cassandra-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From sn...@apache.org
Subject [2/3] cassandra git commit: remove net.mintern.primitive library due to license issue, remove primitive-1.0.jar, add ASL2 licensed TimSort implementation, update snowball-stemmer license file
Date Thu, 27 Oct 2016 09:44:32 GMT
remove net.mintern.primitive library due to license issue,
remove primitive-1.0.jar, add ASL2 licensed TimSort implementation, update snowball-stemmer license file

patch by Robert Stupp; reviewed by  for CASSANDRA-12845


Project: http://git-wip-us.apache.org/repos/asf/cassandra/repo
Commit: http://git-wip-us.apache.org/repos/asf/cassandra/commit/8f0d5a29
Tree: http://git-wip-us.apache.org/repos/asf/cassandra/tree/8f0d5a29
Diff: http://git-wip-us.apache.org/repos/asf/cassandra/diff/8f0d5a29

Branch: refs/heads/trunk
Commit: 8f0d5a295d34972ef719574df4aa1b59bf9e8478
Parents: bdd4a92
Author: Robert Stupp <snazy@snazy.de>
Authored: Thu Oct 27 11:42:05 2016 +0200
Committer: Robert Stupp <snazy@snazy-ds15.fritz.box>
Committed: Thu Oct 27 11:42:05 2016 +0200

----------------------------------------------------------------------
 CHANGES.txt                                     |   1 +
 build.xml                                       |   2 -
 lib/licenses/primitive-1.0.txt                  | 201 -----
 lib/licenses/snowball-stemmer-1.3.0.581.1.txt   | 204 +----
 lib/primitive-1.0.jar                           | Bin 52589 -> 0 bytes
 .../cassandra/index/sasi/sa/SuffixSA.java       |   4 +-
 .../org/apache/cassandra/utils/LongTimSort.java | 868 +++++++++++++++++++
 7 files changed, 880 insertions(+), 400 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/cassandra/blob/8f0d5a29/CHANGES.txt
----------------------------------------------------------------------
diff --git a/CHANGES.txt b/CHANGES.txt
index 847bae6..89c94dd 100644
--- a/CHANGES.txt
+++ b/CHANGES.txt
@@ -1,4 +1,5 @@
 3.10
+ * remove net.mintern.primitive library due to license issue (CASSANDRA-12845)
  * Properly format IPv6 addresses when logging JMX service URL (CASSANDRA-12454)
  * Optimize the vnode allocation for single replica per DC (CASSANDRA-12777)
  * Use non-token restrictions for bounds when token restrictions are overridden (CASSANDRA-12419)

http://git-wip-us.apache.org/repos/asf/cassandra/blob/8f0d5a29/build.xml
----------------------------------------------------------------------
diff --git a/build.xml b/build.xml
index c178197..0be2dba 100644
--- a/build.xml
+++ b/build.xml
@@ -448,7 +448,6 @@
           <dependency groupId="joda-time" artifactId="joda-time" version="2.4" />
           <dependency groupId="com.carrotsearch" artifactId="hppc" version="0.5.4" />
           <dependency groupId="de.jflex" artifactId="jflex" version="1.6.0" />
-          <dependency groupId="net.mintern" artifactId="primitive" version="1.0" />
           <dependency groupId="com.github.rholder" artifactId="snowball-stemmer" version="1.3.0.581.1" />
           <dependency groupId="com.googlecode.concurrent-trees" artifactId="concurrent-trees" version="2.4.0" />
 	  <dependency groupId="com.github.ben-manes.caffeine" artifactId="caffeine" version="2.2.6" />
@@ -636,7 +635,6 @@
         <dependency groupId="org.apache.thrift" artifactId="libthrift"/>
         <dependency groupId="com.carrotsearch" artifactId="hppc" version="0.5.4" />
         <dependency groupId="de.jflex" artifactId="jflex" version="1.6.0" />
-        <dependency groupId="net.mintern" artifactId="primitive" version="1.0" />
         <dependency groupId="com.github.rholder" artifactId="snowball-stemmer" version="1.3.0.581.1" />
         <dependency groupId="com.googlecode.concurrent-trees" artifactId="concurrent-trees" version="2.4.0" />
 

http://git-wip-us.apache.org/repos/asf/cassandra/blob/8f0d5a29/lib/licenses/primitive-1.0.txt
----------------------------------------------------------------------
diff --git a/lib/licenses/primitive-1.0.txt b/lib/licenses/primitive-1.0.txt
deleted file mode 100644
index 50086f8..0000000
--- a/lib/licenses/primitive-1.0.txt
+++ /dev/null
@@ -1,201 +0,0 @@
-                                 Apache License
-                           Version 2.0, January 2004
-                        http://www.apache.org/licenses/
-
-   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
-
-   1. Definitions.
-
-      "License" shall mean the terms and conditions for use, reproduction,
-      and distribution as defined by Sections 1 through 9 of this document.
-
-      "Licensor" shall mean the copyright owner or entity authorized by
-      the copyright owner that is granting the License.
-
-      "Legal Entity" shall mean the union of the acting entity and all
-      other entities that control, are controlled by, or are under common
-      control with that entity. For the purposes of this definition,
-      "control" means (i) the power, direct or indirect, to cause the
-      direction or management of such entity, whether by contract or
-      otherwise, or (ii) ownership of fifty percent (50%) or more of the
-      outstanding shares, or (iii) beneficial ownership of such entity.
-
-      "You" (or "Your") shall mean an individual or Legal Entity
-      exercising permissions granted by this License.
-
-      "Source" form shall mean the preferred form for making modifications,
-      including but not limited to software source code, documentation
-      source, and configuration files.
-
-      "Object" form shall mean any form resulting from mechanical
-      transformation or translation of a Source form, including but
-      not limited to compiled object code, generated documentation,
-      and conversions to other media types.
-
-      "Work" shall mean the work of authorship, whether in Source or
-      Object form, made available under the License, as indicated by a
-      copyright notice that is included in or attached to the work
-      (an example is provided in the Appendix below).
-
-      "Derivative Works" shall mean any work, whether in Source or Object
-      form, that is based on (or derived from) the Work and for which the
-      editorial revisions, annotations, elaborations, or other modifications
-      represent, as a whole, an original work of authorship. For the purposes
-      of this License, Derivative Works shall not include works that remain
-      separable from, or merely link (or bind by name) to the interfaces of,
-      the Work and Derivative Works thereof.
-
-      "Contribution" shall mean any work of authorship, including
-      the original version of the Work and any modifications or additions
-      to that Work or Derivative Works thereof, that is intentionally
-      submitted to Licensor for inclusion in the Work by the copyright owner
-      or by an individual or Legal Entity authorized to submit on behalf of
-      the copyright owner. For the purposes of this definition, "submitted"
-      means any form of electronic, verbal, or written communication sent
-      to the Licensor or its representatives, including but not limited to
-      communication on electronic mailing lists, source code control systems,
-      and issue tracking systems that are managed by, or on behalf of, the
-      Licensor for the purpose of discussing and improving the Work, but
-      excluding communication that is conspicuously marked or otherwise
-      designated in writing by the copyright owner as "Not a Contribution."
-
-      "Contributor" shall mean Licensor and any individual or Legal Entity
-      on behalf of whom a Contribution has been received by Licensor and
-      subsequently incorporated within the Work.
-
-   2. Grant of Copyright License. Subject to the terms and conditions of
-      this License, each Contributor hereby grants to You a perpetual,
-      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
-      copyright license to reproduce, prepare Derivative Works of,
-      publicly display, publicly perform, sublicense, and distribute the
-      Work and such Derivative Works in Source or Object form.
-
-   3. Grant of Patent License. Subject to the terms and conditions of
-      this License, each Contributor hereby grants to You a perpetual,
-      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
-      (except as stated in this section) patent license to make, have made,
-      use, offer to sell, sell, import, and otherwise transfer the Work,
-      where such license applies only to those patent claims licensable
-      by such Contributor that are necessarily infringed by their
-      Contribution(s) alone or by combination of their Contribution(s)
-      with the Work to which such Contribution(s) was submitted. If You
-      institute patent litigation against any entity (including a
-      cross-claim or counterclaim in a lawsuit) alleging that the Work
-      or a Contribution incorporated within the Work constitutes direct
-      or contributory patent infringement, then any patent licenses
-      granted to You under this License for that Work shall terminate
-      as of the date such litigation is filed.
-
-   4. Redistribution. You may reproduce and distribute copies of the
-      Work or Derivative Works thereof in any medium, with or without
-      modifications, and in Source or Object form, provided that You
-      meet the following conditions:
-
-      (a) You must give any other recipients of the Work or
-          Derivative Works a copy of this License; and
-
-      (b) You must cause any modified files to carry prominent notices
-          stating that You changed the files; and
-
-      (c) You must retain, in the Source form of any Derivative Works
-          that You distribute, all copyright, patent, trademark, and
-          attribution notices from the Source form of the Work,
-          excluding those notices that do not pertain to any part of
-          the Derivative Works; and
-
-      (d) If the Work includes a "NOTICE" text file as part of its
-          distribution, then any Derivative Works that You distribute must
-          include a readable copy of the attribution notices contained
-          within such NOTICE file, excluding those notices that do not
-          pertain to any part of the Derivative Works, in at least one
-          of the following places: within a NOTICE text file distributed
-          as part of the Derivative Works; within the Source form or
-          documentation, if provided along with the Derivative Works; or,
-          within a display generated by the Derivative Works, if and
-          wherever such third-party notices normally appear. The contents
-          of the NOTICE file are for informational purposes only and
-          do not modify the License. You may add Your own attribution
-          notices within Derivative Works that You distribute, alongside
-          or as an addendum to the NOTICE text from the Work, provided
-          that such additional attribution notices cannot be construed
-          as modifying the License.
-
-      You may add Your own copyright statement to Your modifications and
-      may provide additional or different license terms and conditions
-      for use, reproduction, or distribution of Your modifications, or
-      for any such Derivative Works as a whole, provided Your use,
-      reproduction, and distribution of the Work otherwise complies with
-      the conditions stated in this License.
-
-   5. Submission of Contributions. Unless You explicitly state otherwise,
-      any Contribution intentionally submitted for inclusion in the Work
-      by You to the Licensor shall be under the terms and conditions of
-      this License, without any additional terms or conditions.
-      Notwithstanding the above, nothing herein shall supersede or modify
-      the terms of any separate license agreement you may have executed
-      with Licensor regarding such Contributions.
-
-   6. Trademarks. This License does not grant permission to use the trade
-      names, trademarks, service marks, or product names of the Licensor,
-      except as required for reasonable and customary use in describing the
-      origin of the Work and reproducing the content of the NOTICE file.
-
-   7. Disclaimer of Warranty. Unless required by applicable law or
-      agreed to in writing, Licensor provides the Work (and each
-      Contributor provides its Contributions) on an "AS IS" BASIS,
-      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
-      implied, including, without limitation, any warranties or conditions
-      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
-      PARTICULAR PURPOSE. You are solely responsible for determining the
-      appropriateness of using or redistributing the Work and assume any
-      risks associated with Your exercise of permissions under this License.
-
-   8. Limitation of Liability. In no event and under no legal theory,
-      whether in tort (including negligence), contract, or otherwise,
-      unless required by applicable law (such as deliberate and grossly
-      negligent acts) or agreed to in writing, shall any Contributor be
-      liable to You for damages, including any direct, indirect, special,
-      incidental, or consequential damages of any character arising as a
-      result of this License or out of the use or inability to use the
-      Work (including but not limited to damages for loss of goodwill,
-      work stoppage, computer failure or malfunction, or any and all
-      other commercial damages or losses), even if such Contributor
-      has been advised of the possibility of such damages.
-
-   9. Accepting Warranty or Additional Liability. While redistributing
-      the Work or Derivative Works thereof, You may choose to offer,
-      and charge a fee for, acceptance of support, warranty, indemnity,
-      or other liability obligations and/or rights consistent with this
-      License. However, in accepting such obligations, You may act only
-      on Your own behalf and on Your sole responsibility, not on behalf
-      of any other Contributor, and only if You agree to indemnify,
-      defend, and hold each Contributor harmless for any liability
-      incurred by, or claims asserted against, such Contributor by reason
-      of your accepting any such warranty or additional liability.
-
-   END OF TERMS AND CONDITIONS
-
-   APPENDIX: How to apply the Apache License to your work.
-
-      To apply the Apache License to your work, attach the following
-      boilerplate notice, with the fields enclosed by brackets "[]"
-      replaced with your own identifying information. (Don't include
-      the brackets!) The text should be enclosed in the appropriate
-      comment syntax for the file format. We also recommend that a
-      file or class name and description of purpose be included on the
-      same "printed page" as the copyright notice for easier
-      identification within third-party archives.
-
-   Copyright [yyyy] [name of copyright owner]
-
-   Licensed under the Apache License, Version 2.0 (the "License");
-   you may not use this file except in compliance with the License.
-   You may obtain a copy of the License at
-
-       http://www.apache.org/licenses/LICENSE-2.0
-
-   Unless required by applicable law or agreed to in writing, software
-   distributed under the License is distributed on an "AS IS" BASIS,
-   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-   See the License for the specific language governing permissions and
-   limitations under the License.
\ No newline at end of file

http://git-wip-us.apache.org/repos/asf/cassandra/blob/8f0d5a29/lib/licenses/snowball-stemmer-1.3.0.581.1.txt
----------------------------------------------------------------------
diff --git a/lib/licenses/snowball-stemmer-1.3.0.581.1.txt b/lib/licenses/snowball-stemmer-1.3.0.581.1.txt
index 50086f8..1f7634b 100644
--- a/lib/licenses/snowball-stemmer-1.3.0.581.1.txt
+++ b/lib/licenses/snowball-stemmer-1.3.0.581.1.txt
@@ -1,201 +1,15 @@
-                                 Apache License
-                           Version 2.0, January 2004
-                        http://www.apache.org/licenses/
+Copyright (c) 2001, Dr Martin Porter,
+Copyright (c) 2002, Richard Boulton.
+All rights reserved.
 
-   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
 
-   1. Definitions.
+1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
 
-      "License" shall mean the terms and conditions for use, reproduction,
-      and distribution as defined by Sections 1 through 9 of this document.
+2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
 
-      "Licensor" shall mean the copyright owner or entity authorized by
-      the copyright owner that is granting the License.
+3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
 
-      "Legal Entity" shall mean the union of the acting entity and all
-      other entities that control, are controlled by, or are under common
-      control with that entity. For the purposes of this definition,
-      "control" means (i) the power, direct or indirect, to cause the
-      direction or management of such entity, whether by contract or
-      otherwise, or (ii) ownership of fifty percent (50%) or more of the
-      outstanding shares, or (iii) beneficial ownership of such entity.
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
-      "You" (or "Your") shall mean an individual or Legal Entity
-      exercising permissions granted by this License.
-
-      "Source" form shall mean the preferred form for making modifications,
-      including but not limited to software source code, documentation
-      source, and configuration files.
-
-      "Object" form shall mean any form resulting from mechanical
-      transformation or translation of a Source form, including but
-      not limited to compiled object code, generated documentation,
-      and conversions to other media types.
-
-      "Work" shall mean the work of authorship, whether in Source or
-      Object form, made available under the License, as indicated by a
-      copyright notice that is included in or attached to the work
-      (an example is provided in the Appendix below).
-
-      "Derivative Works" shall mean any work, whether in Source or Object
-      form, that is based on (or derived from) the Work and for which the
-      editorial revisions, annotations, elaborations, or other modifications
-      represent, as a whole, an original work of authorship. For the purposes
-      of this License, Derivative Works shall not include works that remain
-      separable from, or merely link (or bind by name) to the interfaces of,
-      the Work and Derivative Works thereof.
-
-      "Contribution" shall mean any work of authorship, including
-      the original version of the Work and any modifications or additions
-      to that Work or Derivative Works thereof, that is intentionally
-      submitted to Licensor for inclusion in the Work by the copyright owner
-      or by an individual or Legal Entity authorized to submit on behalf of
-      the copyright owner. For the purposes of this definition, "submitted"
-      means any form of electronic, verbal, or written communication sent
-      to the Licensor or its representatives, including but not limited to
-      communication on electronic mailing lists, source code control systems,
-      and issue tracking systems that are managed by, or on behalf of, the
-      Licensor for the purpose of discussing and improving the Work, but
-      excluding communication that is conspicuously marked or otherwise
-      designated in writing by the copyright owner as "Not a Contribution."
-
-      "Contributor" shall mean Licensor and any individual or Legal Entity
-      on behalf of whom a Contribution has been received by Licensor and
-      subsequently incorporated within the Work.
-
-   2. Grant of Copyright License. Subject to the terms and conditions of
-      this License, each Contributor hereby grants to You a perpetual,
-      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
-      copyright license to reproduce, prepare Derivative Works of,
-      publicly display, publicly perform, sublicense, and distribute the
-      Work and such Derivative Works in Source or Object form.
-
-   3. Grant of Patent License. Subject to the terms and conditions of
-      this License, each Contributor hereby grants to You a perpetual,
-      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
-      (except as stated in this section) patent license to make, have made,
-      use, offer to sell, sell, import, and otherwise transfer the Work,
-      where such license applies only to those patent claims licensable
-      by such Contributor that are necessarily infringed by their
-      Contribution(s) alone or by combination of their Contribution(s)
-      with the Work to which such Contribution(s) was submitted. If You
-      institute patent litigation against any entity (including a
-      cross-claim or counterclaim in a lawsuit) alleging that the Work
-      or a Contribution incorporated within the Work constitutes direct
-      or contributory patent infringement, then any patent licenses
-      granted to You under this License for that Work shall terminate
-      as of the date such litigation is filed.
-
-   4. Redistribution. You may reproduce and distribute copies of the
-      Work or Derivative Works thereof in any medium, with or without
-      modifications, and in Source or Object form, provided that You
-      meet the following conditions:
-
-      (a) You must give any other recipients of the Work or
-          Derivative Works a copy of this License; and
-
-      (b) You must cause any modified files to carry prominent notices
-          stating that You changed the files; and
-
-      (c) You must retain, in the Source form of any Derivative Works
-          that You distribute, all copyright, patent, trademark, and
-          attribution notices from the Source form of the Work,
-          excluding those notices that do not pertain to any part of
-          the Derivative Works; and
-
-      (d) If the Work includes a "NOTICE" text file as part of its
-          distribution, then any Derivative Works that You distribute must
-          include a readable copy of the attribution notices contained
-          within such NOTICE file, excluding those notices that do not
-          pertain to any part of the Derivative Works, in at least one
-          of the following places: within a NOTICE text file distributed
-          as part of the Derivative Works; within the Source form or
-          documentation, if provided along with the Derivative Works; or,
-          within a display generated by the Derivative Works, if and
-          wherever such third-party notices normally appear. The contents
-          of the NOTICE file are for informational purposes only and
-          do not modify the License. You may add Your own attribution
-          notices within Derivative Works that You distribute, alongside
-          or as an addendum to the NOTICE text from the Work, provided
-          that such additional attribution notices cannot be construed
-          as modifying the License.
-
-      You may add Your own copyright statement to Your modifications and
-      may provide additional or different license terms and conditions
-      for use, reproduction, or distribution of Your modifications, or
-      for any such Derivative Works as a whole, provided Your use,
-      reproduction, and distribution of the Work otherwise complies with
-      the conditions stated in this License.
-
-   5. Submission of Contributions. Unless You explicitly state otherwise,
-      any Contribution intentionally submitted for inclusion in the Work
-      by You to the Licensor shall be under the terms and conditions of
-      this License, without any additional terms or conditions.
-      Notwithstanding the above, nothing herein shall supersede or modify
-      the terms of any separate license agreement you may have executed
-      with Licensor regarding such Contributions.
-
-   6. Trademarks. This License does not grant permission to use the trade
-      names, trademarks, service marks, or product names of the Licensor,
-      except as required for reasonable and customary use in describing the
-      origin of the Work and reproducing the content of the NOTICE file.
-
-   7. Disclaimer of Warranty. Unless required by applicable law or
-      agreed to in writing, Licensor provides the Work (and each
-      Contributor provides its Contributions) on an "AS IS" BASIS,
-      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
-      implied, including, without limitation, any warranties or conditions
-      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
-      PARTICULAR PURPOSE. You are solely responsible for determining the
-      appropriateness of using or redistributing the Work and assume any
-      risks associated with Your exercise of permissions under this License.
-
-   8. Limitation of Liability. In no event and under no legal theory,
-      whether in tort (including negligence), contract, or otherwise,
-      unless required by applicable law (such as deliberate and grossly
-      negligent acts) or agreed to in writing, shall any Contributor be
-      liable to You for damages, including any direct, indirect, special,
-      incidental, or consequential damages of any character arising as a
-      result of this License or out of the use or inability to use the
-      Work (including but not limited to damages for loss of goodwill,
-      work stoppage, computer failure or malfunction, or any and all
-      other commercial damages or losses), even if such Contributor
-      has been advised of the possibility of such damages.
-
-   9. Accepting Warranty or Additional Liability. While redistributing
-      the Work or Derivative Works thereof, You may choose to offer,
-      and charge a fee for, acceptance of support, warranty, indemnity,
-      or other liability obligations and/or rights consistent with this
-      License. However, in accepting such obligations, You may act only
-      on Your own behalf and on Your sole responsibility, not on behalf
-      of any other Contributor, and only if You agree to indemnify,
-      defend, and hold each Contributor harmless for any liability
-      incurred by, or claims asserted against, such Contributor by reason
-      of your accepting any such warranty or additional liability.
-
-   END OF TERMS AND CONDITIONS
-
-   APPENDIX: How to apply the Apache License to your work.
-
-      To apply the Apache License to your work, attach the following
-      boilerplate notice, with the fields enclosed by brackets "[]"
-      replaced with your own identifying information. (Don't include
-      the brackets!) The text should be enclosed in the appropriate
-      comment syntax for the file format. We also recommend that a
-      file or class name and description of purpose be included on the
-      same "printed page" as the copyright notice for easier
-      identification within third-party archives.
-
-   Copyright [yyyy] [name of copyright owner]
-
-   Licensed under the Apache License, Version 2.0 (the "License");
-   you may not use this file except in compliance with the License.
-   You may obtain a copy of the License at
-
-       http://www.apache.org/licenses/LICENSE-2.0
-
-   Unless required by applicable law or agreed to in writing, software
-   distributed under the License is distributed on an "AS IS" BASIS,
-   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-   See the License for the specific language governing permissions and
-   limitations under the License.
\ No newline at end of file
+(SOURCE:http://snowball.tartarus.org/license.html)

http://git-wip-us.apache.org/repos/asf/cassandra/blob/8f0d5a29/lib/primitive-1.0.jar
----------------------------------------------------------------------
diff --git a/lib/primitive-1.0.jar b/lib/primitive-1.0.jar
deleted file mode 100644
index 288daa0..0000000
Binary files a/lib/primitive-1.0.jar and /dev/null differ

http://git-wip-us.apache.org/repos/asf/cassandra/blob/8f0d5a29/src/java/org/apache/cassandra/index/sasi/sa/SuffixSA.java
----------------------------------------------------------------------
diff --git a/src/java/org/apache/cassandra/index/sasi/sa/SuffixSA.java b/src/java/org/apache/cassandra/index/sasi/sa/SuffixSA.java
index 59c50b4..9e1c76a 100644
--- a/src/java/org/apache/cassandra/index/sasi/sa/SuffixSA.java
+++ b/src/java/org/apache/cassandra/index/sasi/sa/SuffixSA.java
@@ -24,10 +24,10 @@ import org.apache.cassandra.index.sasi.disk.DynamicTokenTreeBuilder;
 import org.apache.cassandra.index.sasi.disk.OnDiskIndexBuilder;
 import org.apache.cassandra.index.sasi.disk.TokenTreeBuilder;
 import org.apache.cassandra.db.marshal.AbstractType;
+import org.apache.cassandra.utils.LongTimSort;
 import org.apache.cassandra.utils.Pair;
 
 import com.google.common.base.Charsets;
-import net.mintern.primitive.Primitive;
 
 public class SuffixSA extends SA<CharBuffer>
 {
@@ -81,7 +81,7 @@ public class SuffixSA extends SA<CharBuffer>
                 isComplete = false;
             }
 
-            Primitive.sort(suffixes, (a, b) -> {
+            LongTimSort.sort(suffixes, (a, b) -> {
                 Term aTerm = terms.get((int) (a >>> 32));
                 Term bTerm = terms.get((int) (b >>> 32));
                 return comparator.compare(aTerm.getSuffix(clearCompleteBit(a) - aTerm.getPosition()),

http://git-wip-us.apache.org/repos/asf/cassandra/blob/8f0d5a29/src/java/org/apache/cassandra/utils/LongTimSort.java
----------------------------------------------------------------------
diff --git a/src/java/org/apache/cassandra/utils/LongTimSort.java b/src/java/org/apache/cassandra/utils/LongTimSort.java
new file mode 100644
index 0000000..76fe231
--- /dev/null
+++ b/src/java/org/apache/cassandra/utils/LongTimSort.java
@@ -0,0 +1,868 @@
+/*
+ * Copyright (C) 2008 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+/*
+ * This file originates from https://android.googlesource.com/platform/libcore/+/gingerbread/luni/src/main/java/java/util/TimSort.java
+ * and has been modified to sort primitive long arrays instead of object arrays.
+ */
+//package java.util;
+
+package org.apache.cassandra.utils;
+
+import java.util.Arrays;
+
+/**
+ * A stable, adaptive, iterative mergesort that requires far fewer than
+ * n lg(n) comparisons when running on partially sorted arrays, while
+ * offering performance comparable to a traditional mergesort when run
+ * on random arrays.  Like all proper mergesorts, this sort is stable and
+ * runs O(n log n) time (worst case).  In the worst case, this sort requires
+ * temporary storage space for n/2 object references; in the best case,
+ * it requires only a small constant amount of space.
+ *
+ * This implementation was adapted from Tim Peters's list sort for
+ * Python, which is described in detail here:
+ *
+ *   http://svn.python.org/projects/python/trunk/Objects/listsort.txt
+ *
+ * Tim's C code may be found here:
+ *
+ *   http://svn.python.org/projects/python/trunk/Objects/listobject.c
+ *
+ * The underlying techniques are described in this paper (and may have
+ * even earlier origins):
+ *
+ *  "Optimistic Sorting and Information Theoretic Complexity"
+ *  Peter McIlroy
+ *  SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
+ *  pp 467-474, Austin, Texas, 25-27 January 1993.
+ *
+ * While the API to this class consists solely of static methods, it is
+ * (privately) instantiable; a TimSort instance holds the state of an ongoing
+ * sort, assuming the input array is large enough to warrant the full-blown
+ * TimSort. Small arrays are sorted in place, using a binary insertion sort.
+ */
+public final class LongTimSort {
+    /**
+     * This is the minimum sized sequence that will be merged.  Shorter
+     * sequences will be lengthened by calling binarySort.  If the entire
+     * array is less than this length, no merges will be performed.
+     *
+     * This constant should be a power of two.  It was 64 in Tim Peter's C
+     * implementation, but 32 was empirically determined to work better in
+     * this implementation.  In the unlikely event that you set this constant
+     * to be a number that's not a power of two, you'll need to change the
+     * {@link #minRunLength} computation.
+     *
+     * If you decrease this constant, you must change the stackLen
+     * computation in the TimSort constructor, or you risk an
+     * ArrayOutOfBounds exception.  See listsort.txt for a discussion
+     * of the minimum stack length required as a function of the length
+     * of the array being sorted and the minimum merge sequence length.
+     */
+    private static final int MIN_MERGE = 32;
+    /**
+     * The array being sorted.
+     */
+    private final long[] a;
+    /**
+     * The comparator for this sort.
+     */
+    private final LongComparator c;
+    /**
+     * When we get into galloping mode, we stay there until both runs win less
+     * often than MIN_GALLOP consecutive times.
+     */
+    private static final int  MIN_GALLOP = 7;
+    /**
+     * This controls when we get *into* galloping mode.  It is initialized
+     * to MIN_GALLOP.  The mergeLo and mergeHi methods nudge it higher for
+     * random data, and lower for highly structured data.
+     */
+    private int minGallop = MIN_GALLOP;
+    /**
+     * Maximum initial size of tmp array, which is used for merging.  The array
+     * can grow to accommodate demand.
+     *
+     * Unlike Tim's original C version, we do not allocate this much storage
+     * when sorting smaller arrays.  This change was required for performance.
+     */
+    private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
+    /**
+     * Temp storage for merges.
+     */
+    private long[] tmp;
+    /**
+     * A stack of pending runs yet to be merged.  Run i starts at
+     * address base[i] and extends for len[i] elements.  It's always
+     * true (so long as the indices are in bounds) that:
+     *
+     *     runBase[i] + runLen[i] == runBase[i + 1]
+     *
+     * so we could cut the storage for this, but it's a minor amount,
+     * and keeping all the info explicit simplifies the code.
+     */
+    private int stackSize = 0;  // Number of pending runs on stack
+    private final int[] runBase;
+    private final int[] runLen;
+    /**
+     * Asserts have been placed in if-statements for performace. To enable them,
+     * set this field to true and enable them in VM with a command line flag.
+     * If you modify this class, please do test the asserts!
+     */
+    private static final boolean DEBUG = false;
+    /**
+     * Creates a TimSort instance to maintain the state of an ongoing sort.
+     *
+     * @param a the array to be sorted
+     * @param c the comparator to determine the order of the sort
+     */
+    private LongTimSort(long[] a, LongComparator c) {
+        this.a = a;
+        this.c = c;
+        // Allocate temp storage (which may be increased later if necessary)
+        int len = a.length;
+        @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
+        long[] newArray = new long[len < 2 * INITIAL_TMP_STORAGE_LENGTH ?
+                                   len >>> 1 : INITIAL_TMP_STORAGE_LENGTH];
+        tmp = newArray;
+        /*
+         * Allocate runs-to-be-merged stack (which cannot be expanded).  The
+         * stack length requirements are described in listsort.txt.  The C
+         * version always uses the same stack length (85), but this was
+         * measured to be too expensive when sorting "mid-sized" arrays (e.g.,
+         * 100 elements) in Java.  Therefore, we use smaller (but sufficiently
+         * large) stack lengths for smaller arrays.  The "magic numbers" in the
+         * computation below must be changed if MIN_MERGE is decreased.  See
+         * the MIN_MERGE declaration above for more information.
+         */
+        int stackLen = (len <    120  ?  5 :
+                        len <   1542  ? 10 :
+                        len < 119151  ? 19 : 40);
+        runBase = new int[stackLen];
+        runLen = new int[stackLen];
+    }
+    /*
+     * The next two methods (which are package private and static) constitute
+     * the entire API of this class.  Each of these methods obeys the contract
+     * of the public method with the same signature in java.util.Arrays.
+     */
+    public static void sort(long[] a, LongComparator c) {
+        sort(a, 0, a.length, c);
+    }
+    public static void sort(long[] a, int lo, int hi, LongComparator c) {
+        if (c == null) {
+            Arrays.sort(a, lo, hi);
+            return;
+        }
+        rangeCheck(a.length, lo, hi);
+        int nRemaining  = hi - lo;
+        if (nRemaining < 2)
+            return;  // Arrays of size 0 and 1 are always sorted
+        // If array is small, do a "mini-TimSort" with no merges
+        if (nRemaining < MIN_MERGE) {
+            int initRunLen = countRunAndMakeAscending(a, lo, hi, c);
+            binarySort(a, lo, hi, lo + initRunLen, c);
+            return;
+        }
+        /**
+         * March over the array once, left to right, finding natural runs,
+         * extending short natural runs to minRun elements, and merging runs
+         * to maintain stack invariant.
+         */
+        LongTimSort ts = new LongTimSort(a, c);
+        int minRun = minRunLength(nRemaining);
+        do {
+            // Identify next run
+            int runLen = countRunAndMakeAscending(a, lo, hi, c);
+            // If run is short, extend to min(minRun, nRemaining)
+            if (runLen < minRun) {
+                int force = nRemaining <= minRun ? nRemaining : minRun;
+                binarySort(a, lo, lo + force, lo + runLen, c);
+                runLen = force;
+            }
+            // Push run onto pending-run stack, and maybe merge
+            ts.pushRun(lo, runLen);
+            ts.mergeCollapse();
+            // Advance to find next run
+            lo += runLen;
+            nRemaining -= runLen;
+        } while (nRemaining != 0);
+        // Merge all remaining runs to complete sort
+        if (DEBUG) assert lo == hi;
+        ts.mergeForceCollapse();
+        if (DEBUG) assert ts.stackSize == 1;
+    }
+    /**
+     * Sorts the specified portion of the specified array using a binary
+     * insertion sort.  This is the best method for sorting small numbers
+     * of elements.  It requires O(n log n) compares, but O(n^2) data
+     * movement (worst case).
+     *
+     * If the initial part of the specified range is already sorted,
+     * this method can take advantage of it: the method assumes that the
+     * elements from index {@code lo}, inclusive, to {@code start},
+     * exclusive are already sorted.
+     *
+     * @param a the array in which a range is to be sorted
+     * @param lo the index of the first element in the range to be sorted
+     * @param hi the index after the last element in the range to be sorted
+     * @param start the index of the first element in the range that is
+     *        not already known to be sorted (@code lo <= start <= hi}
+     * @param c comparator to used for the sort
+     */
+    @SuppressWarnings("fallthrough")
+    private static void binarySort(long[] a, int lo, int hi, int start,
+                                       LongComparator c) {
+        if (DEBUG) assert lo <= start && start <= hi;
+        if (start == lo)
+            start++;
+        for ( ; start < hi; start++) {
+            long pivot = a[start];
+            // Set left (and right) to the index where a[start] (pivot) belongs
+            int left = lo;
+            int right = start;
+            if (DEBUG) assert left <= right;
+            /*
+             * Invariants:
+             *   pivot >= all in [lo, left).
+             *   pivot <  all in [right, start).
+             */
+            while (left < right) {
+                int mid = (left + right) >>> 1;
+                if (c.compare(pivot, a[mid]) < 0)
+                    right = mid;
+                else
+                    left = mid + 1;
+            }
+            if (DEBUG) assert left == right;
+            /*
+             * The invariants still hold: pivot >= all in [lo, left) and
+             * pivot < all in [left, start), so pivot belongs at left.  Note
+             * that if there are elements equal to pivot, left points to the
+             * first slot after them -- that's why this sort is stable.
+             * Slide elements over to make room to make room for pivot.
+             */
+            int n = start - left;  // The number of elements to move
+            // Switch is just an optimization for arraycopy in default case
+            switch(n) {
+                case 2:  a[left + 2] = a[left + 1];
+                case 1:  a[left + 1] = a[left];
+                    break;
+                default: System.arraycopy(a, left, a, left + 1, n);
+            }
+            a[left] = pivot;
+        }
+    }
+    /**
+     * Returns the length of the run beginning at the specified position in
+     * the specified array and reverses the run if it is descending (ensuring
+     * that the run will always be ascending when the method returns).
+     *
+     * A run is the longest ascending sequence with:
+     *
+     *    a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
+     *
+     * or the longest descending sequence with:
+     *
+     *    a[lo] >  a[lo + 1] >  a[lo + 2] >  ...
+     *
+     * For its intended use in a stable mergesort, the strictness of the
+     * definition of "descending" is needed so that the call can safely
+     * reverse a descending sequence without violating stability.
+     *
+     * @param a the array in which a run is to be counted and possibly reversed
+     * @param lo index of the first element in the run
+     * @param hi index after the last element that may be contained in the run.
+    It is required that @code{lo < hi}.
+     * @param c the comparator to used for the sort
+     * @return  the length of the run beginning at the specified position in
+     *          the specified array
+     */
+    private static int countRunAndMakeAscending(long[] a, int lo, int hi,
+                                                LongComparator c) {
+        if (DEBUG) assert lo < hi;
+        int runHi = lo + 1;
+        if (runHi == hi)
+            return 1;
+        // Find end of run, and reverse range if descending
+        if (c.compare(a[runHi++], a[lo]) < 0) { // Descending
+            while(runHi < hi && c.compare(a[runHi], a[runHi - 1]) < 0)
+                runHi++;
+            reverseRange(a, lo, runHi);
+        } else {                              // Ascending
+            while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) >= 0)
+                runHi++;
+        }
+        return runHi - lo;
+    }
+    /**
+     * Reverse the specified range of the specified array.
+     *
+     * @param a the array in which a range is to be reversed
+     * @param lo the index of the first element in the range to be reversed
+     * @param hi the index after the last element in the range to be reversed
+     */
+    private static void reverseRange(long[] a, int lo, int hi) {
+        hi--;
+        while (lo < hi) {
+            long t = a[lo];
+            a[lo++] = a[hi];
+            a[hi--] = t;
+        }
+    }
+    /**
+     * Returns the minimum acceptable run length for an array of the specified
+     * length. Natural runs shorter than this will be extended with
+     * {@link #binarySort}.
+     *
+     * Roughly speaking, the computation is:
+     *
+     *  If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
+     *  Else if n is an exact power of 2, return MIN_MERGE/2.
+     *  Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
+     *   is close to, but strictly less than, an exact power of 2.
+     *
+     * For the rationale, see listsort.txt.
+     *
+     * @param n the length of the array to be sorted
+     * @return the length of the minimum run to be merged
+     */
+    private static int minRunLength(int n) {
+        if (DEBUG) assert n >= 0;
+        int r = 0;      // Becomes 1 if any 1 bits are shifted off
+        while (n >= MIN_MERGE) {
+            r |= (n & 1);
+            n >>= 1;
+        }
+        return n + r;
+    }
+    /**
+     * Pushes the specified run onto the pending-run stack.
+     *
+     * @param runBase index of the first element in the run
+     * @param runLen  the number of elements in the run
+     */
+    private void pushRun(int runBase, int runLen) {
+        this.runBase[stackSize] = runBase;
+        this.runLen[stackSize] = runLen;
+        stackSize++;
+    }
+    /**
+     * Examines the stack of runs waiting to be merged and merges adjacent runs
+     * until the stack invariants are reestablished:
+     *
+     *     1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
+     *     2. runLen[i - 2] > runLen[i - 1]
+     *
+     * This method is called each time a new run is pushed onto the stack,
+     * so the invariants are guaranteed to hold for i < stackSize upon
+     * entry to the method.
+     */
+    private void mergeCollapse() {
+        while (stackSize > 1) {
+            int n = stackSize - 2;
+            if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) {
+                if (runLen[n - 1] < runLen[n + 1])
+                    n--;
+                mergeAt(n);
+            } else if (runLen[n] <= runLen[n + 1]) {
+                mergeAt(n);
+            } else {
+                break; // Invariant is established
+            }
+        }
+    }
+    /**
+     * Merges all runs on the stack until only one remains.  This method is
+     * called once, to complete the sort.
+     */
+    private void mergeForceCollapse() {
+        while (stackSize > 1) {
+            int n = stackSize - 2;
+            if (n > 0 && runLen[n - 1] < runLen[n + 1])
+                n--;
+            mergeAt(n);
+        }
+    }
+    /**
+     * Merges the two runs at stack indices i and i+1.  Run i must be
+     * the penultimate or antepenultimate run on the stack.  In other words,
+     * i must be equal to stackSize-2 or stackSize-3.
+     *
+     * @param i stack index of the first of the two runs to merge
+     */
+    private void mergeAt(int i) {
+        if (DEBUG) assert stackSize >= 2;
+        if (DEBUG) assert i >= 0;
+        if (DEBUG) assert i == stackSize - 2 || i == stackSize - 3;
+        int base1 = runBase[i];
+        int len1 = runLen[i];
+        int base2 = runBase[i + 1];
+        int len2 = runLen[i + 1];
+        if (DEBUG) assert len1 > 0 && len2 > 0;
+        if (DEBUG) assert base1 + len1 == base2;
+        /*
+         * Record the length of the combined runs; if i is the 3rd-last
+         * run now, also slide over the last run (which isn't involved
+         * in this merge).  The current run (i+1) goes away in any case.
+         */
+        runLen[i] = len1 + len2;
+        if (i == stackSize - 3) {
+            runBase[i + 1] = runBase[i + 2];
+            runLen[i + 1] = runLen[i + 2];
+        }
+        stackSize--;
+        /*
+         * Find where the first element of run2 goes in run1. Prior elements
+         * in run1 can be ignored (because they're already in place).
+         */
+        int k = gallopRight(a[base2], a, base1, len1, 0, c);
+        if (DEBUG) assert k >= 0;
+        base1 += k;
+        len1 -= k;
+        if (len1 == 0)
+            return;
+        /*
+         * Find where the last element of run1 goes in run2. Subsequent elements
+         * in run2 can be ignored (because they're already in place).
+         */
+        len2 = gallopLeft(a[base1 + len1 - 1], a, base2, len2, len2 - 1, c);
+        if (DEBUG) assert len2 >= 0;
+        if (len2 == 0)
+            return;
+        // Merge remaining runs, using tmp array with min(len1, len2) elements
+        if (len1 <= len2)
+            mergeLo(base1, len1, base2, len2);
+        else
+            mergeHi(base1, len1, base2, len2);
+    }
+    /**
+     * Locates the position at which to insert the specified key into the
+     * specified sorted range; if the range contains an element equal to key,
+     * returns the index of the leftmost equal element.
+     *
+     * @param key the key whose insertion point to search for
+     * @param a the array in which to search
+     * @param base the index of the first element in the range
+     * @param len the length of the range; must be > 0
+     * @param hint the index at which to begin the search, 0 <= hint < n.
+     *     The closer hint is to the result, the faster this method will run.
+     * @param c the comparator used to order the range, and to search
+     * @return the int k,  0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
+     *    pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
+     *    In other words, key belongs at index b + k; or in other words,
+     *    the first k elements of a should precede key, and the last n - k
+     *    should follow it.
+     */
+    private static int gallopLeft(long key, long[] a, int base, int len, int hint,
+                                  LongComparator c) {
+        if (DEBUG) assert len > 0 && hint >= 0 && hint < len;
+        int lastOfs = 0;
+        int ofs = 1;
+        if (c.compare(key, a[base + hint]) > 0) {
+            // Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
+            int maxOfs = len - hint;
+            while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) > 0) {
+                lastOfs = ofs;
+                ofs = (ofs << 1) + 1;
+                if (ofs <= 0)   // int overflow
+                    ofs = maxOfs;
+            }
+            if (ofs > maxOfs)
+                ofs = maxOfs;
+            // Make offsets relative to base
+            lastOfs += hint;
+            ofs += hint;
+        } else { // key <= a[base + hint]
+            // Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
+            final int maxOfs = hint + 1;
+            while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) <= 0) {
+                lastOfs = ofs;
+                ofs = (ofs << 1) + 1;
+                if (ofs <= 0)   // int overflow
+                    ofs = maxOfs;
+            }
+            if (ofs > maxOfs)
+                ofs = maxOfs;
+            // Make offsets relative to base
+            int tmp = lastOfs;
+            lastOfs = hint - ofs;
+            ofs = hint - tmp;
+        }
+        if (DEBUG) assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
+        /*
+         * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
+         * to the right of lastOfs but no farther right than ofs.  Do a binary
+         * search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
+         */
+        lastOfs++;
+        while (lastOfs < ofs) {
+            int m = lastOfs + ((ofs - lastOfs) >>> 1);
+            if (c.compare(key, a[base + m]) > 0)
+                lastOfs = m + 1;  // a[base + m] < key
+            else
+                ofs = m;          // key <= a[base + m]
+        }
+        if (DEBUG) assert lastOfs == ofs;    // so a[base + ofs - 1] < key <= a[base + ofs]
+        return ofs;
+    }
+    /**
+     * Like gallopLeft, except that if the range contains an element equal to
+     * key, gallopRight returns the index after the rightmost equal element.
+     *
+     * @param key the key whose insertion point to search for
+     * @param a the array in which to search
+     * @param base the index of the first element in the range
+     * @param len the length of the range; must be > 0
+     * @param hint the index at which to begin the search, 0 <= hint < n.
+     *     The closer hint is to the result, the faster this method will run.
+     * @param c the comparator used to order the range, and to search
+     * @return the int k,  0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
+     */
+    private static int gallopRight(long key, long[] a, int base, int len,
+                                       int hint, LongComparator c) {
+        if (DEBUG) assert len > 0 && hint >= 0 && hint < len;
+        int ofs = 1;
+        int lastOfs = 0;
+        if (c.compare(key, a[base + hint]) < 0) {
+            // Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
+            int maxOfs = hint + 1;
+            while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) < 0) {
+                lastOfs = ofs;
+                ofs = (ofs << 1) + 1;
+                if (ofs <= 0)   // int overflow
+                    ofs = maxOfs;
+            }
+            if (ofs > maxOfs)
+                ofs = maxOfs;
+            // Make offsets relative to b
+            int tmp = lastOfs;
+            lastOfs = hint - ofs;
+            ofs = hint - tmp;
+        } else { // a[b + hint] <= key
+            // Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
+            int maxOfs = len - hint;
+            while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) >= 0) {
+                lastOfs = ofs;
+                ofs = (ofs << 1) + 1;
+                if (ofs <= 0)   // int overflow
+                    ofs = maxOfs;
+            }
+            if (ofs > maxOfs)
+                ofs = maxOfs;
+            // Make offsets relative to b
+            lastOfs += hint;
+            ofs += hint;
+        }
+        if (DEBUG) assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
+        /*
+         * Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
+         * the right of lastOfs but no farther right than ofs.  Do a binary
+         * search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
+         */
+        lastOfs++;
+        while (lastOfs < ofs) {
+            int m = lastOfs + ((ofs - lastOfs) >>> 1);
+            if (c.compare(key, a[base + m]) < 0)
+                ofs = m;          // key < a[b + m]
+            else
+                lastOfs = m + 1;  // a[b + m] <= key
+        }
+        if (DEBUG) assert lastOfs == ofs;    // so a[b + ofs - 1] <= key < a[b + ofs]
+        return ofs;
+    }
+    /**
+     * Merges two adjacent runs in place, in a stable fashion.  The first
+     * element of the first run must be greater than the first element of the
+     * second run (a[base1] > a[base2]), and the last element of the first run
+     * (a[base1 + len1-1]) must be greater than all elements of the second run.
+     *
+     * For performance, this method should be called only when len1 <= len2;
+     * its twin, mergeHi should be called if len1 >= len2.  (Either method
+     * may be called if len1 == len2.)
+     *
+     * @param base1 index of first element in first run to be merged
+     * @param len1  length of first run to be merged (must be > 0)
+     * @param base2 index of first element in second run to be merged
+     *        (must be aBase + aLen)
+     * @param len2  length of second run to be merged (must be > 0)
+     */
+    private void mergeLo(int base1, int len1, int base2, int len2) {
+        if (DEBUG) assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
+        // Copy first run into temp array
+        long[] a = this.a; // For performance
+        long[] tmp = ensureCapacity(len1);
+        System.arraycopy(a, base1, tmp, 0, len1);
+        int cursor1 = 0;       // Indexes into tmp array
+        int cursor2 = base2;   // Indexes int a
+        int dest = base1;      // Indexes int a
+        // Move first element of second run and deal with degenerate cases
+        a[dest++] = a[cursor2++];
+        if (--len2 == 0) {
+            System.arraycopy(tmp, cursor1, a, dest, len1);
+            return;
+        }
+        if (len1 == 1) {
+            System.arraycopy(a, cursor2, a, dest, len2);
+            a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
+            return;
+        }
+        LongComparator c = this.c;  // Use local variable for performance
+        int minGallop = this.minGallop;    //  "    "       "     "      "
+        outer:
+        while (true) {
+            int count1 = 0; // Number of times in a row that first run won
+            int count2 = 0; // Number of times in a row that second run won
+            /*
+             * Do the straightforward thing until (if ever) one run starts
+             * winning consistently.
+             */
+            do {
+                if (DEBUG) assert len1 > 1 && len2 > 0;
+                if (c.compare(a[cursor2], tmp[cursor1]) < 0) {
+                    a[dest++] = a[cursor2++];
+                    count2++;
+                    count1 = 0;
+                    if (--len2 == 0)
+                        break outer;
+                } else {
+                    a[dest++] = tmp[cursor1++];
+                    count1++;
+                    count2 = 0;
+                    if (--len1 == 1)
+                        break outer;
+                }
+            } while ((count1 | count2) < minGallop);
+            /*
+             * One run is winning so consistently that galloping may be a
+             * huge win. So try that, and continue galloping until (if ever)
+             * neither run appears to be winning consistently anymore.
+             */
+            do {
+                if (DEBUG) assert len1 > 1 && len2 > 0;
+                count1 = gallopRight(a[cursor2], tmp, cursor1, len1, 0, c);
+                if (count1 != 0) {
+                    System.arraycopy(tmp, cursor1, a, dest, count1);
+                    dest += count1;
+                    cursor1 += count1;
+                    len1 -= count1;
+                    if (len1 <= 1) // len1 == 1 || len1 == 0
+                        break outer;
+                }
+                a[dest++] = a[cursor2++];
+                if (--len2 == 0)
+                    break outer;
+                count2 = gallopLeft(tmp[cursor1], a, cursor2, len2, 0, c);
+                if (count2 != 0) {
+                    System.arraycopy(a, cursor2, a, dest, count2);
+                    dest += count2;
+                    cursor2 += count2;
+                    len2 -= count2;
+                    if (len2 == 0)
+                        break outer;
+                }
+                a[dest++] = tmp[cursor1++];
+                if (--len1 == 1)
+                    break outer;
+                minGallop--;
+            } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
+            if (minGallop < 0)
+                minGallop = 0;
+            minGallop += 2;  // Penalize for leaving gallop mode
+        }  // End of "outer" loop
+        this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
+        if (len1 == 1) {
+            if (DEBUG) assert len2 > 0;
+            System.arraycopy(a, cursor2, a, dest, len2);
+            a[dest + len2] = tmp[cursor1]; //  Last elt of run 1 to end of merge
+        } else if (len1 == 0) {
+            throw new IllegalArgumentException(
+                                              "Comparison method violates its general contract!");
+        } else {
+            if (DEBUG) assert len2 == 0;
+            if (DEBUG) assert len1 > 1;
+            System.arraycopy(tmp, cursor1, a, dest, len1);
+        }
+    }
+    /**
+     * Like mergeLo, except that this method should be called only if
+     * len1 >= len2; mergeLo should be called if len1 <= len2.  (Either method
+     * may be called if len1 == len2.)
+     *
+     * @param base1 index of first element in first run to be merged
+     * @param len1  length of first run to be merged (must be > 0)
+     * @param base2 index of first element in second run to be merged
+     *        (must be aBase + aLen)
+     * @param len2  length of second run to be merged (must be > 0)
+     */
+    private void mergeHi(int base1, int len1, int base2, int len2) {
+        if (DEBUG) assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
+        // Copy second run into temp array
+        long[] a = this.a; // For performance
+        long[] tmp = ensureCapacity(len2);
+        System.arraycopy(a, base2, tmp, 0, len2);
+        int cursor1 = base1 + len1 - 1;  // Indexes into a
+        int cursor2 = len2 - 1;          // Indexes into tmp array
+        int dest = base2 + len2 - 1;     // Indexes into a
+        // Move last element of first run and deal with degenerate cases
+        a[dest--] = a[cursor1--];
+        if (--len1 == 0) {
+            System.arraycopy(tmp, 0, a, dest - (len2 - 1), len2);
+            return;
+        }
+        if (len2 == 1) {
+            dest -= len1;
+            cursor1 -= len1;
+            System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
+            a[dest] = tmp[cursor2];
+            return;
+        }
+        LongComparator c = this.c;  // Use local variable for performance
+        int minGallop = this.minGallop;    //  "    "       "     "      "
+        outer:
+        while (true) {
+            int count1 = 0; // Number of times in a row that first run won
+            int count2 = 0; // Number of times in a row that second run won
+            /*
+             * Do the straightforward thing until (if ever) one run
+             * appears to win consistently.
+             */
+            do {
+                if (DEBUG) assert len1 > 0 && len2 > 1;
+                if (c.compare(tmp[cursor2], a[cursor1]) < 0) {
+                    a[dest--] = a[cursor1--];
+                    count1++;
+                    count2 = 0;
+                    if (--len1 == 0)
+                        break outer;
+                } else {
+                    a[dest--] = tmp[cursor2--];
+                    count2++;
+                    count1 = 0;
+                    if (--len2 == 1)
+                        break outer;
+                }
+            } while ((count1 | count2) < minGallop);
+            /*
+             * One run is winning so consistently that galloping may be a
+             * huge win. So try that, and continue galloping until (if ever)
+             * neither run appears to be winning consistently anymore.
+             */
+            do {
+                if (DEBUG) assert len1 > 0 && len2 > 1;
+                count1 = len1 - gallopRight(tmp[cursor2], a, base1, len1, len1 - 1, c);
+                if (count1 != 0) {
+                    dest -= count1;
+                    cursor1 -= count1;
+                    len1 -= count1;
+                    System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
+                    if (len1 == 0)
+                        break outer;
+                }
+                a[dest--] = tmp[cursor2--];
+                if (--len2 == 1)
+                    break outer;
+                count2 = len2 - gallopLeft(a[cursor1], tmp, 0, len2, len2 - 1, c);
+                if (count2 != 0) {
+                    dest -= count2;
+                    cursor2 -= count2;
+                    len2 -= count2;
+                    System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
+                    if (len2 <= 1)  // len2 == 1 || len2 == 0
+                        break outer;
+                }
+                a[dest--] = a[cursor1--];
+                if (--len1 == 0)
+                    break outer;
+                minGallop--;
+            } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
+            if (minGallop < 0)
+                minGallop = 0;
+            minGallop += 2;  // Penalize for leaving gallop mode
+        }  // End of "outer" loop
+        this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
+        if (len2 == 1) {
+            if (DEBUG) assert len1 > 0;
+            dest -= len1;
+            cursor1 -= len1;
+            System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
+            a[dest] = tmp[cursor2];  // Move first elt of run2 to front of merge
+        } else if (len2 == 0) {
+            throw new IllegalArgumentException(
+                                              "Comparison method violates its general contract!");
+        } else {
+            if (DEBUG) assert len1 == 0;
+            if (DEBUG) assert len2 > 0;
+            System.arraycopy(tmp, 0, a, dest - (len2 - 1), len2);
+        }
+    }
+    /**
+     * Ensures that the external array tmp has at least the specified
+     * number of elements, increasing its size if necessary.  The size
+     * increases exponentially to ensure amortized linear time complexity.
+     *
+     * @param minCapacity the minimum required capacity of the tmp array
+     * @return tmp, whether or not it grew
+     */
+    private long[] ensureCapacity(int minCapacity) {
+        if (tmp.length < minCapacity) {
+            // Compute smallest power of 2 > minCapacity
+            int newSize = minCapacity;
+            newSize |= newSize >> 1;
+            newSize |= newSize >> 2;
+            newSize |= newSize >> 4;
+            newSize |= newSize >> 8;
+            newSize |= newSize >> 16;
+            newSize++;
+            if (newSize < 0) // Not bloody likely!
+                newSize = minCapacity;
+            else
+                newSize = Math.min(newSize, a.length >>> 1);
+            @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
+            long[] newArray = new long[newSize];
+            tmp = newArray;
+        }
+        return tmp;
+    }
+    /**
+     * Checks that fromIndex and toIndex are in range, and throws an
+     * appropriate exception if they aren't.
+     *
+     * @param arrayLen the length of the array
+     * @param fromIndex the index of the first element of the range
+     * @param toIndex the index after the last element of the range
+     * @throws IllegalArgumentException if fromIndex > toIndex
+     * @throws ArrayIndexOutOfBoundsException if fromIndex < 0
+     *         or toIndex > arrayLen
+     */
+    private static void rangeCheck(int arrayLen, int fromIndex, int toIndex) {
+        if (fromIndex > toIndex)
+            throw new IllegalArgumentException("fromIndex(" + fromIndex +
+                                               ") > toIndex(" + toIndex+")");
+        if (fromIndex < 0)
+            throw new ArrayIndexOutOfBoundsException(fromIndex);
+        if (toIndex > arrayLen)
+            throw new ArrayIndexOutOfBoundsException(toIndex);
+    }
+    
+    // addition to original file
+    
+    @FunctionalInterface
+    public static interface LongComparator
+    {
+        int compare(long o1, long o2);
+    }
+}


Mime
View raw message