climate-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From prami...@apache.org
Subject svn commit: r1537520 [3/34] - in /incubator/climate/branches/rcmet-2.1.2: ./ src/ src/main/ src/main/python/ src/main/python/bin/ src/main/python/docs/ src/main/python/docs/_static/ src/main/python/docs/_templates/ src/main/python/rcmes/ src/main/pytho...
Date Thu, 31 Oct 2013 14:59:54 GMT
Added: incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/cli/rcmet20_cordexAF.py
URL: http://svn.apache.org/viewvc/incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/cli/rcmet20_cordexAF.py?rev=1537520&view=auto
==============================================================================
--- incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/cli/rcmet20_cordexAF.py (added)
+++ incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/cli/rcmet20_cordexAF.py Thu Oct 31 14:59:48 2013
@@ -0,0 +1,980 @@
+#!/usr/local/bin/python
+
+# 0. Keep both Peter's original and modified libraries
+
+# Python Standard Lib Imports
+import argparse
+import ConfigParser
+import datetime
+import glob
+import os
+import sys
+import json
+
+# 3rd Party Modules
+import numpy as np
+import numpy.ma as ma
+
+# RCMES Imports
+# Appending rcmes via relative path
+#sys.path.append(os.path.abspath('../.'))
+import storage.files_v12
+import storage.rcmed as db
+import toolkit.do_data_prep
+import toolkit.do_metrics_20
+import toolkit.process as process
+from classes import Settings, Model, BoundingBox, SubRegion, GridBox
+
+parser = argparse.ArgumentParser(description='Regional Climate Model Evaluation Toolkit.  Use -h for help and options')
+parser.add_argument('-c', '--config', dest='CONFIG', help='Path to an evaluation configuration file')
+args = parser.parse_args()
+
+
+def getSettings(settings):
+    """
+    This function will collect 2 parameters from the user about the RCMET run they have started.
+    
+    Input::
+        settings - Empty Python Dictionary they will be used to store the user supplied inputs
+        
+    Output::
+        None - The user inputs will be added to the supplied dictionary.
+    """
+    settings['workDir'] = os.path.abspath(raw_input('Please enter workDir:\n> '))
+    if os.path.isdir(settings['workDir']):
+        pass
+    else:
+        makeDirectory(settings['workDir'])
+    
+    settings['cacheDir'] = os.path.abspath(raw_input('Please enter cacheDir:\n> '))
+    if os.path.isdir(settings['cacheDir']):
+        pass
+    else:
+        makeDirectory(settings['cacheDir'])    
+
+def setSettings(settings, config):
+    """
+    This function is used to set the values within the 'SETTINGS' dictionary when a user provides an external
+    configuration file.
+    
+    Input::
+        settings - Python Dictionary object that will collect the key : value pairs
+        config - A configparse object that contains the external config values
+    
+    Output::
+        None - The settings dictionary will be updated in place.
+    """
+    pass
+
+def makeDirectory(directory):
+    print "%s doesn't exist.  Trying to create it now." % directory
+    try:
+        os.mkdir(directory)
+    except OSError:
+        print "This program cannot create dir: %s due to permission issues." % directory
+        sys.exit()
+
+def rcmet_cordexAF():
+    """
+     Command Line User interface for RCMET.
+     Collects user options then runs RCMET to perform processing.
+     Duplicates job of GUI.
+     Peter Lean   March 2011
+     
+     Jul 2, 2011
+     Modified to process multiple models
+     Follow the logical variable "GUI" for interactive operations
+     
+     July 6, 2012: Jinwon Kim
+     * This version works with do_rcmes_processing_sub_v12cmip5multi.py *
+     Re-gridded data output options include both binary and netCDF.
+      Interpolation of both model and obs data onto a user-define grid system has been completed.
+      Allow generic treatment of both multiple model and observation data
+       * longitudes/latitudes are defined for individual datasets
+       * the metadata for observations will utilized Cameron's updates
+      Still works for the global observation coverage scheme (may involve missing/bad values)
+     * this version requires that all obs data are to be defined at the same temporal grid (monthly, daily)
+     * this version requires that all mdl data are to be defined at the same temporal grid (monthly, daily)
+    """
+    print 'Start RCMET'
+
+
+    """  COMMENTED OUT UN-USED CODE
+    # Specify GUI or nonGUI version [True/False]
+    GUI = False
+    user_input = int(raw_input('Enter interactive/specified run: [0/1]: \n> '))
+    if user_input == 0:
+        GUI = True
+
+    # 1.   Prescribe the directories and variable names for processing
+    #dir_rcmet = '/nas/share3-wf/jinwonki/rcmet'   # The path to the python script to process the cordex-AF data
+    if GUI: 
+        workdir = os.path.abspath(raw_input('Please enter workdir:\n> '))
+        cachedir = os.path.abspath(raw_input('Please enter cachedir:\n> '))
+        mdlDataDir = os.path.abspath(raw_input('Enter the model data directory (e.g., ~/data/cordex-af):\n> '))
+        modelVarName = raw_input('Enter the model variable name from above:\n> ')     # Input model variable name
+        modelLatVarName = raw_input('Enter the Latitude variable name:\n> ')     # Input model variable name
+        modelLonVarName = raw_input('Enter the Longitude variable name:\n> ')     # Input model variable name
+        modelTimeVarName = raw_input('Enter the Time variable name:\n> ')     # Input model variable name
+        mdlTimeStep = raw_input('Enter the model Time step (e.g., daily, monthly):\n> ')     # Input model variable name
+    else:
+        modelVarName = 'pr'
+        #modelVarName='tas'
+        #modelVarName='tasmax'
+        #modelVarName='tasmin'
+        #modelVarName='clt'
+        mdlTimeStep = 'monthly'
+        modelLatVarName = 'lat'
+        modelLonVarName = 'lon'
+        modelTimeVarName = 'time' # mdl var names for lat, long, & time coords
+        workdir = '../cases/cordex-af/wrk2'
+        cachedir = '../cases/cordex-af/cache'
+        mdlDataDir = '/nas/share4-cf/jinwonki/data/cordex-af'
+    if modelVarName == 'pr':
+        precipFlag = True
+    else:
+        precipFlag = False
+    """
+    # 2.   Metadata for the RCMED database
+    
+    # TODO:  WORK OUT THE RCMED PARAMETERS API USAGE - Prolly need to move this into a PARAMETERS Object
+    """  COMMENTED OUT HARDCODED VALUES
+    try:
+        parameters = db.getParams()
+    except Exception:
+        sys.exit()
+    
+    datasets = [parameter['longname'] for parameter in parameters]
+    
+    #   NOTE: the list must be updated whenever a new dataset is added to RCMED (current as of 11/22/2011)
+    db_datasets = ['TRMM', 'ERA-Interim', 'AIRS', 'MODIS', 'URD', 'CRU3.0', 'CRU3.1']
+    db_dataset_ids = [3, 1, 2, 5, 4, 6, 10]
+    db_dataset_startTimes = [datetime.datetime(1998, 1, 1, 0, 0, 0, 0), datetime.datetime(1989, 01, 01, 0, 0, 0, 0), datetime.datetime(2002, 8, 31, 0, 0, 0, 0), \
+                             datetime.datetime(2000, 2, 24, 0, 0, 0, 0), datetime.datetime(1948, 1, 1, 0, 0, 0, 0), datetime.datetime(1901, 1, 1, 0, 0, 0, 0), \
+                             datetime.datetime(1901, 1, 1, 0, 0, 0, 0)]
+    db_dataset_endTimes = [datetime.datetime(2010, 1, 1, 0, 0, 0, 0), datetime.datetime(2009, 12, 31, 0, 0, 0, 0), datetime.datetime(2010, 1, 1, 0, 0, 0, 0), \
+                           datetime.datetime(2010, 5, 30, 0, 0, 0, 0), datetime.datetime(2010, 1, 1, 0, 0, 0, 0), datetime.datetime(2006, 12, 1, 0, 0, 0, 0), \
+                           datetime.datetime(2009, 12, 31, 0, 0, 0, 0)] #adjusted the last end_time to 31-DEC-2009 instead of 01-DEC-2009
+    db_parameters = [['pr_day', 'pr_mon'], ['T2m', 'Tdew2m'], ['T2m'], ['cldFrac'], ['pr_day'], ['T2m', 'T2max', 'T2min', 'pr'], ['pr', 'T2m', 'T2max', 'T2min', 'cldFrac']]
+    db_parameter_ids = [[14, 36], [12, 13], [15], [31], [30], [33, 34, 35, 32], [37, 38, 39, 41, 42]]
+    
+     # Assign the obs dataset & and its attributes from the RCNMED dataset/parameter list above
+    idObsDat = []
+    idObsDatPara = []
+    obsTimeStep = []
+    
+    if GUI:
+        for n in np.arange(len(db_datasets)):
+            print n, db_datasets[n]
+
+        numOBSs = int(raw_input('Enter the number of observed datasets to be utilized:\n> '))
+        # assign the obs dataset id and the parameter id defined within the dataset into the lists "idObsDat" & "idObsDatPara".
+        for m in np.arange(numOBSs):
+            idObsDat.append(input=int(raw_input('Enter the observed dataset number from above:\n> ')))
+            for l in np.arange(len(db_parameters[input])):
+                print l, db_parameters[idObsDat][l]
+        
+            idObsDatPara.append(int(raw_input('Enter the observed data parameter from above:\n> ')))
+    else:
+        numOBSs = 2
+        idObsDat = [0, 6]
+        idObsDatPara = [1, 0]
+        obsTimeStep = ['monthly', 'monthly']
+        #numOBSs=1; idObsDat=[6]; idObsDatPara=[0]; obsTimeStep=['monthly']
+        #numOBSs=1; idObsDat=[5]; idObsDatPara=[3]; obsTimeStep=['monthly']
+        #numOBSs=1; idObsDat=[0]; idObsDatPara=[1]; obsTimeStep=['monthly']
+        ##### Data table to be replace with the use of metadata #################################
+        #idObsDat=0; idObsDatPara=0; obsTimeStep='monthly'                 # TRMM daily
+        #idObsDat=0; idObsDatPara=1; obsTimeStep='monthly'                 # TRMM monthly
+        #idObsDat=3; idObsDatPara=0; obsTimeStep='monthly'                 # MODIS cloud fraction
+        #idObsDat=5; idObsDatPara=0; obsTimeStep='monthly'                 # CRU3.0 - t2bar
+        #idObsDat=5; idObsDatPara=1; obsTimeStep='monthly'                 # CRU3.0 - t2max
+        #idObsDat=5; idObsDatPara=2; obsTimeStep='monthly'                 # CRU3.0 - t2min
+        #idObsDat=5; idObsDatPara=3; obsTimeStep='monthly'                 # CRU3.0 - pr
+        #idObsDat=6; idObsDatPara=0; obsTimeStep='monthly'                 # CRU3.1 - pr
+        #idObsDat=6; idObsDatPara=1; obsTimeStep='monthly'                 # CRU3.1 - t2bar
+        #idObsDat=6; idObsDatPara=2; obsTimeStep='monthly'                 # CRU3.1 - t2max
+        #idObsDat=6; idObsDatPara=3; obsTimeStep='monthly'                 # CRU3.1 - t2min
+        #idObsDat=6; idObsDatPara=4; obsTimeStep='monthly'                 # CRU3.1 - cloud fraction
+        ##### Data table to be replace with the use of metadata #################################
+    # assign observed data info: all variables are 'list'
+    obsDataset = []
+    data_type = []
+    obsDatasetId = []
+    obsParameterId = []
+    obsStartTime = []
+    obsEndTime = []
+    obsList = []
+
+    for m in np.arange(numOBSs):
+        obsDataset.append(db_datasets[idObsDat[m]])# obsDataset=db_datasets[idObsDat[m]]
+        data_type.append(db_parameters[idObsDat[m]][idObsDatPara[m]])# data_type = db_parameters[idObsDat[m]][idObsDatPara[m]]
+        obsDatasetId.append(db_dataset_ids[idObsDat[m]])# obsDatasetId = db_dataset_ids[idObsDat[m]]
+        obsParameterId.append(db_parameter_ids[idObsDat[m]][idObsDatPara[m]])# obsParameterId = db_parameter_ids[idObsDat[m]][idObsDatPara[m]]
+        obsStartTime.append(db_dataset_startTimes[idObsDat[m]])# obsStartTime = db_dataset_startTimes[idObsDat[m]]
+        obsEndTime.append(db_dataset_endTimes[idObsDat[m]])# obsEndTime = db_dataset_endTimes[idObsDat[m]]
+        obsList.append(db_datasets[idObsDat[m]] + '_' + db_parameters[idObsDat[m]][idObsDatPara[m]])
+                        TRMM_pr_mon
+                        CRU3.1_pr
+        
+    print'obsDatasetId,obsParameterId,obsList,obsStartTime,obsEndTime= ', obsDatasetId, obsParameterId, obsStartTime, obsEndTime# return -1
+    obsStartTmax = max(obsStartTime)
+    obsEndTmin = min(obsEndTime)
+    
+    ###################################################################
+    # 3.   Load model data and assign model-related processing info
+    ###################################################################
+    # 3a:  construct the list of model data files
+    if GUI:
+        FileList_instructions = raw_input('Enter model file (specify multiple files using wildcard: e.g., *pr.nc):\n> ')
+    else:
+        FileList_instructions = '*' + modelVarName + '.nc'
+        #FileList_instructions = '*' + 'ARPEGE51' + '*' + modelVarName + '.nc'
+    FileList_instructions = mdlDataDir + '/' + FileList_instructions
+    FileList = glob.glob(FileList_instructions)
+    n_infiles = len(FileList)
+    #print FileList_instructions,n_infiles,FileList
+
+    # 3b: (1) Attempt to auto-detect latitude and longitude variable names (removed in rcmes.files_v12.find_latlon_var_from_file)
+    #     (2) Find lat,lon limits from first file in FileList              (active)
+    file_type = 'nc'
+    laName = modelLatVarName
+    loName = modelLonVarName
+    latMin = ma.zeros(n_infiles)
+    latMax = ma.zeros(n_infiles)
+    lonMin = ma.zeros(n_infiles)
+    lonMax = ma.zeros(n_infiles)
+    
+    for n in np.arange(n_infiles):
+        ifile = FileList[n]
+        status, latMin[n], latMax[n], lonMin[n], lonMax[n] = storage.files_v12.find_latlon_var_from_file(ifile, file_type, laName, loName)
+        print 'Min/Max Lon & Lat: ', n, lonMin[n], lonMax[n], latMin[n], latMax[n]
+    if GUI:
+        instruction = raw_input('Do the long/lat ranges all model files match? (y/n)\n> ')
+
+    else:
+        instruction = 'y'
+    print instruction
+    if instruction != 'y':
+        print 'Long & lat ranges of model data files do not match: EXIT'; return -1
+    latMin = latMin[0]
+    latMax = latMax[0]
+    lonMin = lonMin[0]
+    lonMax = lonMax[0]
+    print 'Min/Max Lon & Lat:', lonMin, lonMax, latMin, latMax
+    print ''
+
+
+
+    # TODO:  Work out how to handle when model files have different ranges for Latitude, Longitude or Time
+
+    # 3c: Decode model times into a python datetime object (removed in rcmes.process_v12.decode_model_times; var name is hardwired in 1.)
+    #     Check the length of model data period. Retain only the files that contain the entire 20yr records
+    #     Also specify the model data time step. Not used for now, but will be used to control the selection of the obs data (4) & temporal regridding (7).
+    # Note July 25, 2011: model selection for analysis is moved and is combined with the determination of the evaluation period
+    timeName = modelTimeVarName
+    mdldataTimeStep = 'monthly'
+    file_type = 'nc'
+    n_mos = ma.zeros(n_infiles)
+    newFileList = []
+    mdlStartT = []
+    mdlEndT = []
+    mdlName = []
+    k = 0
+
+    for n in np.arange(n_infiles):
+        # extract model names for identification
+        # Provided that model results are named as 
+        # mdlDataDir/projectName_mdlName_(some other information)_variableName.nc
+        ifile = FileList[n]
+        name = ifile[len(mdlDataDir)+1:len(mdlDataDir)+20]  # +1 excludes '/'
+        name_wo_project = name[name.find('_')+1:]   # file name without its project name
+        
+        mdlName.append(name_wo_project[0:name_wo_project.find('_')]) # print'model name= ',name[0:name.find('_')]
+        # extract the temporal coverage of each model data file and the related time parameters
+        
+        modelTimes = process.getModelTimes(ifile, timeName)
+        
+        # NOW WE HAVE MODEL TIMES...WHAT ARE THEY USED FOR???
+        
+        # THIS APPEARS TO BE A MONTHLY SPECIFIC IMPLEMENTATAION DETAIL
+        n_mos[n] = len(modelTimes)
+        
+        # PARSE OUT THE Min(YEAR and MONTH) and Max(YEAR and MONTH)
+        # Could this merely be a MinTime and MaxTime so essentially a TimeRange?
+        
+        
+        y0 = min(modelTimes).strftime("%Y")
+        m0 = min(modelTimes).strftime("%m")
+        y1 = max(modelTimes).strftime("%Y")
+        m1 = max(modelTimes).strftime("%m")
+        
+        
+        
+        if mdlTimeStep == 'monthly':
+            d0 = 1
+            d1 = 1
+        else:
+            d0 = min(modelTimes).strftime("%d")
+            d1 = max(modelTimes).strftime("%d")
+            
+        minMdlT = datetime.datetime(int(y0), int(m0), int(d0), 0, 0, 0, 0)
+        maxMdlT = datetime.datetime(int(y1), int(m1), int(d1), 0, 0, 0, 0)
+        
+        # AFTER all the Datetime to string to int and back to datetime, we are left with the ModelTimeStart and ModelTimeEnd
+        mdlStartT.append(minMdlT)
+        mdlEndT.append(maxMdlT)
+
+    print 'Mdl Times decoded: n= ', n, ' Name: ', mdlName[n], ' length= ', len(modelTimes), \
+          ' 1st mdl time: ', mdlStartT[n].strftime("%Y/%m"), ' Lst mdl time: ', mdlEndT[n].strftime("%Y/%m")
+
+    #print 'mdlStartT'; print mdlStartT; print 'mdlEndT'; print mdlEndT
+    #print max(mdlStartT),min(mdlEndT)
+    
+    # get the list of models to be evaluated and the period of evaluation
+    # July 25, 2011: the selection of model and evaluation period are modified:
+    #   1. Default: If otherwise specified, select the longest overlapping period and exclude the model outputs that do not cover the default period
+    #   2. MaxMdl : Select the max number of models for evaluation. The evaluation period may be reduced
+    #   3. PrdSpc : The evaluation period is specified and the only data files that cover the specified period are included for evaluation.
+    #   4. Note that the analysis period is limited to the full annual cycle, i.e., starts in Jan and ends in Dec.
+    # 5:   Select the period for evaluation/analysis (defaults to overlapping times between model and obs)
+    # 5a: First calculate the overlapping period
+    startTime = []
+    endTime = []
+    
+    for n in np.arange(n_infiles):
+        startTime.append(max(mdlStartT[n], obsStartTmax))
+        endTime.append(min(mdlEndT[n], obsEndTmin))
+        
+        #print n,mdlStartT[n],mdlEndT[n],startTime[n],endTime[n]
+        yy = int(startTime[n].strftime("%Y"))
+        mm = int(startTime[n].strftime("%m"))
+        
+        if mm != 1:
+            yy = yy + 1
+            mm = 1
+
+        startTime[n] = datetime.datetime(int(yy), int(mm), 1, 0, 0, 0, 0)
+        yy = int(endTime[n].strftime("%Y"))
+        mm = int(endTime[n].strftime("%m"))
+        
+        if mm != 12:
+            yy = yy - 1
+            mm = 12
+        
+        endTime[n] = datetime.datetime(int(yy), int(mm), 1, 0, 0, 0, 0)
+        print mdlName[n], ' common start/end time: ', startTime[n], endTime[n]
+
+    maxAnlT0 = min(startTime)
+    maxAnlT1 = max(endTime)
+    minAnlT0 = max(startTime)
+    minAnlT1 = min(endTime)
+    #print startTime; print endTime
+    print 'max common period: ', maxAnlT0, '-', maxAnlT1; print 'min common period: ', minAnlT0, '-', minAnlT1
+    
+    # 5b: Determine the evaluation period and the models to be evaluated
+    if GUI:
+        print 'Select evaluation period. Depending on the selected period, the number of models may vary. See above common start/end times'
+        print 'Enter: 1 for max common period, 2 for min common period, 3 for your own choice: Note that all period starts from Jan and end at Dec'
+        choice = int(raw_input('Enter your choice from above [1,2,3] \n> '))
+    else:
+        choice = 3
+    if choice == 1:
+        startTime = maxAnlT0
+        endTime = maxAnlT1
+        print 'Maximum(model,obs) period is selected. Some models will be dropped from evaluation'
+        
+    if choice == 2:
+        startTime = minAnlT0
+        endTime = minAnlT1
+        print 'Minimum(model,obs) period is selected. All models will be evaluated except there are problems'
+      
+    if choice == 3:
+        startYear = int(raw_input('Enter start year YYYY \n'))
+        endYear = int(raw_input('Enter end year YYYY \n'))
+        
+        if startYear < int(maxAnlT0.strftime("%Y")):
+            print 'Your start year is earlier than the available data period: EXIT; return -1'
+            
+        if endYear > int(maxAnlT1.strftime("%Y")):
+            print 'Your end year is later than the available data period: EXIT; return -1'
+            
+        # CGOODALE - Updating the Static endTime to be 31-DEC
+        startTime = datetime.datetime(startYear, 1, 1, 0, 0)
+        endTime = datetime.datetime(endYear, 12, 31, 0, 0)
+        print 'Evaluation will be performed for a user-selected period'
+        
+    print 'Final: startTime/endTime: ', startTime, '/', endTime
+
+
+    # select model data for analysis and analysis period
+    k = 0
+    newFileList = []
+    name = []
+    print 'n_infiles= ', n_infiles
+    for n in np.arange(n_infiles): 
+        ifile = FileList[n]
+        nMos = n_mos[n]
+        print mdlName[n], n_mos[n], mdlStartT[n], startTime, mdlEndT[n], endTime
+        
+        # LOOP OVER THE MODEL START TIMES AND DETERMINE WHICH TO KEEP based on user entered Start/End Years
+        
+        if mdlStartT[n] <= startTime and mdlEndT[n] >= endTime:
+            newFileList.append(ifile)
+            name.append(mdlName[n])
+            k += 1
+    FileList = newFileList
+    newFileList = 0
+    FileList.sort()
+    print 'the number of select files = ', len(FileList)
+    mdlName = name
+    numMDLs = len(FileList)
+    
+    for n in np.arange(numMDLs):
+        print n, mdlName[n], FileList[n]
+    
+    # 6:   Select spatial regridding options
+    # PULLED DOWN INTO THE MAIN Loop
+    regridOption = 2      # for multi-model cases, this option can be selected only when all model data are on the same grid system.
+    naLons = 1
+    naLats = 1
+    dLon = 0.5
+    dLat = 0.5  # these are dummies for regridOption = 1 & 2
+    
+    if GUI:
+        print 'Spatial regridding options: '
+        print '[0] Use Observational grid'
+        print '[1] Use Model grid'
+        print '[2] Define new regular lat/lon grid to use'
+        regridOption = int(raw_input('Please make a selection from above:\n> '))
+        
+    if np.logical_or(regridOption > 2, regridOption < 0):
+        print 'Error: Non-existing spatial regridding option. EXIT'; return -1, -1, -1, -1
+    # specify the regridding option
+    if regridOption == 0: 
+        regridOption = 'obs'
+    if regridOption == 1:
+        regridOption = 'model'
+    # If requested, get new grid parameters: min/max long & lat values and their uniform increments; the # of longs and lats
+    
+    if regridOption == 2:
+        regridOption = 'regular'
+        dLon = 0.44
+        dLat = 0.44
+        lonMin = -24.64
+        lonMax = 60.28
+        latMin = -45.76
+        latMax = 42.24
+        naLons = int((lonMax - lonMin + 1.e-5 * dLon) / dLon) + 1
+        naLats = int((latMax - latMin + 1.e-5 * dLat) / dLat) + 1
+
+    if GUI:
+        if regridOption == 2:
+            regridOption = 'regular'
+            lonMin = float(raw_input('Please enter the longitude at the left edge of the domain:\n> '))
+            lonMax = float(raw_input('Please enter the longitude at the right edge of the domain:\n> '))
+            latMin = float(raw_input('Please enter the latitude at the lower edge of the domain:\n> '))
+            latMax = float(raw_input('Please enter the latitude at the upper edge of the domain:\n> '))
+            dLon = float(raw_input('Please enter the longitude spacing (in degrees) e.g. 0.5:\n> '))
+            dLat = float(raw_input('Please enter the latitude spacing (in degrees) e.g. 0.5:\n> '))
+            nLons = int((lonMax - lonMin + 1.e-5 * dLon) / dLon) + 1
+            nLats = int((latMax - latMin + 1.e-5 * dLat) / dLat) + 1
+            
+    print 'Spatial re-grid data on the ', regridOption, ' grid'
+
+
+    # 7:   Temporal regridding: Bring the model and obs data to the same temporal grid for comparison
+    #      (e.g., daily vs. daily; monthly vs. monthly)
+    timeRegridOption = 2
+    if GUI == True:
+        print 'Temporal regridding options: i.e. averaging from daily data -> monthly data'
+        print 'The time averaging will be performed on both model and observational data.'
+        print '[0] Calculate time mean for full period.'
+        print '[1] Calculate annual means'
+        print '[2] Calculate monthly means'
+        print '[3] Calculate daily means (from sub-daily data)'
+        timeRegridOption = int(raw_input('Please make a selection from above:\n> '))
+    # non-existing option is selected
+    if np.logical_or(timeRegridOption > 3, timeRegridOption < 0):
+        print 'Error: ', timeRegridOption, ' is a non-existing temporal regridding option. EXIT'; return -1, -1, -1, -1
+    # specify the temporal regridding option
+    if timeRegridOption == 0: 
+        timeRegridOption = 'mean over all times: i.e., annual-mean climatology'
+        
+    if timeRegridOption == 1: 
+        timeRegridOption = 'annual'
+        
+    if timeRegridOption == 2: 
+        timeRegridOption = 'monthly'
+        
+    if timeRegridOption == 3: 
+        timeRegridOption = 'daily'
+        
+    print 'timeRegridOption= ', timeRegridOption
+    
+
+    #******************************************************************************************************************
+    # 8:   Select whether to perform Area-Averaging over masked region
+    #      If choice != 'y', the analysis/evaluation will be performed at every grid points within the analysis domain
+    #******************************************************************************************************************
+    numSubRgn = 21
+    subRgnLon0 = ma.zeros(numSubRgn)
+    subRgnLon1 = ma.zeros(numSubRgn)
+    subRgnLat0 = ma.zeros(numSubRgn)
+    subRgnLat1 = ma.zeros(numSubRgn)
+    # 21 rgns: SMHI11 + W+C+E. Mediterrenean (JK) + 3 in UCT (Western Sahara, Somalia, Madagascar) + 4 in Mideast
+    subRgnLon0 = [-10.0, 0.0, 10.0, 20.0, -19.3, 15.0, -10.0, -10.0, 33.9, 44.2, 10.0, 10.0, 30.0, 13.6, 13.6, 20.0, 43.2, 33.0, 45.0, 43.0, 50.0]   # HYB 21 rgns
+    subRgnLon1 = [  0.0, 10.0, 20.0, 33.0, -10.2, 30.0, 10.0, 10.0, 40.0, 51.8, 25.0, 25.0, 40.0, 20.0, 20.0, 35.7, 50.3, 40.0, 50.0, 50.0, 58.0]   # HYB 21 rgns
+    subRgnLat0 = [ 29.0, 29.0, 25.0, 25.0, 12.0, 15.0, 7.3, 5.0, 6.9, 2.2, 0.0, -10.0, -15.0, -27.9, -35.0, -35.0, -25.8, 25.0, 28.0, 13.0, 20.0]   # HYB 21 rgns
+    subRgnLat1 = [ 36.5, 37.5, 32.5, 32.5, 20.0, 25.0, 15.0, 7.3, 15.0, 11.8, 10.0, 0.0, 0.0, -21.4, -27.9, -21.4, -11.7, 35.0, 35.0, 20.0, 27.5]   # HYB 21 rgns
+    subRgnName = ['R01', 'R02', 'R03', 'R04', 'R05', 'R06', 'R07', 'R08', 'R09', 'R10', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21']   # HYB 21 rgns
+    print subRgnName
+
+    maskOption = 0
+    maskLonMin = 0
+    maskLonMax = 0
+    maskLatMin = 0
+    maskLatMax = 0
+    rgnSelect = 0
+    
+    choice = 'y'
+
+    if GUI:
+        choice = raw_input('Do you want to calculate area averages over a masked region of interest? [y/n]\n> ').lower()
+        if choice == 'y':
+            maskOption = 1
+            #print '[0] Load spatial mask from file.'
+            #print '[1] Enter regular lat/lon box to use as mask.'
+            #print '[2] Use pre-determined mask ranges'
+            #try:
+            #  maskInputChoice = int(raw_input('Please make a selection from above:\n> '))
+            #if maskInputChoice==0:    # Read mask from file
+            #  maskFile = raw_input('Please enter the file containing the mask data (including full path):\n> ') 
+            #  maskFileVar = raw_input('Please enter variable name of the mask data in the file:\n> ')
+            #if maskInputChoice==1:
+            #  maskLonMin = float(raw_input('Please enter the longitude at the left edge of the mask region:\n> '))
+            #  maskLonMax = float(raw_input('Please enter the longitude at the right edge of the mask region:\n> '))
+            #  maskLatMin = float(raw_input('Please enter the latitude at the lower edge of the mask region:\n> '))
+            #  maskLatMax = float(raw_input('Please enter the latitude at the upper edge of the mask region:\n> '))
+    ## maskInputChoice = 0/1: Load spatial mask from file/specifify with long,lat range'
+
+    
+    if choice == 'y':
+        maskOption = 1
+        maskInputChoice = 1
+        if maskInputChoice == 1:
+            for n in np.arange(numSubRgn):
+                print 'Subregion [', n, '] ', subRgnName[n], subRgnLon0[n], 'E - ', subRgnLon1[n], ' E: ', subRgnLat0[n], 'N - ', subRgnLat1[n], 'N'
+            rgnSelect = 3
+            if GUI:
+                rgnSelect = raw_input('Select the region for which regional-mean timeseries are to be analyzed\n')
+
+        #if maskInputChoice==0:    # Read mask from file
+        #   maskFile = 'maskFileNameTBD'
+        #   maskFileVar = 'maskFileVarTBD'
+    
+    # 9.   Select properties to evaluate/analyze
+    # old Section 8: Select: calculate seasonal cycle composites
+    
+    seasonalCycleOption = 'y'
+    if GUI:
+        seasonalCycleOption = raw_input('Composite the data to show seasonal cycles? [y/n]\n> ').lower()
+    if seasonalCycleOption == 'y':
+        seasonalCycleOption = 1
+    else:
+        seasonalCycleOption = 0
+
+      
+    # Section 9: Select Peformance Metric
+    choice = 0
+    if GUI:
+        print 'Metric options'
+        print '[0] Bias: mean bias across full time range'
+        print '[1] Mean Absolute Error: across full time range'
+        print '[2] Difference: calculated at each time unit'
+        print '[3] Anomaly Correlation> '
+        print '[4] Pattern Correlation> '
+        print '[5] TODO: Probability Distribution Function similarity score'
+        print '[6] RMS error'
+        choice = int(raw_input('Please make a selection from the options above\n> '))
+    # assign the metrics to be calculated
+    if choice == 0: 
+        metricOption = 'bias'
+        
+    if choice == 1: 
+        metricOption = 'mae'
+        
+    if choice == 2:
+        metricOption = 'difference'
+    
+    if choice == 3:
+        metricOption = 'acc'
+    
+    if choice == 4:
+        metricOption = 'patcor'
+    
+    if choice == 5:
+        metricOption = 'pdf'
+    
+    if choice == 6:
+        metricOption = 'rms'
+
+
+    #  Select output option
+    FoutOption = 0
+    if GUI:
+        choice = raw_input('Option for output files of obs/model data: Enter no/bn/nc\n> ').lower()
+        if choice == 'no':
+            FoutOption = 0
+        if choice == 'bn':
+            FoutOption = 1
+        if choice == 'nc':
+            FoutOption = 2
+
+    ###################################################################################################
+    # Section 11: Select Plot Options
+    ###################################################################################################
+
+
+    modifyPlotOptions = 'no'
+    plotTitle = modelVarName + '_'
+    plotFilenameStub = modelVarName + '_'
+    
+    if GUI:
+        modifyPlotOptions = raw_input('Do you want to modify the default plot options? [y/n]\n> ').lower()
+        
+    if modifyPlotOptions == 'y':
+        plotTitle = raw_input('Enter the plot title:\n> ')
+        plotFilenameStub = raw_input('Enter the filename stub to use, without suffix e.g. files will be named <YOUR CHOICE>.png\n> ')
+
+
+
+    print'------------------------------'
+    print'End of preprocessor: Run RCMET'
+    print'------------------------------'
+
+    """
+
+
+    # Section 13: Run RCMET, passing in all of the user options
+
+    # TODO: **Cameron** Add an option to write a file that includes all options selected before this step to help repeating the same analysis.
+    # read-in and regrid both obs and model data onto a common grid system (temporally & spatially).
+    # the data are passed to compute metrics and plotting
+    # numOBSs & numMDLs will be increased by +1 for multiple obs & mdls, respectively, to accomodate obs and model ensembles
+    # nT: the number of time steps in the data
+    
+    
+#    numOBS, numMDL, nT, ngrdY, ngrdX, Times, obsData, mdlData, obsRgn, mdlRgn, obsList, mdlList = toolkit.do_data_prep.prep_data(\
+#         cachedir, workdir, \
+#         obsList, obsDatasetId, obsParameterId, \
+#         startTime, endTime, \
+#         latMin, latMax, lonMin, lonMax, dLat, dLon, naLats, naLons, \
+#         FileList, \
+#         numSubRgn, subRgnLon0, subRgnLon1, subRgnLat0, subRgnLat1, subRgnName, \
+#         modelVarName, precipFlag, modelTimeVarName, modelLatVarName, modelLonVarName, \
+#         regridOption, timeRegridOption, maskOption, FoutOption)
+
+    """
+    Parameter to Object Mapping
+    cachedir = settings.cacheDir
+    workdir = settings.cacheDir
+    obsList = obsDatasetList.each['longname']
+    """
+
+    numOBS, numMDL, nT, ngrdY, ngrdX, Times, obsData, mdlData, obsRgn, mdlRgn, obsList, mdlList = toolkit.do_data_prep(\
+          settings, obsDatasetList, gridBox, models, subRegionTuple)
+    
+    """
+    print 'Input and regridding of both obs and model data are completed. now move to metrics calculations'
+    # Input and regridding of both obs and model data are completed. now move to metrics calculations
+
+    print '-----------------------------------------------'
+    print 'mdlID  numMOs  mdlStartTime mdlEndTime fileName'
+    print '-----------------------------------------------'
+    
+    """
+    mdlSelect = numMDL - 1                      # numMDL-1 corresponds to the model ensemble
+
+    """
+    if GUI:
+        n = 0
+        while n < len(mdlList):
+            print n, n_mos[n], mdlStartT[n], mdlEndT[n], FileList[n][35:]
+            n += 1
+        ask = 'Enter the model ID to be evaluated from above:  ', len(FileList), ' for the model-ensemble: \n'
+        mdlSelect = int(raw_input(ask))
+
+    print '----------------------------------------------------------------------------------------------------------'
+
+    
+    if maskOption == 1:
+        seasonalCycleOption = 1
+    
+    # TODO:  This seems like we can just use numOBS to compute obsSelect (obsSelect = numbOBS -1)
+    if numOBS == 1:
+        obsSelect = 1
+    else:
+        #obsSelect = 1          #  1st obs (TRMM)
+        #obsSelect = 2          # 2nd obs (CRU3.1)
+        obsSelect = numOBS      # obs ensemble
+
+    obsSelect = obsSelect - 1   # convert to fit the indexing that starts from 0
+
+    toolkit.do_metrics_20.metrics_plots(numOBS, numMDL, nT, ngrdY, ngrdX, Times, obsData, mdlData, obsRgn, mdlRgn, obsList, mdlList, \
+                              workdir, \
+                              mdlSelect, obsSelect, \
+                              numSubRgn, subRgnName, rgnSelect, \
+                              obsParameterId, precipFlag, timeRegridOption, maskOption, seasonalCycleOption, metricOption, \
+                                                                                           plotTitle, plotFilenameStub)
+    """
+
+def generateModels(modelConfig):
+    """
+    This function will return a list of Model objects that can easily be used for 
+    metric computation and other processing tasks.
+    
+    Input::  
+        modelConfig - list of ('key', 'value') tuples.  Below is a list of valid keys
+            filenamepattern - string i.e. '/nas/run/model/output/MOD*precip*.nc'
+            latvariable - string i.e. 'latitude'
+            lonvariable - string i.e. 'longitude'
+            timevariable - string i.e. 't'
+            timestep - string 'monthly' | 'daily' | 'annual'
+            varname - string i.e. 'pr'
+
+    Output::
+        modelList - List of Model objects
+    """
+    # Setup the config Data Dictionary to make parsing easier later
+    configData = {}
+    for entry in modelConfig:
+        configData[entry[0]] = entry[1]
+
+    modelFileList = None
+    for keyValTuple in modelConfig:
+        if keyValTuple[0] == 'filenamePattern':
+            modelFileList = glob.glob(keyValTuple[1])
+    
+    # Remove the filenamePattern from the dict since it is no longer used
+    configData.pop('filenamePattern')
+    
+    models = []
+    for modelFile in modelFileList:
+        configData['filename'] = modelFile
+        model = Model(**configData)
+        models.append(model)
+    
+    return models
+
+def generateSettings(settingsConfig):
+    """
+    Helper function to decouple the argument parsing from the Settings object creation
+    
+    Input::  
+        settingsConfig - list of ('key', 'value') tuples.
+            workdir - string i.e. '/nas/run/rcmet/work/'
+            cachedir - string i.e. '/tmp/rcmet/cache/'
+    Output::
+        settings - Settings Object
+    """
+    # Setup the config Data Dictionary to make parsing easier later
+    configData = {}
+    for entry in settingsConfig:
+        configData[entry[0]] = entry[1]
+        
+    return Settings(**configData)
+
+def generateDatasets(rcmedConfig):
+    """
+    Helper function to decouple the argument parsing from the RCMEDDataset object creation
+
+    Input::  
+        rcmedConfig - list of ('key', 'value') tuples.
+            obsDatasetId=3,10
+            obsParamId=36,32
+            obsTimeStep=monthly,monthly
+
+    Output::
+        datasets - list of RCMEDDataset Objects
+    # Setup the config Data Dictionary to make parsing easier later
+    """
+    delimiter = ','
+    configData = {}
+    for entry in rcmedConfig:
+        if delimiter in entry[1]:
+            # print 'delim found - %s' % entry[1]
+            valueList = entry[1].split(delimiter)
+            configData[entry[0]] = valueList
+        else:
+            configData[entry[0]] = entry[1]
+
+    return configData
+
+def tempGetYears():
+    startYear = int(raw_input('Enter start year YYYY \n'))
+    endYear = int(raw_input('Enter end year YYYY \n'))
+    # CGOODALE - Updating the Static endTime to be 31-DEC
+    startTime = datetime.datetime(startYear, 1, 1, 0, 0)
+    endTime = datetime.datetime(endYear, 12, 31, 0, 0)
+    return (startTime, endTime)
+
+if __name__ == "__main__":
+    
+    if args.CONFIG:
+        print 'Running using config file: %s' % args.CONFIG
+        # Parse the Config file
+        userConfig = ConfigParser.SafeConfigParser()
+        userConfig.optionxform = str # This is so the case is preserved on the items in the config file
+        userConfig.read(args.CONFIG)
+        settings = generateSettings(userConfig.items('SETTINGS'))
+        models = generateModels(userConfig.items('MODEL'))
+        datasets = generateDatasets(userConfig.items('RCMED'))
+        
+        # Go get the parameter listing from the database
+        try:
+            params = db.getParams()
+        except Exception:
+            sys.exit()
+        
+        obsDatasetList = []
+        for param_id in datasets['obsParamId']:
+            for param in params:
+                if param['parameter_id'] == int(param_id):
+                    obsDatasetList.append(param)
+                else:
+                    pass
+
+        # TODO:  Find a home for the regrid parameters in the CONFIG file
+        # Setup the Regridding Options
+        regridOption = 'regular'
+        # dLon = 0.44 - Provided in the SETTINGS config section
+        # dLat = 0.44
+        lonMin = -24.64
+        lonMax = 60.28
+        latMin = -45.76
+        latMax = 42.24
+        # Create a Grid Box Object that extends the bounding box Object
+        gridBox = GridBox(latMin, lonMin, latMax, lonMax, settings.gridLonStep, settings.gridLatStep)
+       
+        """ These can now be accessed from the gridBox object using gridBox.latCount and gridBox.lonCount attributes
+        naLons = int((gridBox.lonMax - gridBox.lonMin + 1.e-5 * settings.gridLonStep) / settings.gridLonStep) + 1
+        print naLons
+        print int((gridBox.lonMax - gridBox.lonMin) / gridBox.lonStep) + 1 
+        naLats = int((gridBox.latMax - gridBox.latMin + 1.e-5 * settings.gridLatStep) / settings.gridLatStep) + 1
+        """
+        timeRegridOption = settings.temporalGrid
+        
+        # TODO:  How do we support n subregions as Jinwon has below?
+        
+        numSubRgn = 21
+#        subRgnLon0 = ma.zeros(numSubRgn)
+#        subRgnLon1 = ma.zeros(numSubRgn)
+#        subRgnLat0 = ma.zeros(numSubRgn)
+#        subRgnLat1 = ma.zeros(numSubRgn)
+        # 21 rgns: SMHI11 + W+C+E. Mediterrenean (JK) + 3 in UCT (Western Sahara, Somalia, Madagascar) + 4 in Mideast
+        subRgnLon0 = [-10.0, 0.0, 10.0, 20.0, -19.3, 15.0, -10.0, -10.0, 33.9, 44.2, 10.0, 10.0, 30.0, 13.6, 13.6, 20.0, 43.2, 33.0, 45.0, 43.0, 50.0]   # HYB 21 rgns
+        subRgnLon1 = [  0.0, 10.0, 20.0, 33.0, -10.2, 30.0, 10.0, 10.0, 40.0, 51.8, 25.0, 25.0, 40.0, 20.0, 20.0, 35.7, 50.3, 40.0, 50.0, 50.0, 58.0]   # HYB 21 rgns
+        subRgnLat0 = [ 29.0, 29.0, 25.0, 25.0, 12.0, 15.0, 7.3, 5.0, 6.9, 2.2, 0.0, -10.0, -15.0, -27.9, -35.0, -35.0, -25.8, 25.0, 28.0, 13.0, 20.0]   # HYB 21 rgns
+        subRgnLat1 = [ 36.5, 37.5, 32.5, 32.5, 20.0, 25.0, 15.0, 7.3, 15.0, 11.8, 10.0, 0.0, 0.0, -21.4, -27.9, -21.4, -11.7, 35.0, 35.0, 20.0, 27.5]   # HYB 21 rgns
+        subRgnName = ['R01', 'R02', 'R03', 'R04', 'R05', 'R06', 'R07', 'R08', 'R09', 'R10', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21']   # HYB 21 rgns
+        print subRgnName
+        
+        subRegionTuple = (numSubRgn, subRgnLon0, subRgnLon1, subRgnLat0, subRgnLat1, subRgnName)
+        
+        
+        rgnSelect = 3
+        maskOption = settings.maskOption
+        
+        bbox = BoundingBox(subRgnLat0[rgnSelect], 
+                           subRgnLon0[rgnSelect], 
+                           subRgnLat1[rgnSelect], 
+                           subRgnLon1[rgnSelect])
+        
+        regionMask = SubRegion(subRgnName[rgnSelect], bbox)
+        
+        # Using a 'mask' instance of the BoundingBox object
+#        maskLonMin = 0
+#        maskLonMax = 0
+#        maskLatMin = 0
+#        maskLatMax = 0
+        
+        choice = 'y'
+        
+        #  THIS JUST MEANS A USER DEFINED MASK IS BEING USED (basically from the hardcoded values listed above (line 819 ish)
+        maskInputChoice = 1
+
+        if maskInputChoice == 1:
+            for n in np.arange(numSubRgn):
+                print 'Subregion [', n, '] ', subRgnName[n], subRgnLon0[n], 'E - ', subRgnLon1[n], ' E: ', subRgnLat0[n], 'N - ', subRgnLat1[n], 'N'
+            rgnSelect = 3
+        
+        # Section 9: Select Peformance Metric
+        metricOption = 'bias'
+        FoutOption = 0
+        
+        # Section 11: Select Plot Options
+        # TODO: Using first model in models since Var name is the same across all
+        modifyPlotOptions = 'no'
+        plotTitle = models[0].varName + '_'
+        plotFilenameStub = models[0].varName + '_'
+        
+        print'------------------------------'
+        print'End of preprocessor: Run RCMET'
+        print'------------------------------'
+        
+        numOBS, numMDL, nT, ngrdY, ngrdX, Times, obsData, mdlData, obsRgn, mdlRgn, obsList, mdlList = toolkit.do_data_prep.prep_data(settings, obsDatasetList, gridBox, models, subRegionTuple)
+        
+        
+        print 'Input and regridding of both obs and model data are completed. now move to metrics calculations'
+        
+        """FROM THE UPPER SECTION OF CODE"""
+
+        mdlSelect = numMDL - 1                      # numMDL-1 corresponds to the model ensemble
+    
+        """ Disregard GUI block for now
+        if GUI:
+            n = 0
+            while n < len(mdlList):
+                print n, n_mos[n], mdlStartT[n], mdlEndT[n], FileList[n][35:]
+                n += 1
+            ask = 'Enter the model ID to be evaluated from above:  ', len(FileList), ' for the model-ensemble: \n'
+            mdlSelect = int(raw_input(ask))
+    
+        print '----------------------------------------------------------------------------------------------------------'
+        """
+        
+        if maskOption:
+            seasonalCycleOption = True
+        
+        # TODO:  This seems like we can just use numOBS to compute obsSelect (obsSelect = numbOBS -1)
+        if numOBS == 1:
+            obsSelect = 1
+        else:
+            #obsSelect = 1          #  1st obs (TRMM)
+            #obsSelect = 2          # 2nd obs (CRU3.1)
+            obsSelect = numOBS      # obs ensemble
+    
+        obsSelect = obsSelect - 1   # convert to fit the indexing that starts from 0
+    
+    
+    
+        # TODO:  Undo the following code when refactoring later
+        obsParameterId = [str(x['parameter_id']) for x in obsDatasetList]
+        precipFlag = models[0].precipFlag
+    
+        toolkit.do_metrics_20.metrics_plots(numOBS, numMDL, nT, ngrdY, ngrdX, Times, obsData, mdlData, obsRgn, mdlRgn, obsList, mdlList, \
+                                  settings.workDir, \
+                                  mdlSelect, obsSelect, \
+                                  numSubRgn, subRgnName, rgnSelect, \
+                                  obsParameterId, precipFlag, timeRegridOption, maskOption, seasonalCycleOption, metricOption, \
+                                                                                               plotTitle, plotFilenameStub)
+        
+
+        
+    else:
+        print 'Interactive mode has been enabled'
+        #getSettings(SETTINGS)
+        print "But isn't implemented.  Try using the -c option instead"
+
+    #rcmet_cordexAF()

Propchange: incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/cli/rcmet20_cordexAF.py
------------------------------------------------------------------------------
    svn:executable = *

Added: incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/cli/rcmet_ui.py
URL: http://svn.apache.org/viewvc/incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/cli/rcmet_ui.py?rev=1537520&view=auto
==============================================================================
--- incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/cli/rcmet_ui.py (added)
+++ incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/cli/rcmet_ui.py Thu Oct 31 14:59:48 2013
@@ -0,0 +1,91 @@
+#!/usr/local/bin/python
+""" 
+    Step by Step Wizard that demonstrates how the underlying RCMES code can
+    be used to generate climate dataset intercomparisons
+"""
+# Imports
+# Native Python Module Imports
+import sys
+
+# RCMES Imports
+from classes import Model, JobProperties, GridBox
+import storage.rcmed as rcmed
+import toolkit.metrics
+import toolkit.do_data_prep
+from utils import misc
+
+def rcmetUI():
+    """"
+    Command Line User interface for RCMET.
+    Collects user OPTIONS then runs RCMET to perform processing.
+    
+    Duplicates job of GUI.
+    """
+    print 'Regional Climate Model Evaluation System BETA'
+    print "Querying RCMED for available parameters..."
+
+    try:
+        parameters = rcmed.getParams()
+    except Exception:
+        raise
+        sys.exit()
+
+    # Section 0: Collect directories to store RCMET working files.
+    workDir, cacheDir = misc.getDirSettings()
+    temporalGrid = misc.getTemporalGrid()
+    spatialGrid = misc.getSpatialGrid()
+    jobProperties = JobProperties(workDir, cacheDir, spatialGrid, temporalGrid)
+    
+    # Section 1a: Enter model file/s
+    modelFiles = misc.getModelFiles()
+    # Create a list of model objects for use later
+    models = [Model(modelFile) for modelFile in modelFiles]
+
+    # Section 3b: Select 1 Parameter from list
+    for parameter in parameters:
+        """( 38 ) - CRU3.1 Daily-Mean Temperature : monthly"""
+        print "({:^2}) - {:<54} :: {:<10}".format(parameter['parameter_id'], parameter['longname'], parameter['timestep'])
+
+    obsDatasetList = []
+    validParamIds = [int(p['parameter_id']) for p in parameters]
+    while obsDatasetList == []:
+        print("Please select the available observation you would like to use from the list above:")
+        userChoice = int(raw_input(">>>"))
+        if userChoice in validParamIds:
+            for param in parameters:
+                if param['parameter_id'] == userChoice:
+                    obsDatasetList.append(param)
+                else:
+                    pass
+        else:
+            print("Your selection '%s' is invalid.  Please make another selection." % userChoice)
+    
+
+    # User must provide startTime and endTime if not defined
+    if jobProperties.startDate == None or jobProperties.endDate == None:
+        jobProperties.startDate, jobProperties.endDate = misc.userDefinedStartEndTimes(obsDatasetList, models)
+
+    try:
+        gridBox = GridBox(jobProperties.latMin, jobProperties.lonMin, jobProperties.latMax,
+                          jobProperties.lonMax, jobProperties.gridLonStep, jobProperties.gridLatStep)
+    except:
+        gridBox = None
+
+    numOBS, numMDL, nT, ngrdY, ngrdX, Times, lons, lats, obsData, mdlData, obsList, mdlName = toolkit.do_data_prep.prep_data(jobProperties, obsDatasetList, gridBox, models)
+  
+    counts = {'observations': numOBS,
+              'models'      : numMDL,
+              'times'       : nT}
+    subRegions = misc.getSubRegionsInteractively(counts, jobProperties.workDir)
+
+    # TODO: New function Call
+    fileOutputOption = jobProperties.writeOutFile
+    modelVarName = models[0].varName
+    toolkit.metrics.metrics_plots(modelVarName, numOBS, numMDL, nT, ngrdY, ngrdX, Times, lons, lats, obsData, mdlData, obsList, mdlName, workDir, subRegions, fileOutputOption)
+
+
+
+# Actually call the UI function.
+if __name__ == "__main__":
+    rcmetUI()
+

Propchange: incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/cli/rcmet_ui.py
------------------------------------------------------------------------------
    svn:executable = *

Added: incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/rcmet.py
URL: http://svn.apache.org/viewvc/incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/rcmet.py?rev=1537520&view=auto
==============================================================================
--- incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/rcmet.py (added)
+++ incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/rcmet.py Thu Oct 31 14:59:48 2013
@@ -0,0 +1,305 @@
+#!/usr/local/python27
+""" DOCSTRING"""
+
+# Python Standard Lib Imports
+import argparse
+import ConfigParser
+import datetime
+import glob
+import os
+import sys
+import numpy as np
+import numpy.ma as ma
+
+
+# RCMES Imports
+import storage.rcmed as db
+from toolkit import do_data_prep, process, metrics
+from utils import misc
+from classes import JobProperties, Model, GridBox
+from cli import rcmet_ui as ui
+
+parser = argparse.ArgumentParser(description='Regional Climate Model Evaluation Toolkit.  Use -h for help and options')
+parser.add_argument('-c', '--config', dest='CONFIG', help='Path to an evaluation configuration file')
+args = parser.parse_args()
+
+def checkConfigSettings(config):
+    """ This function will check the SETTINGS block of the user supplied config file.
+    This will only check if the working and cache dirs are writable from this program.
+    Additional configuration parameters can be checked here later on.
+    
+    Input::
+        config - ConfigParser configuration object
+    
+    Output::
+        none - An exception will be raised if something goes wrong
+    """
+    settings = config.items('SETTINGS')
+    for key_val in settings:
+        # Check the user provided directories are valid
+        if key_val[0] == 'workDir' or key_val[0] == 'cacheDir':
+            _ =  misc.isDirGood(os.path.abspath(key_val[1]))
+
+        else:
+            pass    
+
+def setSettings(settings, config):
+    """
+    This function is used to set the values within the 'SETTINGS' dictionary when a user provides an external
+    configuration file.
+    
+    Input::
+        settings - Python Dictionary object that will collect the key : value pairs
+        config - A configparse object that contains the external config values
+    
+    Output::
+        None - The settings dictionary will be updated in place.
+    """
+    pass
+
+def generateModels(modelConfig):
+    """
+    This function will return a list of Model objects that can easily be used for 
+    metric computation and other processing tasks.
+    
+    Input::  
+        modelConfig - list of ('key', 'value') tuples.  Below is a list of valid keys
+            filenamepattern - string i.e. '/nas/run/model/output/MOD*precip*.nc'
+            latvariable - string i.e. 'latitude'
+            lonvariable - string i.e. 'longitude'
+            timevariable - string i.e. 't'
+            timestep - string 'monthly' | 'daily' | 'annual'
+            varname - string i.e. 'pr'
+
+    Output::
+        modelList - List of Model objects
+    """
+    # Setup the config Data Dictionary to make parsing easier later
+    configData = {}
+    for entry in modelConfig:
+        configData[entry[0]] = entry[1]
+
+    modelFileList = None
+    for keyValTuple in modelConfig:
+        if keyValTuple[0] == 'filenamePattern':
+            modelFileList = glob.glob(keyValTuple[1])
+            modelFileList.sort()
+
+    # Remove the filenamePattern from the dict since it is no longer used
+    configData.pop('filenamePattern')
+    
+    models = []
+    for modelFile in modelFileList:
+        # use getModelTimes(modelFile,timeVarName) to generate the modelTimeStep and time list
+        _ , configData['timeStep'] = process.getModelTimes(modelFile, configData['timeVariable'])
+        configData['filename'] = modelFile
+        model = Model(**configData)
+        models.append(model)
+    
+    return models
+
+def generateSettings(config):
+    """
+    Helper function to decouple the argument parsing from the Settings object creation
+    
+    Input::  
+        config - list of ('key', 'value') tuples.
+            workdir - string i.e. '/nas/run/rcmet/work/'
+            cachedir - string i.e. '/tmp/rcmet/cache/'
+    Output::
+        JobProperties - JobProperties Object
+    """
+    # Setup the config Data Dictionary to make parsing easier later
+    configData = {}
+    for entry in config:
+        configData[entry[0]] = entry[1]
+        
+    return JobProperties(**configData)
+
+def makeDatasetsDictionary(rcmedConfig):
+    """
+    Helper function to decouple the argument parsing from the RCMEDDataset object creation
+
+    Input::  
+        rcmedConfig - list of ('key', 'value') tuples.
+            obsDatasetId=3,10
+            obsParamId=36,32
+            obsTimeStep=monthly,monthly
+
+    Output::
+        datasetDict - Dictionary with dataset metadata
+    # Setup the config Data Dictionary to make parsing easier later
+    """
+    delimiter = ','
+    configData = {}
+    for entry in rcmedConfig:
+        if delimiter in entry[1]:
+            # print 'delim found - %s' % entry[1]
+            valueList = entry[1].split(delimiter)
+            configData[entry[0]] = valueList
+        else:
+            configData[entry[0]] = entry[1:]
+
+    return configData
+
+def tempGetYears():
+    startYear = int(raw_input('Enter start year YYYY \n'))
+    endYear = int(raw_input('Enter end year YYYY \n'))
+    # CGOODALE - Updating the Static endTime to be 31-DEC
+    startTime = datetime.datetime(startYear, 1, 1, 0, 0)
+    endTime = datetime.datetime(endYear, 12, 31, 0, 0)
+    return (startTime, endTime)
+
+
+def runUsingConfig(argsConfig):
+    """
+    This function is called when a user provides a configuration file to specify an evaluation job.
+
+    Input::
+        argsConfig - Path to a ConfigParser compliant file
+
+    Output::
+        Plots that visualize the evaluation job. These will be output to SETTINGS.workDir from the config file
+    """
+    
+    print 'Running using config file: %s' % argsConfig
+    # Parse the Config file
+    userConfig = ConfigParser.SafeConfigParser()
+    userConfig.optionxform = str # This is so the case is preserved on the items in the config file
+    userConfig.read(argsConfig)
+
+    try:
+        checkConfigSettings(userConfig)
+    except:
+        raise
+
+    jobProperties = generateSettings(userConfig.items('SETTINGS'))
+    workdir = jobProperties.workDir
+    
+    try:
+        gridBox = GridBox(jobProperties.latMin, jobProperties.lonMin, jobProperties.latMax,
+                          jobProperties.lonMax, jobProperties.gridLonStep, jobProperties.gridLatStep)
+    except:
+        gridBox = None
+
+    models = generateModels(userConfig.items('MODEL'))
+    
+    # 5/28/2013, JK: The RCMED block has been modified to accommodate ref data input from users' local disk
+
+    datasetDict = makeDatasetsDictionary(userConfig.items('RCMED'))
+
+
+    # Go get the parameter listing from the database
+    try:
+        params = db.getParams()
+    except:
+        raise
+
+    obsDatasetList = []
+    obsList = []
+    obsVarName = datasetDict['obsVarName'][0]
+    obsTimeName = datasetDict['obsTimeVar'][0]
+    obsLonName = datasetDict['obsLonVar'][0]
+    obsLatName = datasetDict['obsLatVar'][0]
+    obsTimestep = []
+    obsSource = int(datasetDict['obsSource'][0])
+    #print 'Obs datasetDict'
+    #print datasetDict
+
+    if obsSource < 0:                             # no obs data to be processed
+        obsVarName = []
+        obsTimeName = []
+        obsLonName = []
+        obsLatName = []
+    elif obsSource == 0:                          # input from RCMED
+        for param_id in datasetDict['obsParamId']:
+            for param in params:
+                if param['parameter_id'] == int(param_id):
+                    obsDatasetList.append(param)
+                else:
+                    pass
+    elif obsSource == 1:                        # input from local disk
+        for param in datasetDict['obsInputFile']:
+            obsDatasetList.append(param)
+        for param in datasetDict['obsFileName']:
+            obsList.append(param)
+        for param in datasetDict['obsDltaTime']:
+            obsTimestep.append(param)
+    #print obsSource,obsDatasetList,obsList,obsTimeName,obsTimestep
+
+    #TODO: Unhardcode this when we decided where this belongs in the Config File
+    jobProperties.maskOption = True
+    # User must provide startTime and endTime if not defined
+    if jobProperties.startDate == None or jobProperties.endDate == None:
+        jobProperties.startDate,jobProperties.endDate = misc.userDefinedStartEndTimes(obsSource,obsList,obsTimeName,obsDatasetList,models)
+
+    numOBS,numMDL,nT,ngrdY,ngrdX,Times,lons,lats,obsData,mdlData,obsName,mdlName = do_data_prep.prep_data   \
+          (jobProperties,obsSource,obsDatasetList,obsList,obsVarName,obsLonName,obsLatName,obsTimeName,obsTimestep,gridBox,models)
+
+    # 6/3/2013: Combine the regridded reference and model datasets. The packing order is: 
+    #               First pack all ref (obs) data with the ref enseble in the end (if exists).
+    #               Then pack all model data with the model ensemble in the end (if exists)
+    #           Release 'obsData' and 'mdlData' after their values are transferred to 'allData'
+    print 'Input and regridding of both obs and model data are completed. Combine the obs and model data'
+    numDatasets = numOBS + numMDL
+    allData = ma.zeros((numDatasets, nT, ngrdY, ngrdX))
+    if (numOBS>0) & (numMDL>0):
+        dataName = obsName + mdlName
+        allData[0:numOBS, :, :, :] = obsData[0:numOBS, :, :, :]
+        allData[numOBS:numDatasets, :, :, :] = mdlData[0:numMDL, :, :, :]
+        obsData = 0.
+        mdlData = 0.
+    elif numOBS==0:
+        dataName = mdlName
+        allData = mdlData
+        mdlData = 0.
+    else:
+        dataName = obsName
+        allData = obsData
+        obsData = 0
+    print ''
+    print 'dataName: ',dataName,' shape of all data= ',allData.shape
+
+    ##################################################################################
+    # calculate metrics and make plots using the regridded reference and model data. #
+    ##################################################################################
+    print 'Data preparation is completed; now move to metrics calculations'
+    
+    try:
+        subRegionConfig = misc.configToDict(userConfig.items('SUB_REGION'))
+        subRegions = misc.parseSubRegions(subRegionConfig)
+        # REORDER SUBREGION OBJECTS until we standardize on Python 2.7
+        # TODO Remove once Python 2.7 support is finalized
+        if subRegions:
+            subRegions.sort(key=lambda x:x.name)
+        
+    except ConfigParser.NoSectionError:
+        
+        counts = {'observations': numOBS,
+                  'models'      : numMDL,
+                  'times'       : nT}
+        subRegions = misc.getSubRegionsInteractively(counts, workdir)
+        
+        if len(subRegions) == 0:
+            print 'Processing without SubRegion support'
+        
+
+    # TODO: New function Call
+    timeRegridOption = jobProperties.temporalGrid
+    fileOutputOption = jobProperties.writeOutFile
+    modelVarName = models[0].varName
+    metrics.metrics_plots(modelVarName, numOBS, numMDL, nT, ngrdY, ngrdX, Times, lons, lats, allData, dataName, workdir, subRegions, \
+                          timeRegridOption, fileOutputOption)
+
+
+if __name__ == "__main__":
+    
+    if args.CONFIG:
+        
+        runUsingConfig(args.CONFIG)
+
+    else:
+        print 'Interactive mode has been enabled'
+        ui.rcmetUI()
+
+    #rcmet_cordexAF()

Propchange: incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/rcmet.py
------------------------------------------------------------------------------
    svn:executable = *

Added: incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/cordexAF.cfg
URL: http://svn.apache.org/viewvc/incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/cordexAF.cfg?rev=1537520&view=auto
==============================================================================
--- incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/cordexAF.cfg (added)
+++ incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/cordexAF.cfg Thu Oct 31 14:59:48 2013
@@ -0,0 +1,49 @@
+# The configure file for the Indian subdomain of the CORDEX-Asia domain
+[SETTINGS]
+workDir=/Volumes/rcmes2t/rcmet/cases/cordex-af/work
+cacheDir=/Volumes/rcmes2t/rcmet/cases/cordex-af/cache
+# temporalGrid assigns the data time step to be temporally regridded: Choices = full (entire period), annual, monthly, daily
+temporalGrid=monthly
+# Choices, obs, model, user
+# gridLonStep, gridLatStep, latMin, latMax, lonMin, lonMax are used only with 'user' spatial grid option
+spatialGrid=user
+gridLonStep=0.44
+gridLatStep=0.44
+latMin=-45.76
+latMax=42.24
+lonMin=-24.64
+lonMax=60.28
+# Choices: False, NetCDF
+outputFile=False
+
+[MODEL]
+#filenamePattern = none           # option currently not working; 2b added for obs-only processing
+filenamePattern=/Volumes/rcmes2t/rcmet/cases/cordex-af/mdlData/mon/*pr.nc
+latVariable=lat
+lonVariable=lon
+timeVariable=time
+varName=pr
+precipFlag=True ; This is just used to support an unknown UNITS in precip data
+
+[RCMED]
+# obsParamId designates the reference data file. see http://rcmes.jpl.nasa.gov/rcmed/parameters
+# for multiple ref datasets, provide the id separated by ',' (e.g., 36,37 for TRMM and CRU3.1).
+# obsSource specifies the source of the reference data: 0 = RCMED, 1 = user's local disk, -9 = no obs data
+#   For obsSource == 1, obsInputFile, the file that provides the list of users' own reference data
+#                       also a user have to provide obsVarName, obsTimeVar, obsLonVar, and obsLatVar as specified in the data files
+obsSource = 0
+obsInputFile = /nas/share1-hp/jinwonki/data/rean/narr/day_narccap_domain/NARR_prec.nc,/nas/share1-hp/jinwonki/data/obs/cpc/netcdf/cpc_1979_present.nc
+obsVarName = pr,pr
+obsFileName = NARR,CPC
+obsDltaTime = daily,daily
+obsTimeVar = time,time
+obsLonVar = lon,longitude
+obsLatVar = lat,latitude
+# if obsSource = 0, the lines from 'obsSource' to 'obsLatVar' above are inactive
+# 36= TRMM monthly, 37= CRU3.1 monthly, 72= UDEL monthly; 74= GPCP2.2 monthly; 81=GPCC
+obsParamId=37,72,81,36,74
+obsTimeStep=monthly,monthly,monthly,monthly,monthly ; WITH THE PARAMETER SERVICE THIS WILL GO AWAY
+
+[SUB_REGION]
+# Sub Region(s) Full File Path
+subRegionFile=/Volumes/rcmes2t/rcmet/cases/cordex-af/work/inputs/subRgns.AF

Propchange: incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/cordexAF.cfg
------------------------------------------------------------------------------
    svn:executable = *

Added: incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/cordexIndia.cfg
URL: http://svn.apache.org/viewvc/incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/cordexIndia.cfg?rev=1537520&view=auto
==============================================================================
--- incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/cordexIndia.cfg (added)
+++ incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/cordexIndia.cfg Thu Oct 31 14:59:48 2013
@@ -0,0 +1,50 @@
+# The configure file for the Indian subdomain of the CORDEX-Asia domain
+[SETTINGS]
+workDir=/Volumes/rcmes2t/rcmet/cases/cordex-sa/work
+cacheDir=/Volumes/rcmes2t/rcmet/cases/cordex-sa/cache
+# temporalGrid assigns the data time step to be temporally regridded: Choices = full (entire period), annual, monthly, daily
+temporalGrid=monthly
+# Choices, obs, model, user
+# gridLonStep, gridLatStep, latMin, latMax, lonMin, lonMax are used only with 'user' spatial grid option
+spatialGrid=user
+gridLonStep=0.5
+gridLatStep=0.5
+latMin=5.
+latMax=40.
+lonMin=60.
+lonMax=100.
+# Choices: False, NetCDF
+outputFile=False
+
+[MODEL]
+#filenamePattern = none           # option currently not working; 2b added for obs-only processing
+filenamePattern=/Volumes/rcmes2t/rcmet/cases/cordex-sa/mdlData/mon/pr*.nc
+latVariable=lat
+lonVariable=lon
+timeVariable=time
+varName=pr
+precipFlag=True ; This is just used to support an unknown UNITS in precip data
+
+[RCMED]
+# obsParamId designates the reference data file. see http://rcmes.jpl.nasa.gov/rcmed/parameters
+# for multiple ref datasets, provide the id separated by ',' (e.g., 36,37 for TRMM and CRU3.1).
+# obsSource specifies the source of the reference data: 0 = RCMED, 1 = user's local disk, -9 = no obs data
+#   For obsSource == 1, obsInputFile, the file that provides the list of users' own reference data
+#                       also a user have to provide obsVarName, obsTimeVar, obsLonVar, and obsLatVar as specified in the data files
+obsSource = 0
+obsInputFile = /nas/share1-hp/jinwonki/data/rean/narr/day_narccap_domain/NARR_prec.nc,/nas/share1-hp/jinwonki/data/obs/cpc/netcdf/cpc_1979_present.nc
+obsVarName = pr,pr
+obsFileName = NARR,CPC
+obsDltaTime = daily,daily
+obsTimeVar = time,time
+obsLonVar = lon,longitude
+obsLatVar = lat,latitude
+# if obsSource = 0, the lines from 'obsSource' to 'obsLatVar' above are inactive
+# 36= TRMM monthly, 37= CRU3.1 monthly, 72= UDEL monthly; 74= GPCP2.2 monthly; 80= aphr1101
+obsParamId=37,72,80,81,36,74
+obsTimeStep=monthly,monthly,monthly,monthly ; WITH THE PARAMETER SERVICE THIS WILL GO AWAY
+
+[SUB_REGION]
+# Sub Region(s) Full File Path
+#subRegionFile=/nas/share3-wf/jinwonki/rcmet/cases/cordex-sa/work/inputs/subRgnsSA.India
+subRegionFile=/Volumes/rcmes2t/rcmet/cases/cordex-sa/work/inputs/subRgnsSA.India

Propchange: incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/cordexIndia.cfg
------------------------------------------------------------------------------
    svn:executable = *

Added: incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/narccap.cfg
URL: http://svn.apache.org/viewvc/incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/narccap.cfg?rev=1537520&view=auto
==============================================================================
--- incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/narccap.cfg (added)
+++ incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/narccap.cfg Thu Oct 31 14:59:48 2013
@@ -0,0 +1,49 @@
+[SETTINGS]
+workDir=/Volumes/rcmes2t/rcmet/cases/narccap/work
+cacheDir=/Volumes/rcmes2t/rcmet/cases/narccap/cache
+# temporalGrid assigns the data time step to be temporally regridded: Choices = full (entire period), annual, monthly, daily
+temporalGrid=monthly
+# Choices, obs, model, user
+# gridLonStep, gridLatStep, latMin, latMax, lonMin, lonMax are used only with 'user' spatial grid option
+spatialGrid=user
+gridLonStep=0.5
+gridLatStep=0.5
+latMin=23.75            ; for NARCCAP-ConterminousUS / WUS
+latMax=49.75            ; for NARCCAP-ConterminousUS / WUS
+lonMin=-125.75          ; for NARCCAP-ConterminousUS / WUS
+lonMax=-66.75           ; for NARCCAP-Conterminous US
+#lonMax=-100.75          ; for NARCCAP-WUS.
+# Choices: False, NetCDF
+outputFile=NetCDF
+
+[MODEL]
+#filenamePattern = none           # option currently not working; 2b added for obs-only processing
+filenamePattern=/Volumes/rcmes2t/rcmet/cases/narccap/mdlData/mon/prec*.nc
+#filenamePattern=/nas/share4-cf/jinwonki/data/narccap/day/regridded/narccap_*_ncep_daily_prec_regridded.nc
+latVariable=lat
+lonVariable=lon
+timeVariable=time
+varName=prec
+precipFlag=True ; This is just used to support an unknown UNITS in precip data
+
+[RCMED]
+# obsParamId designates the reference data file. see http://rcmes.jpl.nasa.gov/rcmed/parameters
+# for multiple ref datasets, provide the id separated by ',' (e.g., 36,37 for TRMM and CRU3.1).
+# obsSource specifies the source of the reference data: 0 = RCMED, 1 = user's local disk, -9 = no obs data
+#   For obsSource == 1, obsInputFile, the file that provides the list of users' own reference data
+obsSource = 0
+obsInputFile = /nas/share1-hp/jinwonki/data/rean/narr/day_narccap_domain/NARR_prec.nc,/nas/share1-hp/jinwonki/data/obs/cpc/netcdf/cpc_1979_present.nc
+obsVarName = pr,pr
+obsFileName = NARR,CPC
+obsDltaTime = daily,daily
+obsTimeVar = time,time
+obsLonVar = lon,longitude
+obsLatVar = lat,latitude
+# if obsSource = 0, the lines from 'obsSource' to 'obsLatVar' above are inactive
+#obsParamId=37,72,81,36,74
+obsParamId=37,36
+obsTimeStep=monthly,monthly,monthly,monthly,monthly ; WITH THE PARAMETER SERVICE THIS WILL GO AWAY
+
+[SUB_REGION]
+# Sub Region(s) Full File Path
+subRegionFile=/Volumes/rcmes2t/rcmet/cases/narccap/work/inputs/subRgnsNARCCAP.US

Propchange: incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/narccap.cfg
------------------------------------------------------------------------------
    svn:executable = *

Added: incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/watersheds/CAwsdCU_wgt_ep36_d01
URL: http://svn.apache.org/viewvc/incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/watersheds/CAwsdCU_wgt_ep36_d01?rev=1537520&view=auto
==============================================================================
--- incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/watersheds/CAwsdCU_wgt_ep36_d01 (added)
+++ incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/watersheds/CAwsdCU_wgt_ep36_d01 Thu Oct 31 14:59:48 2013
@@ -0,0 +1,189 @@
+  1 American River      
+          11
+ 108  81   2.400E-01
+ 108  82   5.800E-01
+ 109  81   2.800E-01
+ 109  82   1.000E+00
+ 109  83   3.300E-01
+ 110  81   1.800E-01
+ 110  82   1.000E+00
+ 110  83   5.400E-01
+ 111  81   3.000E-01
+ 111  82   3.800E-01
+ 111  83   2.000E-02
+  2 Carson River        
+           5
+ 111  81   1.200E-01
+ 111  82   6.000E-02
+ 112  80   4.000E-02
+ 112  81   7.700E-01
+ 112  82   2.100E-01
+  3 Feather River       
+          14
+ 107  84   6.800E-01
+ 107  85   5.300E-01
+ 107  86   2.800E-01
+ 108  84   8.200E-01
+ 108  85   1.000E+00
+ 108  86   8.100E-01
+ 109  84   4.200E-01
+ 109  85   1.000E+00
+ 109  86   4.600E-01
+ 110  84   8.300E-01
+ 110  85   9.300E-01
+ 110  86   1.100E-01
+ 111  84   4.000E-01
+ 111  85   2.700E-01
+  4 Kaweah River        
+           7
+ 113  75   7.000E-02
+ 113  76   1.500E-01
+ 114  74   1.200E-01
+ 114  75   8.700E-01
+ 114  76   3.500E-01
+ 115  75   6.400E-01
+ 115  76   1.500E-01
+  5 Kern River          
+          13
+ 114  72   9.000E-02
+ 115  72   3.500E-01
+ 115  73   4.700E-01
+ 115  74   4.400E-01
+ 115  75   3.800E-01
+ 115  76   4.000E-02
+ 116  72   2.600E-01
+ 116  73   1.000E+00
+ 116  74   1.000E+00
+ 116  75   8.400E-01
+ 116  76   1.400E-01
+ 117  73   2.400E-01
+ 117  74   2.300E-01
+  6 Kings River         
+          10
+ 112  76   1.400E-01
+ 113  76   7.100E-01
+ 113  77   3.100E-01
+ 114  76   7.900E-01
+ 114  77   6.700E-01
+ 115  75   3.000E-02
+ 115  76   9.400E-01
+ 115  77   5.000E-01
+ 116  76   2.600E-01
+ 116  77   6.000E-02
+  7 Lake Tahoe          
+           4
+ 111  81   5.000E-02
+ 111  82   6.700E-01
+ 111  83   2.400E-01
+ 112  82   3.000E-02
+  8 Merced River        
+           8
+ 110  78   2.100E-01
+ 110  79   7.000E-02
+ 111  78   4.600E-01
+ 111  79   3.800E-01
+ 112  78   5.600E-01
+ 112  79   4.200E-01
+ 113  78   3.000E-01
+ 113  79   4.000E-01
+  9 Owens River         
+          17
+ 114  78   3.000E-01
+ 114  79   2.900E-01
+ 115  77   4.300E-01
+ 115  78   9.700E-01
+ 115  79   4.400E-01
+ 116  74   1.000E-02
+ 116  75   3.300E-01
+ 116  76   8.000E-01
+ 116  77   9.700E-01
+ 116  78   7.400E-01
+ 116  79   2.700E-01
+ 117  74   1.200E-01
+ 117  75   9.700E-01
+ 117  76   3.500E-01
+ 117  77   1.300E-01
+ 118  74   4.000E-02
+ 118  75   1.400E-01
+ 10 San Joaquin River   
+          12
+ 112  76   5.000E-02
+ 112  77   4.400E-01
+ 112  78   6.000E-02
+ 113  76   1.000E-02
+ 113  77   8.300E-01
+ 113  78   8.300E-01
+ 113  79   7.000E-02
+ 114  77   4.500E-01
+ 114  78   8.100E-01
+ 114  79   6.000E-02
+ 115  77   3.000E-01
+ 115  78   1.100E-01
+ 11 Stanislaus River    
+           8
+ 109  79   9.000E-02
+ 109  80   2.000E-02
+ 110  79   3.500E-01
+ 110  80   4.500E-01
+ 111  80   7.800E-01
+ 111  81   2.200E-01
+ 112  80   4.700E-01
+ 112  81   1.800E-01
+ 12 Truckee River       
+           4
+ 110  83   2.600E-01
+ 110  84   7.000E-02
+ 111  83   5.900E-01
+ 111  84   2.400E-01
+ 13 Tuolumne River      
+          10
+ 109  79   2.000E-02
+ 110  78   8.000E-02
+ 110  79   7.400E-01
+ 110  80   4.000E-02
+ 111  79   7.700E-01
+ 111  80   3.400E-01
+ 112  79   7.000E-01
+ 112  80   5.100E-01
+ 113  79   5.900E-01
+ 113  80   1.800E-01
+ 14 Walker River        
+           7
+ 112  80   2.100E-01
+ 112  81   1.800E-01
+ 113  79   2.000E-02
+ 113  80   9.300E-01
+ 113  81   5.000E-01
+ 114  80   4.200E-01
+ 114  81   2.000E-02
+ 15 Yuba River          
+           8
+ 107  83   4.400E-01
+ 107  84   8.000E-02
+ 108  83   8.500E-01
+ 108  84   3.200E-01
+ 109  83   5.800E-01
+ 109  84   7.400E-01
+ 110  83   4.600E-01
+ 110  84   2.800E-01
+ 16 Consumnes River     
+           4
+ 108  81   2.900E-01
+ 109  81   7.100E-01
+ 110  81   6.400E-01
+ 111  81   3.000E-02
+ 17 Mokelumne River     
+           7
+ 109  80   3.600E-01
+ 109  81   2.800E-01
+ 110  80   2.600E-01
+ 110  81   4.000E-01
+ 111  80   5.000E-02
+ 111  81   6.200E-01
+ 112  81   1.300E-01
+ 18 Tule River          
+           4
+ 114  74   3.300E-01
+ 114  75   2.000E-02
+ 115  74   5.700E-01
+ 115  75   1.900E-01

Propchange: incubator/climate/branches/rcmet-2.1.2/src/main/python/rcmes/resources/watersheds/CAwsdCU_wgt_ep36_d01
------------------------------------------------------------------------------
    svn:executable = *



Mime
View raw message