commons-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From l..@apache.org
Subject svn commit: r928081 - /commons/proper/math/trunk/src/main/java/org/apache/commons/math/linear/SingularValueDecomposition.java
Date Fri, 26 Mar 2010 22:36:38 GMT
Author: luc
Date: Fri Mar 26 22:36:38 2010
New Revision: 928081

URL: http://svn.apache.org/viewvc?rev=928081&view=rev
Log:
removed references to compact SVD and truncated SVD

Modified:
    commons/proper/math/trunk/src/main/java/org/apache/commons/math/linear/SingularValueDecomposition.java

Modified: commons/proper/math/trunk/src/main/java/org/apache/commons/math/linear/SingularValueDecomposition.java
URL: http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math/linear/SingularValueDecomposition.java?rev=928081&r1=928080&r2=928081&view=diff
==============================================================================
--- commons/proper/math/trunk/src/main/java/org/apache/commons/math/linear/SingularValueDecomposition.java
(original)
+++ commons/proper/math/trunk/src/main/java/org/apache/commons/math/linear/SingularValueDecomposition.java
Fri Mar 26 22:36:38 2010
@@ -22,18 +22,13 @@ package org.apache.commons.math.linear;
 /**
  * An interface to classes that implement an algorithm to calculate the
  * Singular Value Decomposition of a real matrix.
- * <p>The Singular Value Decomposition of matrix A is a set of three matrices:
- * U, &Sigma; and V such that A = U &times; &Sigma; &times; V<sup>T</sup>.
- * Let A be a m &times; n matrix, then U is a m &times; p orthogonal matrix,
- * &Sigma; is a p &times; p diagonal matrix with positive diagonal elements,
- * V is a n &times; p orthogonal matrix (hence V<sup>T</sup> is a p &times;
n
- * orthogonal matrix). The size p depends on the chosen algorithm:
- * <ul>
- *   <li>for full SVD, p is n,</li>
- *   <li>for compact SVD, p is the rank r of the matrix
- *       (i. e. the number of positive singular values),</li>
- *   <li>for truncated SVD p is min(r, t) where t is user-specified.</li>
- * </ul>
+ * <p>
+ * The Singular Value Decomposition of matrix A is a set of three matrices: U,
+ * &Sigma; and V such that A = U &times; &Sigma; &times; V<sup>T</sup>.
Let A be
+ * a m &times; n matrix, then U is a m &times; p orthogonal matrix, &Sigma; is
a
+ * p &times; p diagonal matrix with positive or null elements, V is a p &times;
+ * n orthogonal matrix (hence V<sup>T</sup> is also orthogonal) where
+ * p=min(m,n).
  * </p>
  * <p>This interface is similar to the class with similar name from the
  * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the



Mime
View raw message