commons-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From l..@apache.org
Subject svn commit: r656814 - in /commons/proper/math/trunk/src: java/org/apache/commons/math/transform/FastCosineTransformer.java site/xdoc/changes.xml
Date Thu, 15 May 2008 19:54:52 GMT
Author: luc
Date: Thu May 15 12:54:52 2008
New Revision: 656814

URL: http://svn.apache.org/viewvc?rev=656814&view=rev
Log:
fixed formula in fast cosine transformer javadoc comments
JIRA: MATH-205

Modified:
    commons/proper/math/trunk/src/java/org/apache/commons/math/transform/FastCosineTransformer.java
    commons/proper/math/trunk/src/site/xdoc/changes.xml

Modified: commons/proper/math/trunk/src/java/org/apache/commons/math/transform/FastCosineTransformer.java
URL: http://svn.apache.org/viewvc/commons/proper/math/trunk/src/java/org/apache/commons/math/transform/FastCosineTransformer.java?rev=656814&r1=656813&r2=656814&view=diff
==============================================================================
--- commons/proper/math/trunk/src/java/org/apache/commons/math/transform/FastCosineTransformer.java
(original)
+++ commons/proper/math/trunk/src/java/org/apache/commons/math/transform/FastCosineTransformer.java
Thu May 15 12:54:52 2008
@@ -53,7 +53,7 @@
      * Transform the given real data set.
      * <p>
      * The formula is $ F_n = (1/2) [f_0 + (-1)^n f_N] +
-     *                        \Sigma_{k=0}^{N-1} f_k \cos(\pi nk/N) $
+     *                        \Sigma_{k=1}^{N-1} f_k \cos(\pi nk/N) $
      * </p>
      * 
      * @param f the real data array to be transformed
@@ -71,7 +71,7 @@
      * Transform the given real function, sampled on the given interval.
      * <p>
      * The formula is $ F_n = (1/2) [f_0 + (-1)^n f_N] +
-     *                        \Sigma_{k=0}^{N-1} f_k \cos(\pi nk/N) $
+     *                        \Sigma_{k=1}^{N-1} f_k \cos(\pi nk/N) $
      * </p>
      * 
      * @param f the function to be sampled and transformed
@@ -94,7 +94,7 @@
      * Transform the given real data set.
      * <p>
      * The formula is $ F_n = \sqrt{1/2N} [f_0 + (-1)^n f_N] +
-     *                        \sqrt{2/N} \Sigma_{k=0}^{N-1} f_k \cos(\pi nk/N) $
+     *                        \sqrt{2/N} \Sigma_{k=1}^{N-1} f_k \cos(\pi nk/N) $
      * </p>
      * 
      * @param f the real data array to be transformed
@@ -113,7 +113,7 @@
      * Transform the given real function, sampled on the given interval.
      * <p>
      * The formula is $ F_n = \sqrt{1/2N} [f_0 + (-1)^n f_N] +
-     *                        \sqrt{2/N} \Sigma_{k=0}^{N-1} f_k \cos(\pi nk/N) $
+     *                        \sqrt{2/N} \Sigma_{k=1}^{N-1} f_k \cos(\pi nk/N) $
      *
      * </p>
      * 
@@ -138,7 +138,7 @@
      * Inversely transform the given real data set.
      * <p>
      * The formula is $ f_k = (1/N) [F_0 + (-1)^k F_N] +
-     *                        (2/N) \Sigma_{n=0}^{N-1} F_n \cos(\pi nk/N) $
+     *                        (2/N) \Sigma_{n=1}^{N-1} F_n \cos(\pi nk/N) $
      * </p>
      * 
      * @param f the real data array to be inversely transformed
@@ -157,7 +157,7 @@
      * Inversely transform the given real function, sampled on the given interval.
      * <p>
      * The formula is $ f_k = (1/N) [F_0 + (-1)^k F_N] +
-     *                        (2/N) \Sigma_{n=0}^{N-1} F_n \cos(\pi nk/N) $
+     *                        (2/N) \Sigma_{n=1}^{N-1} F_n \cos(\pi nk/N) $
      * </p>
      * 
      * @param f the function to be sampled and inversely transformed
@@ -181,7 +181,7 @@
      * Inversely transform the given real data set.
      * <p>
      * The formula is $ f_k = \sqrt{1/2N} [F_0 + (-1)^k F_N] +
-     *                        \sqrt{2/N} \Sigma_{n=0}^{N-1} F_n \cos(\pi nk/N) $
+     *                        \sqrt{2/N} \Sigma_{n=1}^{N-1} F_n \cos(\pi nk/N) $
      * </p>
      * 
      * @param f the real data array to be inversely transformed
@@ -199,7 +199,7 @@
      * Inversely transform the given real function, sampled on the given interval.
      * <p>
      * The formula is $ f_k = \sqrt{1/2N} [F_0 + (-1)^k F_N] +
-     *                        \sqrt{2/N} \Sigma_{n=0}^{N-1} F_n \cos(\pi nk/N) $
+     *                        \sqrt{2/N} \Sigma_{n=1}^{N-1} F_n \cos(\pi nk/N) $
      * </p>
      * 
      * @param f the function to be sampled and inversely transformed

Modified: commons/proper/math/trunk/src/site/xdoc/changes.xml
URL: http://svn.apache.org/viewvc/commons/proper/math/trunk/src/site/xdoc/changes.xml?rev=656814&r1=656813&r2=656814&view=diff
==============================================================================
--- commons/proper/math/trunk/src/site/xdoc/changes.xml (original)
+++ commons/proper/math/trunk/src/site/xdoc/changes.xml Thu May 15 12:54:52 2008
@@ -41,6 +41,9 @@
   <body>
     <release version="1.3-SNAPSHOT" date="TBD"
     description="TBD">
+      <action dev="luc" type="fix" issue="MATH-205" due-to="Roman Werpachowski">
+        Fixed formula in fast cosine transformer javadoc comments.
+      </action>
       <action dev="brentworden" type="fix" issue="MATH-193" due-to="Michael Heuer and
Sebb">
         Javadoc and style fixes.
       </action>



Mime
View raw message