arrow-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Jeff Knupp (JIRA)" <j...@apache.org>
Subject [jira] [Created] (ARROW-1167) Writing pyarrow Table to Parquet core dumps
Date Thu, 29 Jun 2017 16:39:00 GMT
Jeff Knupp created ARROW-1167:
---------------------------------

             Summary: Writing pyarrow Table to Parquet core dumps
                 Key: ARROW-1167
                 URL: https://issues.apache.org/jira/browse/ARROW-1167
             Project: Apache Arrow
          Issue Type: Bug
            Reporter: Jeff Knupp


When writing a pyarrow Table (instantiated from a Pandas dataframe reading in a ~5GB CSV file)
to a parquet file, the interpreter cores with the following stack trace from gdb:

```
#0  __memmove_avx_unaligned () at ../sysdeps/x86_64/multiarch/memcpy-avx-unaligned.S:181
#1  0x00007fbaa5c779f1 in parquet::InMemoryOutputStream::Write(unsigned char const*, long)
() from /home/ubuntu/.local/lib/python3.5/site-packages/pyarrow/libparquet.so.1
#2  0x00007fbaa5c0ce97 in parquet::PlainEncoder<parquet::DataType<(parquet::Type::type)6>
>::Put(parquet::ByteArray const*, int) ()
   from /home/ubuntu/.local/lib/python3.5/site-packages/pyarrow/libparquet.so.1
#3  0x00007fbaa5c18855 in parquet::TypedColumnWriter<parquet::DataType<(parquet::Type::type)6>
>::WriteMiniBatch(long, short const*, short const*, parquet::ByteArray const*) ()
   from /home/ubuntu/.local/lib/python3.5/site-packages/pyarrow/libparquet.so.1
#4  0x00007fbaa5c189d5 in parquet::TypedColumnWriter<parquet::DataType<(parquet::Type::type)6>
>::WriteBatch(long, short const*, short const*, parquet::ByteArray const*) ()
   from /home/ubuntu/.local/lib/python3.5/site-packages/pyarrow/libparquet.so.1
#5  0x00007fbaa5be0900 in arrow::Status parquet::arrow::FileWriter::Impl::TypedWriteBatch<parquet::DataType<(parquet::Type::type)6>,
arrow::BinaryType>(parquet::ColumnWriter*, std::shared_ptr<arrow::Array> const&,
long, short const*, short const*) () from /home/ubuntu/.local/lib/python3.5/site-packages/pyarrow/libparquet.so.1
#6  0x00007fbaa5be171d in parquet::arrow::FileWriter::Impl::WriteColumnChunk(arrow::Array
const&) () from /home/ubuntu/.local/lib/python3.5/site-packages/pyarrow/libparquet.so.1
#7  0x00007fbaa5be1dad in parquet::arrow::FileWriter::WriteColumnChunk(arrow::Array const&)
() from /home/ubuntu/.local/lib/python3.5/site-packages/pyarrow/libparquet.so.1
#8  0x00007fbaa5be2047 in parquet::arrow::FileWriter::WriteTable(arrow::Table const&,
long) () from /home/ubuntu/.local/lib/python3.5/site-packages/pyarrow/libparquet.so.1
#9  0x00007fbaa51e1f53 in __pyx_pw_7pyarrow_8_parquet_13ParquetWriter_5write_table(_object*,
_object*, _object*) ()
   from /home/ubuntu/.local/lib/python3.5/site-packages/pyarrow/_parquet.cpython-35m-x86_64-linux-gnu.so
#10 0x00000000004e9bc7 in PyCFunction_Call () at ../Objects/methodobject.c:98
#11 0x0000000000529885 in do_call (nk=<optimized out>, na=<optimized out>, pp_stack=0x7ffe6510a6c0,
func=<optimized out>) at ../Python/ceval.c:4933
#12 call_function (oparg=<optimized out>, pp_stack=0x7ffe6510a6c0) at ../Python/ceval.c:4732
#13 PyEval_EvalFrameEx () at ../Python/ceval.c:3236
#14 0x000000000052d2e3 in _PyEval_EvalCodeWithName () at ../Python/ceval.c:4018
#15 0x0000000000528eee in fast_function (nk=<optimized out>, na=<optimized out>,
n=<optimized out>, pp_stack=0x7ffe6510a8d0, func=<optimized out>) at ../Python/ceval.c:4813
#16 call_function (oparg=<optimized out>, pp_stack=0x7ffe6510a8d0) at ../Python/ceval.c:4730
#17 PyEval_EvalFrameEx () at ../Python/ceval.c:3236
#18 0x000000000052d2e3 in _PyEval_EvalCodeWithName () at ../Python/ceval.c:4018
#19 0x0000000000528eee in fast_function (nk=<optimized out>, na=<optimized out>,
n=<optimized out>, pp_stack=0x7ffe6510aae0, func=<optimized out>) at ../Python/ceval.c:4813
#20 call_function (oparg=<optimized out>, pp_stack=0x7ffe6510aae0) at ../Python/ceval.c:4730
#21 PyEval_EvalFrameEx () at ../Python/ceval.c:3236
#22 0x0000000000528814 in fast_function (nk=<optimized out>, na=<optimized out>,
n=<optimized out>, pp_stack=0x7ffe6510ac10, func=<optimized out>) at ../Python/ceval.c:4803
#23 call_function (oparg=<optimized out>, pp_stack=0x7ffe6510ac10) at ../Python/ceval.c:4730
#24 PyEval_EvalFrameEx () at ../Python/ceval.c:3236
#25 0x0000000000528814 in fast_function (nk=<optimized out>, na=<optimized out>,
n=<optimized out>, pp_stack=0x7ffe6510ad40, func=<optimized out>) at ../Python/ceval.c:4803
#26 call_function (oparg=<optimized out>, pp_stack=0x7ffe6510ad40) at ../Python/ceval.c:4730
#27 PyEval_EvalFrameEx () at ../Python/ceval.c:3236
#28 0x000000000052d2e3 in _PyEval_EvalCodeWithName () at ../Python/ceval.c:4018
#29 0x000000000052dfdf in PyEval_EvalCodeEx () at ../Python/ceval.c:4039
#30 PyEval_EvalCode (co=<optimized out>, globals=<optimized out>, locals=<optimized
out>) at ../Python/ceval.c:777
#31 0x00000000005fd2c2 in run_mod () at ../Python/pythonrun.c:976
#32 0x00000000005ff76a in PyRun_FileExFlags () at ../Python/pythonrun.c:929
#33 0x00000000005ff95c in PyRun_SimpleFileExFlags () at ../Python/pythonrun.c:396
#34 0x000000000063e7d6 in run_file (p_cf=0x7ffe6510afb0, filename=0x2161260 L"scripts/parquet_export.py",
fp=0x226fde0) at ../Modules/main.c:318
#35 Py_Main () at ../Modules/main.c:768
#36 0x00000000004cfe41 in main () at ../Programs/python.c:65
#37 0x00007fbadf0db830 in __libc_start_main (main=0x4cfd60 <main>, argc=2, argv=0x7ffe6510b1c8,
init=<optimized out>, fini=<optimized out>, rtld_fini=<optimized out>, stack_end=0x7ffe6510b1b8)
    at ../csu/libc-start.c:291
#38 0x00000000005d5f29 in _start ()
```

This is occurring in a pretty vanilla call to `pq.write_table(table, output)`. Before the
crash, I'm able to print out the table's schema and it looks a little odd (all columns are
explicitly specified in {{pandas.read_csv()}} to be strings...

```
_id: string
ref_id: string
ref_no: string
stage: string
stage2_ref_id: string
org_id: string
classification: string
solicitation_no: string
notice_type: string
business_category: string
procurement_mode: string
funding_instrument: string
funding_source: string
approved_budget: string
publish_date: string
closing_date: string
contract_duration: string
calendar_type: string
trade_agreement: string
pre_bid_date: string
pre_bid_venue: string
procuring_entity_org_id: string
procuring_entity_org: string
client_agency_org_id: string
client_agency_org: string
contact_person: string
contact_person_address: string
tender_title: string
description: string
other_info: string
reason: string
created_by: string
creation_date: string
modified_date: string
special_instruction: string
collection_contact: string
tender_status: string
collection_point: string
date_available: string
serialid: string
__index_level_0__: int64
-- metadata --
pandas: {"index_columns": ["__index_level_0__"], "columns": [{"pandas_type": "unicode", "numpy_type":
"object", "metadata": null, "name": "_id"}, {"pandas_type": "unicode", "numpy_type": "object",
"metadata": null, "name": "ref_id"}, {"pandas_type": "unicode", "numpy_type": "object", "metadata":
null, "name": "ref_no"}, {"pandas_type": "unicode", "numpy_type": "object", "metadata": null,
"name": "stage"}, {"pandas_type": "mixed", "numpy_type": "object", "metadata": null, "name":
"stage2_ref_id"}, {"pandas_type": "unicode", "numpy_type": "object", "metadata": null, "name":
"org_id"}, {"pandas_type": "unicode", "numpy_type": "object", "metadata": null, "name": "classification"},
{"pandas_type": "mixed", "numpy_type": "object", "metadata": null, "name": "solicitation_no"},
{"pandas_type": "unicode", "numpy_type": "object", "metadata": null, "name": "notice_type"},
{"pandas_type": "unicode", "numpy_type": "object", "metadata": null, "name": "business_category"},
{"pandas_type": "unicode", "numpy_type": "object", "metadata": null, "name": "procurement_mode"},
{"pandas_type": "mixed", "numpy_type": "object", "metadata": null, "name": "funding_instrument"},
{"pandas_type": "unicode", "numpy_type": "object", "metadata": null, "name": "funding_source"},
{"pandas_type": "unicode", "numpy_type": "object", "metadata": null, "name": "approved_budget"},
{"pandas_type": "mixed", "numpy_type": "object", "metadata": null, "name": "publish_date"},
{"pandas_type": "mixed", "numpy_type": "object", "metadata": null, "name": "closing_date"},
{"pandas_type": "unicode", "numpy_type": "object", "metadata": null, "name": "contract_duration"},
{"pandas_type": "mixed", "numpy_type": "object", "metadata": null, "name": "calendar_type"},
{"pandas_type": "unicode", "numpy_type": "object", "metadata": null, "name": "trade_agreement"},
{"pandas_type": "mixed", "numpy_type": "object", "metadata": null, "name": "pre_bid_date"},
{"pandas_type": "mixed", "numpy_type": "object", "metadata": null, "name": "pre_bid_venue"},
{"pandas_type": "unicode", "numpy_type": "object", "metadata": null, "name": "procuring_entity_org_id"},
{"pandas_type": "unicode", "numpy_type": "object", "metadata": null, "name": "procuring_entity_org"},
{"pandas_type": "unicode", "numpy_type": "object", "metadata": null, "name": "client_agency_org_id"},
{"pandas_type": "mixed", "numpy_type": "object", "metadata": null, "name": "client_agency_org"},
{"pandas_type": "mixed", "numpy_type": "object", "metadata": null, "name": "contact_person"},
{"pandas_type": "unicode", "numpy_type": "object", "metadata": null, "name": "contact_person_address"},
{"pandas_type": "mixed", "numpy_type": "object", "metadata": null, "name": "tender_title"},
{"pandas_type": "mixed", "numpy_type": "object", "metadata": null, "name": "description"},
{"pandas_type": "mixed", "numpy_type": "object", "metadata": null, "name": "other_info"},
{"pandas_type": "mixed", "numpy_type": "object", "metadata": null, "name": "reason"}, {"pandas_type":
"unicode", "numpy_type": "object", "metadata": null, "name": "created_by"}, {"pandas_type":
"unicode", "numpy_type": "object", "metadata": null, "name": "creation_date"}, {"pandas_type":
"unicode", "numpy_type": "object", "metadata": null, "name": "modified_date"}, {"pandas_type":
"mixed", "numpy_type": "object", "metadata": null, "name": "special_instruction"}, {"pandas_type":
"mixed", "numpy_type": "object", "metadata": null, "name": "collection_contact"}, {"pandas_type":
"mixed", "numpy_type": "object", "metadata": null, "name": "tender_status"}, {"pandas_type":
"mixed", "numpy_type": "object", "metadata": null, "name": "collection_point"}, {"pandas_type":
"mixed", "numpy_type": "object", "metadata": null, "name": "date_available"}, {"pandas_type":
"unicode", "numpy_type": "object", "metadata": null, "name": "serialid"}, {"pandas_type":
"int64", "numpy_type": "int64", "metadata": null, "name": "__index_level_0__"}], "pandas_version":
"0.19.2"}
Segmentation fault (core dumped)
```



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

Mime
View raw message