 0, this.a, 0, a.length);
-        System.arraycopy(c, 0, this.c, 0, c.length);
-        coefficientsComputed = false;
-    }
-
-    /**
-     * Calculate the function value at the given point.
-     *
-     * @param z Point at which the function value is to be computed.
-     * @return the function value.
-     */
-    public double value(double z) {
-       return evaluate(a, c, z);
-    }
-
-    /**
-     * {@inheritDoc}
-     * @since 3.1
-     */
-    public DerivativeStructure value(final DerivativeStructure t) {
-        verifyInputArray(a, c);
-
-        final int n = c.length;
-        DerivativeStructure value = new DerivativeStructure(t.getFreeParameters(), t.getOrder(), a[n]);
-        for (int i = n - 1; i >= 0; i--) {
-            value = t.subtract(c[i]).multiply(value).add(a[i]);
-        }
-
-        return value;
-
-    }
-
-    /**
-     * Returns the degree of the polynomial.
-     *
-     * @return the degree of the polynomial
-     */
-    public int degree() {
-        return c.length;
-    }
-
-    /**
-     * Returns a copy of coefficients in Newton form formula.
-     * <p>
-     * Changes made to the returned copy will not affect the polynomial.</p>
-     *
-     * @return a fresh copy of coefficients in Newton form formula
-     */
-    public double[] getNewtonCoefficients() {
-        double[] out = new double[a.length];
-        System.arraycopy(a, 0, out, 0, a.length);
-        return out;
-    }
-
-    /**
-     * Returns a copy of the centers array.
-     * <p>
-     * Changes made to the returned copy will not affect the polynomial.</p>
-     *
-     * @return a fresh copy of the centers array.
-     */
-    public double[] getCenters() {
-        double[] out = new double[c.length];
-        System.arraycopy(c, 0, out, 0, c.length);
-        return out;
-    }
-
-    /**
-     * Returns a copy of the coefficients array.
-     * <p>
-     * Changes made to the returned copy will not affect the polynomial.</p>
-     *
-     * @return a fresh copy of the coefficients array.
-     */
-    public double[] getCoefficients() {
-        if (!coefficientsComputed) {
-            computeCoefficients();
-        }
-        double[] out = new double[coefficients.length];
-        System.arraycopy(coefficients, 0, out, 0, coefficients.length);
-        return out;
-    }
-
-    /**
-     * Evaluate the Newton polynomial using nested multiplication. It is
-     * also called <a href="http://mathworld.wolfram.com/HornersRule.html">
-     * Horner's Rule</a> and takes O(N) time.
-     *
-     * @param a Coefficients in Newton form formula.
-     * @param c Centers.
-     * @param z Point at which the function value is to be computed.
-     * @return the function value.
-     * @throws NullArgumentException if any argument is {@code null}.
-     * @throws NoDataException if any array has zero length.
-     * @throws DimensionMismatchException if the size difference between
-     * {@code a} and {@code c} is not equal to 1.
-     */
-    public static double evaluate(double a[], double c[], double z)
-        throws NullArgumentException, DimensionMismatchException, NoDataException {
-        verifyInputArray(a, c);
-
-        final int n = c.length;
-        double value = a[n];
-        for (int i = n - 1; i >= 0; i--) {
-            value = a[i] + (z - c[i]) * value;
-        }
-
-        return value;
-    }
-
-    /**
-     * Calculate the normal polynomial coefficients given the Newton form.
-     * It also uses nested multiplication but takes O(N^2) time.
-     */
-    protected void computeCoefficients() {
-        final int n = degree();
-
-        coefficients = new double[n+1];
-        for (int i = 0; i <= n; i++) {
-            coefficients[i] = 0.0;
-        }
-
-        coefficients[0] = a[n];
-        for (int i = n-1; i >= 0; i--) {
-            for (int j = n-i; j > 0; j--) {
-                coefficients[j] = coefficients[j-1] - c[i] * coefficients[j];
-            }
-            coefficients[0] = a[i] - c[i] * coefficients[0];
-        }
-
-        coefficientsComputed = true;
-    }
-
-    /**
-     * Verifies that the input arrays are valid.
-     * <p>
-     * The centers must be distinct for interpolation purposes, but not
-     * for general use. Thus it is not verified here.</p>
-     *
-     * @param a the coefficients in Newton form formula
-     * @param c the centers
-     * @throws NullArgumentException if any argument is {@code null}.
-     * @throws NoDataException if any array has zero length.
-     * @throws DimensionMismatchException if the size difference between
-     * {@code a} and {@code c} is not equal to 1.
-     * @see org.apache.commons.math3.analysis.interpolation.DividedDifferenceInterpolator#computeDividedDifference(double[],
-     * double[])
-     */
-    protected static void verifyInputArray(double a[], double c[])
-        throws NullArgumentException, NoDataException, DimensionMismatchException {
-        MathUtils.checkNotNull(a);
-        MathUtils.checkNotNull(c);
-        if (a.length == 0 || c.length == 0) {
-            throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
-        }
-        if (a.length != c.length + 1) {
-            throw new DimensionMismatchException(LocalizedFormats.ARRAY_SIZES_SHOULD_HAVE_DIFFERENCE_1,
-                                                 a.length, c.length);
-        }
-    }
-
-}


Mime
View raw message