commons-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From t.@apache.org
Subject svn commit: r1239842 - in /commons/proper/math/trunk/src/main/java/org/apache/commons/math/stat/regression: AbstractMultipleLinearRegression.java SimpleRegression.java
Date Thu, 02 Feb 2012 21:02:55 GMT
Author: tn
Date: Thu Feb  2 21:02:54 2012
New Revision: 1239842

URL: http://svn.apache.org/viewvc?rev=1239842&view=rev
Log:
Changed deprecated MathRuntimeException in package stat.regression
JIRA: MATH-459

Modified:
    commons/proper/math/trunk/src/main/java/org/apache/commons/math/stat/regression/AbstractMultipleLinearRegression.java
    commons/proper/math/trunk/src/main/java/org/apache/commons/math/stat/regression/SimpleRegression.java

Modified: commons/proper/math/trunk/src/main/java/org/apache/commons/math/stat/regression/AbstractMultipleLinearRegression.java
URL: http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math/stat/regression/AbstractMultipleLinearRegression.java?rev=1239842&r1=1239841&r2=1239842&view=diff
==============================================================================
--- commons/proper/math/trunk/src/main/java/org/apache/commons/math/stat/regression/AbstractMultipleLinearRegression.java
(original)
+++ commons/proper/math/trunk/src/main/java/org/apache/commons/math/stat/regression/AbstractMultipleLinearRegression.java
Thu Feb  2 21:02:54 2012
@@ -16,8 +16,13 @@
  */
 package org.apache.commons.math.stat.regression;
 
-import org.apache.commons.math.MathRuntimeException;
+import org.apache.commons.math.exception.DimensionMismatchException;
+import org.apache.commons.math.exception.MathIllegalArgumentException;
+import org.apache.commons.math.exception.NoDataException;
+import org.apache.commons.math.exception.NullArgumentException;
+import org.apache.commons.math.exception.NumberIsTooSmallException;
 import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.linear.NonSquareMatrixException;
 import org.apache.commons.math.linear.RealMatrix;
 import org.apache.commons.math.linear.Array2DRowRealMatrix;
 import org.apache.commons.math.linear.RealVector;
@@ -87,20 +92,21 @@ public abstract class AbstractMultipleLi
      * @param data input data array
      * @param nobs number of observations (rows)
      * @param nvars number of independent variables (columns, not counting y)
-     * @throws IllegalArgumentException if the preconditions are not met
+     * @throws NullArgumentException if the data array is null
+     * @throws DimensionMismatchException if the length of the data array is not equal
+     * to <code>nobs * (nvars + 1)</code>
+     * @throws NumberIsTooSmallException if <code>nobs</code> is smaller than
+     * <code>nvars</code>
      */
     public void newSampleData(double[] data, int nobs, int nvars) {
         if (data == null) {
-            throw MathRuntimeException.createIllegalArgumentException(
-                    LocalizedFormats.NULL_NOT_ALLOWED);
+            throw new NullArgumentException();
         }
         if (data.length != nobs * (nvars + 1)) {
-            throw MathRuntimeException.createIllegalArgumentException(
-                    LocalizedFormats.INVALID_REGRESSION_ARRAY, data.length, nobs, nvars);
+            throw new DimensionMismatchException(data.length, nobs * (nvars + 1));
         }
         if (nobs <= nvars) {
-            throw MathRuntimeException.createIllegalArgumentException(
-                    LocalizedFormats.NOT_ENOUGH_DATA_FOR_NUMBER_OF_PREDICTORS);
+            throw new NumberIsTooSmallException(nobs, nvars, false);
         }
         double[] y = new double[nobs];
         final int cols = noIntercept ? nvars: nvars + 1;
@@ -123,16 +129,15 @@ public abstract class AbstractMultipleLi
      * Loads new y sample data, overriding any previous data.
      *
      * @param y the array representing the y sample
-     * @throws IllegalArgumentException if y is null or empty
+     * @throws NullArgumentException if y is null
+     * @throws NoDataException if y is empty
      */
     protected void newYSampleData(double[] y) {
         if (y == null) {
-            throw MathRuntimeException.createIllegalArgumentException(
-                    LocalizedFormats.NULL_NOT_ALLOWED);
+            throw new NullArgumentException();
         }
         if (y.length == 0) {
-            throw MathRuntimeException.createIllegalArgumentException(
-                    LocalizedFormats.NO_DATA);
+            throw new NoDataException();
         }
         this.Y = new ArrayRealVector(y);
     }
@@ -158,16 +163,16 @@ public abstract class AbstractMultipleLi
      * specifying a model including an intercept term.
      * </p>
      * @param x the rectangular array representing the x sample
-     * @throws IllegalArgumentException if x is null, empty or not rectangular
+     * @throws NullArgumentException if x is null
+     * @throws NoDataException if x is empty
+     * @throws DimensionMismatchException if x is not rectangular
      */
     protected void newXSampleData(double[][] x) {
         if (x == null) {
-            throw MathRuntimeException.createIllegalArgumentException(
-                    LocalizedFormats.NULL_NOT_ALLOWED);
+            throw new NullArgumentException();
         }
         if (x.length == 0) {
-            throw MathRuntimeException.createIllegalArgumentException(
-                    LocalizedFormats.NO_DATA);
+            throw new NoDataException();
         }
         if (noIntercept) {
             this.X = new Array2DRowRealMatrix(x, true);
@@ -176,9 +181,7 @@ public abstract class AbstractMultipleLi
             final double[][] xAug = new double[x.length][nVars + 1];
             for (int i = 0; i < x.length; i++) {
                 if (x[i].length != nVars) {
-                    throw MathRuntimeException.createIllegalArgumentException(
-                            LocalizedFormats.DIFFERENT_ROWS_LENGTHS,
-                            x[i].length, nVars);
+                    throw new DimensionMismatchException(x[i].length, nVars);
                 }
                 xAug[i][0] = 1.0d;
                 System.arraycopy(x[i], 0, xAug[i], 1, nVars);
@@ -198,24 +201,27 @@ public abstract class AbstractMultipleLi
      *
      * @param x the [n,k] array representing the x data
      * @param y the [n,1] array representing the y data
-     * @throws IllegalArgumentException if any of the checks fail
-     *
+     * @throws NullArgumentException if {@code x} or {@code y} is null
+     * @throws DimensionMismatchException if {@code x} and {@code y} do not
+     * have the same length
+     * @throws NoDataException if {@code x} or {@code y} are zero-length
+     * @throws MathIllegalArgumentException if the number of rows of {@code x}
+     * is not larger than the number of columns + 1
      */
     protected void validateSampleData(double[][] x, double[] y) {
-        if ((x == null) || (y == null) || (x.length != y.length)) {
-            throw MathRuntimeException.createIllegalArgumentException(
-                  LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE,
-                  (x == null) ? 0 : x.length,
-                  (y == null) ? 0 : y.length);
+        if ((x == null) || (y == null)) {
+            throw new NullArgumentException();
+        }
+        if (x.length != y.length) {
+            throw new DimensionMismatchException(y.length, x.length);
         }
         if (x.length == 0) {  // Must be no y data either
-            throw MathRuntimeException.createIllegalArgumentException(
-                    LocalizedFormats.NO_DATA);
+            throw new NoDataException();
         }
         if (x[0].length + 1 > x.length) {
-            throw MathRuntimeException.createIllegalArgumentException(
-                  LocalizedFormats.NOT_ENOUGH_DATA_FOR_NUMBER_OF_PREDICTORS,
-                  x.length, x[0].length);
+            throw new MathIllegalArgumentException(
+                    LocalizedFormats.NOT_ENOUGH_DATA_FOR_NUMBER_OF_PREDICTORS,
+                    x.length, x[0].length);
         }
     }
 
@@ -225,18 +231,16 @@ public abstract class AbstractMultipleLi
      *
      * @param x the [n,k] array representing the x sample
      * @param covariance the [n,n] array representing the covariance matrix
-     * @throws IllegalArgumentException if the number of rows in x is not equal
-     * to the number of rows in covariance or covariance is not square.
+     * @throws DimensionMismatchException if the number of rows in x is not equal
+     * to the number of rows in covariance
+     * @throws NonSquareMatrixException if the covariance matrix is not square
      */
     protected void validateCovarianceData(double[][] x, double[][] covariance) {
         if (x.length != covariance.length) {
-            throw MathRuntimeException.createIllegalArgumentException(
-                 LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, x.length, covariance.length);
+            throw new DimensionMismatchException(x.length, covariance.length);
         }
         if (covariance.length > 0 && covariance.length != covariance[0].length)
{
-            throw MathRuntimeException.createIllegalArgumentException(
-                  LocalizedFormats.NON_SQUARE_MATRIX,
-                  covariance.length, covariance[0].length);
+            throw new NonSquareMatrixException(covariance.length, covariance[0].length);
         }
     }
 

Modified: commons/proper/math/trunk/src/main/java/org/apache/commons/math/stat/regression/SimpleRegression.java
URL: http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math/stat/regression/SimpleRegression.java?rev=1239842&r1=1239841&r2=1239842&view=diff
==============================================================================
--- commons/proper/math/trunk/src/main/java/org/apache/commons/math/stat/regression/SimpleRegression.java
(original)
+++ commons/proper/math/trunk/src/main/java/org/apache/commons/math/stat/regression/SimpleRegression.java
Thu Feb  2 21:02:54 2012
@@ -18,7 +18,6 @@
 package org.apache.commons.math.stat.regression;
 import java.io.Serializable;
 
-import org.apache.commons.math.MathException;
 import org.apache.commons.math.exception.OutOfRangeException;
 import org.apache.commons.math.distribution.TDistribution;
 import org.apache.commons.math.exception.MathIllegalArgumentException;
@@ -137,7 +136,7 @@ public class SimpleRegression implements
         } else {
             if( hasIntercept ){
                 final double fact1 = 1.0 + n;
-                final double fact2 = (n) / (1.0 + n);
+                final double fact2 = n / (1.0 + n);
                 final double dx = x - xbar;
                 final double dy = y - ybar;
                 sumXX += dx * dx * fact2;
@@ -176,7 +175,7 @@ public class SimpleRegression implements
         if (n > 0) {
             if (hasIntercept) {
                 final double fact1 = n - 1.0;
-                final double fact2 = (n) / (n - 1.0);
+                final double fact2 = n / (n - 1.0);
                 final double dx = x - xbar;
                 final double dy = y - ybar;
                 sumXX -= dx * dx * fact2;
@@ -609,9 +608,9 @@ public class SimpleRegression implements
      * Bivariate Normal Distribution</a>.</p>
      *
      * @return half-width of 95% confidence interval for the slope estimate
-     * @throws MathException if the confidence interval can not be computed.
+     * @throws OutOfRangeException if the confidence interval can not be computed.
      */
-    public double getSlopeConfidenceInterval() throws MathException {
+    public double getSlopeConfidenceInterval() {
         return getSlopeConfidenceInterval(0.05d);
     }
 
@@ -639,15 +638,14 @@ public class SimpleRegression implements
      * <code>Double.NaN</code>.
      * </li>
      * <li><code>(0 < alpha < 1)</code>; otherwise an
-     * <code>IllegalArgumentException</code> is thrown.
+     * <code>OutOfRangeException</code> is thrown.
      * </li></ul></p>
      *
      * @param alpha the desired significance level
      * @return half-width of 95% confidence interval for the slope estimate
-     * @throws MathException if the confidence interval can not be computed.
+     * @throws OutOfRangeException if the confidence interval can not be computed.
      */
-    public double getSlopeConfidenceInterval(final double alpha)
-        throws MathException {
+    public double getSlopeConfidenceInterval(final double alpha) {
         if (alpha >= 1 || alpha <= 0) {
             throw new OutOfRangeException(LocalizedFormats.SIGNIFICANCE_LEVEL,
                                           alpha, 0, 1);
@@ -676,9 +674,10 @@ public class SimpleRegression implements
      * <code>Double.NaN</code>.</p>
      *
      * @return significance level for slope/correlation
-     * @throws MathException if the significance level can not be computed.
+     * @throws org.apache.commons.math.exception.MaxCountExceededException
+     * if the significance level can not be computed.
      */
-    public double getSignificance() throws MathException {
+    public double getSignificance() {
         TDistribution distribution = new TDistribution(n - 2);
         return 2d * (1.0 - distribution.cumulativeProbability(
                     FastMath.abs(getSlope()) / getSlopeStdErr()));
@@ -724,16 +723,16 @@ public class SimpleRegression implements
           if( FastMath.abs( sumXX ) > Precision.SAFE_MIN ){
               final double[] params = new double[]{ getIntercept(), getSlope() };
               final double mse = getMeanSquareError();
-              final double _syy = sumYY + sumY * sumY / (n);
+              final double _syy = sumYY + sumY * sumY / n;
               final double[] vcv = new double[]{
-                mse * (xbar *xbar /sumXX + 1.0 / (n)),
+                mse * (xbar *xbar /sumXX + 1.0 / n),
                 -xbar*mse/sumXX,
                 mse/sumXX };
               return new RegressionResults(
                       params, new double[][]{vcv}, true, n, 2,
                       sumY, _syy, getSumSquaredErrors(),true,false);
           }else{
-              final double[] params = new double[]{ sumY/(n), Double.NaN };
+              final double[] params = new double[]{ sumY / n, Double.NaN };
               //final double mse = getMeanSquareError();
               final double[] vcv = new double[]{
                 ybar / (n - 1.0),
@@ -797,7 +796,7 @@ public class SimpleRegression implements
                 if( variablesToInclude[0] != 1 && variablesToInclude[0] != 0 ){
                      throw new OutOfRangeException( variablesToInclude[0],0,1 );
                 }
-                final double _mean = sumY * sumY / (n);
+                final double _mean = sumY * sumY / n;
                 final double _syy = sumYY + _mean;
                 if( variablesToInclude[0] == 0 ){
                     //just the mean
@@ -809,8 +808,8 @@ public class SimpleRegression implements
 
                 }else if( variablesToInclude[0] == 1){
                     //final double _syy = sumYY + sumY * sumY / ((double) n);
-                    final double _sxx = sumXX + sumX * sumX / (n);
-                    final double _sxy = sumXY + sumX * sumY / (n);
+                    final double _sxx = sumXX + sumX * sumX / n;
+                    final double _sxy = sumXY + sumX * sumY / n;
                     final double _sse = FastMath.max(0d, _syy - _sxy * _sxy / _sxx);
                     final double _mse = _sse/((n-1));
                     if( !Double.isNaN(_sxx) ){



Mime
View raw message