commons-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
Subject svn commit: r1536265 - /commons/proper/math/trunk/src/site/xdoc/userguide/stat.xml
Date Mon, 28 Oct 2013 07:10:12 GMT
Author: luc
Date: Mon Oct 28 07:10:12 2013
New Revision: 1536265

Fixed userguide typos.

Thanks to Matt Adereth for the patch.



Modified: commons/proper/math/trunk/src/site/xdoc/userguide/stat.xml
--- commons/proper/math/trunk/src/site/xdoc/userguide/stat.xml (original)
+++ commons/proper/math/trunk/src/site/xdoc/userguide/stat.xml Mon Oct 28 07:10:12 2013
@@ -302,7 +302,7 @@ double totalSampleSum = aggregatedStats.
           Strings, integers, longs and chars are all supported as value types,
           as well as instances of any class that implements <code>Comparable.</code>
           The ordering of values used in computing cumulative frequencies is by
-          default the <i>natural ordering,</i> but this can be overriden by supplying
+          default the <i>natural ordering,</i> but this can be overridden by
supplying a
           <code>Comparator</code> to the constructor. Adding values that are
           comparable to those that have already been added results in an
@@ -385,7 +385,7 @@ System.out.println(f.getCumPct("z"));  /
            <li> When there are fewer than two observations in the model, or when
             there is no variation in the x values (i.e. all x values are the same)
             all statistics return <code>NaN</code>.  At least two observations
-            different x coordinates are requred to estimate a bivariate regression
+            different x coordinates are required to estimate a bivariate regression
            <li> getters for the statistics always compute values based on the current
            set of observations -- i.e., you can get statistics, then add more data
@@ -529,7 +529,7 @@ System.out.println(regression.getInterce
           OLSMultipleLinearRegression</a> provides Ordinary Least Squares Regression,
           <a href="../apidocs/org/apache/commons/math3/stat/regression/GLSMultipleLinearRegression.html">
           GLSMultipleLinearRegression</a> implements Generalized Least Squares.  See
the javadoc for these
-          classes for details on the algorithms and forumlas used.
+          classes for details on the algorithms and formulas used.
            Data for OLS models can be loaded in a single double[] array, consisting of concatenated
rows of data, each containing
@@ -864,7 +864,7 @@ new PearsonsCorrelation().correlation(ra
           assumptions of the parametric t-test procedure, as discussed
           <a href="">
-          <li>p-values returned by t-, chi-square and Anova tests are exact, based
+          <li>p-values returned by t-, chi-square and ANOVA tests are exact, based
            on numerical approximations to the t-, chi-square and F distributions in the
            <code>distributions</code> package. </li>
           <li>The G test implementation provides two p-values:
@@ -893,7 +893,7 @@ double[] observed = {1d, 2d, 3d};
 double mu = 2.5d;
 System.out.println(TestUtils.t(mu, observed));
-          The code above will display the t-statisitic associated with a one-sample
+          The code above will display the t-statistic associated with a one-sample
            t-test comparing the mean of the <code>observed</code> values against
@@ -1026,7 +1026,7 @@ TestUtils.chiSquareTest(expected, observ
           <dd> To test the null hypothesis that <code>observed</code> conforms
-          <code>expected</code> with <code>alpha</code> siginficance
+          <code>expected</code> with <code>alpha</code> significance
           (equiv. <code>100 * (1-alpha)%</code> confidence) where <code>
           0 &lt; alpha &lt; 1 </code> use:
@@ -1058,7 +1058,7 @@ TestUtils.chiSquareTest(counts);
           <dd>To perform a chi-square test of independence with <code>alpha</code>
-          siginficance level (equiv. <code>100 * (1-alpha)%</code> confidence)
+          significance level (equiv. <code>100 * (1-alpha)%</code> confidence)
           where <code>0 &lt; alpha &lt; 1 </code> use:
 TestUtils.chiSquareTest(counts, alpha);
@@ -1070,12 +1070,12 @@ TestUtils.chiSquareTest(counts, alpha);
           <dt><strong>G tests</strong></dt>
           <dd>G tests are an alternative to chi-square tests that are recommended
-          when observed counts are small and / or incidence probabillities for 
+          when observed counts are small and / or incidence probabilities for
           some cells are small. See Ted Dunning's paper,
           <a href="">
           Accurate Methods for the Statistics of Surprise and Coincidence</a> for
           background and an empirical analysis showing now chi-square
-          statistics can be misldeading in the presence of low incidence probabilities.
+          statistics can be misleading in the presence of low incidence probabilities.
           This paper also derives the formulas used in computing G statistics and the
           root log likelihood ratio provided by the <code>GTest</code> class.</dd>
@@ -1116,7 +1116,7 @@ System.out.println(TestUtils.gDataSetsCo
 System.out.println(TestUtils.gTestDataSetsComparison(obs1, obs2)); // p-value
-          <dd>For 2 x 2 designs, the <code>rootLogLikelihoodRaio</code>
+          <dd>For 2 x 2 designs, the <code>rootLogLikelihoodRatio</code>
           computes the
           <a href="">
           signed root log likelihood ratio.</a>  For example, suppose that for two
@@ -1129,7 +1129,7 @@ new GTest().rootLogLikelihoodRatio(5, 19
           and B are independent.
-          <dt><strong>One-Way Anova tests</strong></dt>
+          <dt><strong>One-Way ANOVA tests</strong></dt>
 double[] classA =
@@ -1151,7 +1151,7 @@ classes.add(classC);
 double fStatistic = TestUtils.oneWayAnovaFValue(classes); // F-value
 double pValue = TestUtils.oneWayAnovaPValue(classes);     // P-value
-          To test perform a One-Way Anova test with signficance level set at 0.01
+          To test perform a One-Way ANOVA test with significance level set at 0.01
           (so the test will, assuming assumptions are met, reject the null
           hypothesis incorrectly only about one in 100 times), use

View raw message