Author: tn
Date: Sun May 6 14:33:32 2012
New Revision: 1334644
URL: http://svn.apache.org/viewvc?rev=1334644&view=rev
Log:
minor javadoc fixes for HessenbergTransformer.
Modified:
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/HessenbergTransformer.java
Modified: commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/HessenbergTransformer.java
URL: http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/HessenbergTransformer.java?rev=1334644&r1=1334643&r2=1334644&view=diff
==============================================================================
 commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/HessenbergTransformer.java
(original)
+++ commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/HessenbergTransformer.java
Sun May 6 14:33:32 2012
@@ 23,7 +23,7 @@ import org.apache.commons.math3.util.Pre
/**
* Class transforming a general real matrix to Hessenberg form.
* <p>A m × m matrix A can be written as the product of three matrices: A
= P
 * × H × P<sup>T</sup> with P an unitary matrix and H a Hessenberg
+ * × H × P<sup>T</sup> with P an orthogonal matrix and H
a Hessenberg
* matrix. Both P and H are m × m matrices.</p>
* <p>Transformation to Hessenberg form is often not a goal by itself, but it is an
* intermediate step in more general decomposition algorithms like
@@ 54,10 +54,10 @@ class HessenbergTransformer {
/**
* Build the transformation to Hessenberg form of a general matrix.
*
 * @param matrix matrix to transform.
 * @throws NonSquareMatrixException if the matrix is not square.
+ * @param matrix matrix to transform
+ * @throws NonSquareMatrixException if the matrix is not square
*/
 public HessenbergTransformer(RealMatrix matrix) {
+ public HessenbergTransformer(final RealMatrix matrix) {
if (!matrix.isSquare()) {
throw new NonSquareMatrixException(matrix.getRowDimension(),
matrix.getColumnDimension());
@@ 76,7 +76,7 @@ class HessenbergTransformer {
/**
* Returns the matrix P of the transform.
 * <p>P is an unitary matrix, i.e. its inverse is also its transpose.</p>
+ * <p>P is an orthogonal matrix, i.e. its inverse is also its transpose.</p>
*
* @return the P matrix
*/
@@ 122,7 +122,7 @@ class HessenbergTransformer {
/**
* Returns the transpose of the matrix P of the transform.
 * <p>P is an unitary matrix, i.e. its inverse is also its transpose.</p>
+ * <p>P is an orthogonal matrix, i.e. its inverse is also its transpose.</p>
*
* @return the transpose of the P matrix
*/
