apr-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From b..@apache.org
Subject cvs commit: apr/test testrand2.c Makefile.in test_apr.h testall.c
Date Mon, 03 Nov 2003 13:25:01 GMT
ben         2003/11/03 05:25:01

  Modified:    .        CHANGES Makefile.in configure.in
               include  apr_atomic.h apr_errno.h
               test     Makefile.in test_apr.h testall.c
  Added:       include  apr_random.h
               random/unix Makefile.in apr_random.c sha2.c sha2.h
                        sha2_glue.c
               test     testrand2.c
  Log:
  Start of new PRNG.
  
  Revision  Changes    Path
  1.438     +5 -0      apr/CHANGES
  
  Index: CHANGES
  ===================================================================
  RCS file: /home/cvs/apr/CHANGES,v
  retrieving revision 1.437
  retrieving revision 1.438
  diff -u -r1.437 -r1.438
  --- CHANGES	26 Oct 2003 23:22:16 -0000	1.437
  +++ CHANGES	3 Nov 2003 13:25:00 -0000	1.438
  @@ -1,5 +1,10 @@
   Changes with APR 1.0
   
  +  *) Add a new PRNG. Note that the implementation of SHA-256 is a
  +     stop-gap pending snarfing the SHA-1 implementation from apr-util
  +     and upgrading it to do SHA-256. Not yet ready for prime time.
  +     [Ben Laurie]
  +
     *) Added new versions of the apr_atomic functions for
        use with 32-bit ints  [Brian Pane]
   
  
  
  
  1.89      +3 -0      apr/Makefile.in
  
  Index: Makefile.in
  ===================================================================
  RCS file: /home/cvs/apr/Makefile.in,v
  retrieving revision 1.88
  retrieving revision 1.89
  diff -u -r1.88 -r1.89
  --- Makefile.in	29 Sep 2003 14:20:02 -0000	1.88
  +++ Makefile.in	3 Nov 2003 13:25:00 -0000	1.89
  @@ -133,6 +133,9 @@
   check: $(TARGET_LIB)
   	(cd test && $(MAKE) check)
   
  +etags:
  +	etags `find . -name '*.[ch]'`
  +
   # DO NOT REMOVE
   docs: $(INCDIR)/*.h
   
  
  
  
  1.547     +1 -1      apr/configure.in
  
  Index: configure.in
  ===================================================================
  RCS file: /home/cvs/apr/configure.in,v
  retrieving revision 1.546
  retrieving revision 1.547
  diff -u -r1.546 -r1.547
  --- configure.in	29 Oct 2003 12:07:44 -0000	1.546
  +++ configure.in	3 Nov 2003 13:25:00 -0000	1.547
  @@ -100,7 +100,7 @@
   DEFAULT_OSDIR="unix"
   echo "(Default will be ${DEFAULT_OSDIR})"
   
  -apr_modules="file_io network_io threadproc misc locks time mmap shmem user memory atomic poll support"
  +apr_modules="file_io network_io threadproc misc locks time mmap shmem user memory atomic poll support random"
   
   dnl Checks for programs.
   AC_PROG_MAKE_SET
  
  
  
  1.61      +1 -1      apr/include/apr_atomic.h
  
  Index: apr_atomic.h
  ===================================================================
  RCS file: /home/cvs/apr/include/apr_atomic.h,v
  retrieving revision 1.60
  retrieving revision 1.61
  diff -u -r1.60 -r1.61
  --- apr_atomic.h	15 Oct 2003 21:33:22 -0000	1.60
  +++ apr_atomic.h	3 Nov 2003 13:25:00 -0000	1.61
  @@ -337,7 +337,7 @@
   #define apr_atomic_add32(mem, val)        apr_atomic_add(mem, val)
   #define apr_atomic_dec32(mem)             apr_atomic_dec(mem)
   #define apr_atomic_inc32(mem)             apr_atomic_inc(mem)
  -#define apr_atomic_set32(mem)             apr_atomic_set(mem)
  +#define apr_atomic_set32(mem,val)         apr_atomic_set(mem,val)
   #define apr_atomic_read32(mem)            apr_atomic_read(mem)
   
   #elif (defined(__linux__) || defined(__EMX__)) && defined(__i386__) && !APR_FORCE_ATOMIC_GENERIC
  
  
  
  1.114     +2 -0      apr/include/apr_errno.h
  
  Index: apr_errno.h
  ===================================================================
  RCS file: /home/cvs/apr/include/apr_errno.h,v
  retrieving revision 1.113
  retrieving revision 1.114
  diff -u -r1.113 -r1.114
  --- apr_errno.h	23 Sep 2003 22:28:52 -0000	1.113
  +++ apr_errno.h	3 Nov 2003 13:25:00 -0000	1.114
  @@ -307,6 +307,8 @@
   #define APR_ESYMNOTFOUND   (APR_OS_START_ERROR + 26)
   /** @see APR_STATUS_IS_EPROC_UNKNOWN */
   #define APR_EPROC_UNKNOWN  (APR_OS_START_ERROR + 27)
  +
  +#define APR_ENOTENOUGHENTROPY (APR_OS_START_ERROR + 28)
   /** @} */
   
   /** 
  
  
  
  1.1                  apr/include/apr_random.h
  
  Index: apr_random.h
  ===================================================================
  /* ====================================================================
   * The Apache Software License, Version 1.1
   *
   * Copyright (c) 2000-2003 The Apache Software Foundation.  All rights
   * reserved.
   *
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions
   * are met:
   *
   * 1. Redistributions of source code must retain the above copyright
   *    notice, this list of conditions and the following disclaimer.
   *
   * 2. Redistributions in binary form must reproduce the above copyright
   *    notice, this list of conditions and the following disclaimer in
   *    the documentation and/or other materials provided with the
   *    distribution.
   *
   * 3. The end-user documentation included with the redistribution,
   *    if any, must include the following acknowledgment:
   *       "This product includes software developed by the
   *        Apache Software Foundation (http://www.apache.org/)."
   *    Alternately, this acknowledgment may appear in the software itself,
   *    if and wherever such third-party acknowledgments normally appear.
   *
   * 4. The names "Apache" and "Apache Software Foundation" must
   *    not be used to endorse or promote products derived from this
   *    software without prior written permission. For written
   *    permission, please contact apache@apache.org.
   *
   * 5. Products derived from this software may not be called "Apache",
   *    nor may "Apache" appear in their name, without prior written
   *    permission of the Apache Software Foundation.
   *
   * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
   * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   * DISCLAIMED.  IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
   * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
   * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   * SUCH DAMAGE.
   * ====================================================================
   *
   * This software consists of voluntary contributions made by many
   * individuals on behalf of the Apache Software Foundation.  For more
   * information on the Apache Software Foundation, please see
   * <http://www.apache.org/>.
   */
  
  #ifndef APR_RANDOM_H
  #define APR_RANDOM_H
  
  #include <apr_pools.h>
  
  typedef struct apr_crypto_hash_t apr_crypto_hash_t;
  
  typedef void apr_crypto_hash_init_t(apr_crypto_hash_t *hash);
  typedef void apr_crypto_hash_add_t(apr_crypto_hash_t *hash,const void *data,
  				   apr_size_t bytes);
  typedef void apr_crypto_hash_finish_t(apr_crypto_hash_t *hash,
  				      unsigned char *result);
  
  // FIXME: make this opaque
  struct apr_crypto_hash_t
      {
      apr_crypto_hash_init_t *init;
      apr_crypto_hash_add_t *add;
      apr_crypto_hash_finish_t *finish;
      apr_size_t size;
      void *data;
      };
  
  apr_crypto_hash_t *apr_crypto_sha256_new(apr_pool_t *p);
  
  typedef struct apr_random_t apr_random_t;
  
  void apr_random_init(apr_random_t *g,apr_pool_t *p,
  		     apr_crypto_hash_t *pool_hash,apr_crypto_hash_t *key_hash,
  		     apr_crypto_hash_t *prng_hash);
  apr_random_t *apr_random_standard_new(apr_pool_t *p);
  void apr_random_add_entropy(apr_random_t *g,const void *entropy_,
  			    apr_size_t bytes);
  apr_status_t apr_random_insecure_bytes(apr_random_t *g,void *random,
  				       apr_size_t bytes);
  apr_status_t apr_random_secure_bytes(apr_random_t *g,void *random,
  				     apr_size_t bytes);
  void apr_random_barrier(apr_random_t *g);
  apr_status_t apr_random_secure_ready(apr_random_t *r);
  apr_status_t apr_random_insecure_ready(apr_random_t *r);
  
  #endif /* ndef APR_RANDOM_H */
  
  
  
  1.1                  apr/random/unix/Makefile.in
  
  Index: Makefile.in
  ===================================================================
  srcdir = @srcdir@
  VPATH = @srcdir@
  
  TARGETS = \
  	apr_random.lo \
  	sha2.lo \
  	sha2_glue.lo
  
  
  # bring in rules.mk for standard functionality
  @INCLUDE_RULES@
  
  INCDIR=../../include
  OSDIR=$(INCDIR)/arch/@OSDIR@
  DEFOSDIR=$(INCDIR)/arch/@DEFAULT_OSDIR@
  INCLUDES=-I$(INCDIR) -I$(OSDIR) -I$(DEFOSDIR)
  
  # DO NOT REMOVE
  
  
  
  1.1                  apr/random/unix/apr_random.c
  
  Index: apr_random.c
  ===================================================================
  /* ====================================================================
   * The Apache Software License, Version 1.1
   *
   * Copyright (c) 2003 The Apache Software Foundation.  All rights
   * reserved.
   *
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions
   * are met:
   *
   * 1. Redistributions of source code must retain the above copyright
   *    notice, this list of conditions and the following disclaimer.
   *
   * 2. Redistributions in binary form must reproduce the above copyright
   *    notice, this list of conditions and the following disclaimer in
   *    the documentation and/or other materials provided with the
   *    distribution.
   *
   * 3. The end-user documentation included with the redistribution,
   *    if any, must include the following acknowledgment:
   *       "This product includes software developed by the
   *        Apache Software Foundation (http://www.apache.org/)."
   *    Alternately, this acknowledgment may appear in the software itself,
   *    if and wherever such third-party acknowledgments normally appear.
   *
   * 4. The names "Apache" and "Apache Software Foundation" must
   *    not be used to endorse or promote products derived from this
   *    software without prior written permission. For written
   *    permission, please contact apache@apache.org.
   *
   * 5. Products derived from this software may not be called "Apache",
   *    nor may "Apache" appear in their name, without prior written
   *    permission of the Apache Software Foundation.
   *
   * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
   * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   * DISCLAIMED.  IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
   * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
   * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   * SUCH DAMAGE.
   * ====================================================================
   *
   * This software consists of voluntary contributions made by many
   * individuals on behalf of the Apache Software Foundation.  For more
   * information on the Apache Software Foundation, please see
   * <http://www.apache.org/>.
   */
  /*
   * See the paper "???" by Ben Laurie for an explanation of this PRNG.
   */
  
  #include "apr.h"
  #include "apr_pools.h"
  #include "apr_random.h"
  #include <assert.h>
  
  #define min(a,b) ((a) < (b) ? (a) : (b))
  
  #define APR_RANDOM_DEFAULT_POOLS 32
  #define APR_RANDOM_DEFAULT_REHASH_SIZE 1024
  #define APR_RANDOM_DEFAULT_RESEED_SIZE 32
  #define APR_RANDOM_DEFAULT_HASH_SECRET_SIZE 32
  #define APR_RANDOM_DEFAULT_G_FOR_INSECURE 32
  #define APR_RANDOM_DEFAULT_G_FOR_SECURE 320
  
  typedef struct apr_random_pool_t
      {
      unsigned char *pool;
      int bytes;
      int pool_size;
      } apr_random_pool_t;
  
  #define hash_init(h)		(h)->init(h)
  #define hash_add(h,b,n)		(h)->add(h,b,n)
  #define hash_finish(h,r)	(h)->finish(h,r)
  
  #define hash(h,r,b,n)		hash_init(h),hash_add(h,b,n),hash_finish(h,r)
  
  #define crypt_setkey(c,k)	(c)->set_key((c)->data,k)
  #define crypt_crypt(c,out,in)	(c)->crypt((c)->date,out,in)
  
  struct apr_random_t
      {
      apr_pool_t *apr_pool;
      apr_crypto_hash_t *pool_hash;
      unsigned int npools;
      apr_random_pool_t *pools;
      unsigned int next_pool;
      unsigned int generation;
      apr_size_t rehash_size;
      apr_size_t reseed_size;
      apr_crypto_hash_t *key_hash;
  #define K_size(g) ((g)->key_hash->size)
      apr_crypto_hash_t *prng_hash;
  #define B_size(g) ((g)->prng_hash->size)
      unsigned char *H;
      unsigned char *H_waiting;
  #define H_size(g) (B_size(g)+K_size(g))
      unsigned char *randomness;
      apr_size_t random_bytes;
      unsigned int g_for_insecure;
      unsigned int g_for_secure;
      unsigned int secure_base;
      unsigned char insecure_started:1;
      unsigned char secure_started:1;
      };
  
  void apr_random_init(apr_random_t *g,apr_pool_t *p,
  		     apr_crypto_hash_t *pool_hash,apr_crypto_hash_t *key_hash,
  		     apr_crypto_hash_t *prng_hash)
      {
      int n;
  
      g->apr_pool=p;
      g->pool_hash=pool_hash;
      g->key_hash=key_hash;
      g->prng_hash=prng_hash;
      g->npools=APR_RANDOM_DEFAULT_POOLS;
      g->pools=apr_palloc(p,g->npools*sizeof *g->pools);
      for(n=0 ; n < g->npools ; ++n)
  	{
  	g->pools[n].bytes=g->pools[n].pool_size=0;
  	g->pools[n].pool=NULL;
  	}
      g->next_pool=0;
      g->generation=0;
      g->rehash_size=APR_RANDOM_DEFAULT_REHASH_SIZE;
      /* Ensure that the rehash size is twice the size of the pool hasher */
      g->rehash_size=((g->rehash_size+2*g->pool_hash->size-1)/g->pool_hash->size
  		    /2)*g->pool_hash->size*2;
      g->reseed_size=APR_RANDOM_DEFAULT_RESEED_SIZE;
      g->prng_hash=prng_hash;
      g->H=apr_palloc(p,H_size(g));
      g->H_waiting=apr_palloc(p,H_size(g));
      g->randomness=apr_palloc(p,B_size(g));
      g->random_bytes=0;
  
      g->g_for_insecure=APR_RANDOM_DEFAULT_G_FOR_INSECURE;
      g->secure_base=0;
      g->g_for_secure=APR_RANDOM_DEFAULT_G_FOR_SECURE;
      g->secure_started=g->insecure_started=0;
      }
  
  apr_random_t *apr_random_standard_new(apr_pool_t *p)
      {
      apr_random_t *r=apr_palloc(p,sizeof *r);
      
      apr_random_init(r,p,apr_crypto_sha256_new(p),apr_crypto_sha256_new(p),
  		    apr_crypto_sha256_new(p));
      return r;
      }
  
  static void rekey(apr_random_t *g)
      {
      int n;
      unsigned char *H=(g->insecure_started && !g->secure_started) ? g->H_waiting
  	: g->H;
  
      hash_init(g->key_hash);
      hash_add(g->key_hash,H,H_size(g));
      for(n=0 ; n < g->npools && (n == 0 || g->generation&(1 << (n-1)))
  	    ; ++n)
  	{
  	hash_add(g->key_hash,g->pools[n].pool,g->pools[n].bytes);
  	g->pools[n].bytes=0;
  	}
      hash_finish(g->key_hash,H+B_size(g));
      ++g->generation;
      if(!g->insecure_started && g->generation > g->g_for_insecure)
  	{
  	g->insecure_started=1;
  	if(!g->secure_started)
  	    {
  	    memcpy(g->H_waiting,g->H,H_size(g));
  	    g->secure_base=g->generation;
  	    }
  	}
      if(!g->secure_started && g->generation > g->secure_base+g->g_for_secure)
  	{
  	g->secure_started=1;
  	memcpy(g->H,g->H_waiting,H_size(g));
  	}
      }
  
  void apr_random_add_entropy(apr_random_t *g,const void *entropy_,
  			    apr_size_t bytes)
      {
      int n;
      const unsigned char *entropy=entropy_;
  
      for(n=0 ; n < bytes ; ++n)
  	{
  	apr_random_pool_t *p=&g->pools[g->next_pool];
  
  	if(++g->next_pool == g->npools)
  	    g->next_pool=0;
  
  	if(p->pool_size < p->bytes+1)
  	    {
  	    unsigned char *np=apr_palloc(g->apr_pool,(p->bytes+1)*2);
  
  	    memcpy(np,p->pool,p->bytes);
  	    p->pool=np;
  	    p->pool_size=(p->bytes+1)*2;
  	    }
  	p->pool[p->bytes++]=entropy[n];
  
  	if(p->bytes == g->rehash_size)
  	    {
  	    int r;
  
  	    for(r=0 ; r < p->bytes/2 ; r+=g->pool_hash->size)
  		hash(g->pool_hash,p->pool+r,p->pool+r*2,g->pool_hash->size*2);
  	    p->bytes/=2;
  	    }
  	assert(p->bytes < g->rehash_size);
  	}
  
      if(g->pools[0].bytes >= g->reseed_size)
  	rekey(g);
      }
  
  // This will give g->B_size bytes of randomness
  static void apr_random_block(apr_random_t *g,unsigned char *random)
      {
      // FIXME: in principle, these are different hashes
      hash(g->prng_hash,g->H,g->H,H_size(g));
      hash(g->prng_hash,random,g->H,B_size(g));
      }
  
  static void apr_random_bytes(apr_random_t *g,unsigned char *random,
  			     apr_size_t bytes)
      {
      apr_size_t n;
  
      for(n=0 ; n < bytes ; )
  	{
  	int l;
  
  	if(g->random_bytes == 0)
  	    {
  	    apr_random_block(g,g->randomness);
  	    g->random_bytes=B_size(g);
  	    }
  	l=min(bytes-n,g->random_bytes);
  	memcpy(&random[n],g->randomness+B_size(g)-g->random_bytes,l);
  	g->random_bytes-=l;
  	n+=l;
  	}
      }
  
  apr_status_t apr_random_secure_bytes(apr_random_t *g,void *random,
  				     apr_size_t bytes)
      {
      if(!g->secure_started)
  	return APR_ENOTENOUGHENTROPY;
      apr_random_bytes(g,random,bytes);
      return APR_SUCCESS;
      }
  
  apr_status_t apr_random_insecure_bytes(apr_random_t *g,void *random,
  				       apr_size_t bytes)
      {
      if(!g->insecure_started)
  	return APR_ENOTENOUGHENTROPY;
      apr_random_bytes(g,random,bytes);
      return APR_SUCCESS;
      }
  
  void apr_random_barrier(apr_random_t *g)
      {
      g->secure_started=0;
      g->secure_base=g->generation;
      }
  
  apr_status_t apr_random_secure_ready(apr_random_t *r)
      {
      if(!r->secure_started)
  	return APR_ENOTENOUGHENTROPY;
      return APR_SUCCESS;
      }
  
  apr_status_t apr_random_insecure_ready(apr_random_t *r)
      {
      if(!r->insecure_started)
  	return APR_ENOTENOUGHENTROPY;
      return APR_SUCCESS;
      }
  
  
  
  1.1                  apr/random/unix/sha2.c
  
  Index: sha2.c
  ===================================================================
  /*
   * FILE:	sha2.c
   * AUTHOR:	Aaron D. Gifford <me@aarongifford.com>
   * 
   * Copyright (c) 2000-2001, Aaron D. Gifford
   * All rights reserved.
   *
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions
   * are met:
   * 1. Redistributions of source code must retain the above copyright
   *    notice, this list of conditions and the following disclaimer.
   * 2. Redistributions in binary form must reproduce the above copyright
   *    notice, this list of conditions and the following disclaimer in the
   *    documentation and/or other materials provided with the distribution.
   * 3. Neither the name of the copyright holder nor the names of contributors
   *    may be used to endorse or promote products derived from this software
   *    without specific prior written permission.
   * 
   * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
   * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   * SUCH DAMAGE.
   *
   * $Id: sha2.c,v 1.1 2003/11/03 13:25:00 ben Exp $
   */
  
  #include <string.h>	/* memcpy()/memset() or bcopy()/bzero() */
  #include <assert.h>	/* assert() */
  #include "sha2.h"
  
  /*
   * ASSERT NOTE:
   * Some sanity checking code is included using assert().  On my FreeBSD
   * system, this additional code can be removed by compiling with NDEBUG
   * defined.  Check your own systems manpage on assert() to see how to
   * compile WITHOUT the sanity checking code on your system.
   *
   * UNROLLED TRANSFORM LOOP NOTE:
   * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
   * loop version for the hash transform rounds (defined using macros
   * later in this file).  Either define on the command line, for example:
   *
   *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
   *
   * or define below:
   *
   *   #define SHA2_UNROLL_TRANSFORM
   *
   */
  
  
  /*** SHA-256/384/512 Machine Architecture Definitions *****************/
  /*
   * BYTE_ORDER NOTE:
   *
   * Please make sure that your system defines BYTE_ORDER.  If your
   * architecture is little-endian, make sure it also defines
   * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
   * equivilent.
   *
   * If your system does not define the above, then you can do so by
   * hand like this:
   *
   *   #define LITTLE_ENDIAN 1234
   *   #define BIG_ENDIAN    4321
   *
   * And for little-endian machines, add:
   *
   *   #define BYTE_ORDER LITTLE_ENDIAN 
   *
   * Or for big-endian machines:
   *
   *   #define BYTE_ORDER BIG_ENDIAN
   *
   * The FreeBSD machine this was written on defines BYTE_ORDER
   * appropriately by including <sys/types.h> (which in turn includes
   * <machine/endian.h> where the appropriate definitions are actually
   * made).
   */
  #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
  #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
  #endif
  
  /*
   * Define the followingsha2_* types to types of the correct length on
   * the native archtecture.   Most BSD systems and Linux define u_intXX_t
   * types.  Machines with very recent ANSI C headers, can use the
   * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
   * during compile or in the sha.h header file.
   *
   * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
   * will need to define these three typedefs below (and the appropriate
   * ones in sha.h too) by hand according to their system architecture.
   *
   * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
   * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
   */
  #ifdef SHA2_USE_INTTYPES_H
  
  typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
  typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
  typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
  
  #else /* SHA2_USE_INTTYPES_H */
  
  typedef u_int8_t  sha2_byte;	/* Exactly 1 byte */
  typedef u_int32_t sha2_word32;	/* Exactly 4 bytes */
  typedef u_int64_t sha2_word64;	/* Exactly 8 bytes */
  
  #endif /* SHA2_USE_INTTYPES_H */
  
  
  /*** SHA-256/384/512 Various Length Definitions ***********************/
  /* NOTE: Most of these are in sha2.h */
  #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
  #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
  #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
  
  
  /*** ENDIAN REVERSAL MACROS *******************************************/
  #if BYTE_ORDER == LITTLE_ENDIAN
  #define REVERSE32(w,x)	{ \
  	sha2_word32 tmp = (w); \
  	tmp = (tmp >> 16) | (tmp << 16); \
  	(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
  }
  #define REVERSE64(w,x)	{ \
  	sha2_word64 tmp = (w); \
  	tmp = (tmp >> 32) | (tmp << 32); \
  	tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
  	      ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
  	(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
  	      ((tmp & 0x0000ffff0000ffffULL) << 16); \
  }
  #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  
  /*
   * Macro for incrementally adding the unsigned 64-bit integer n to the
   * unsigned 128-bit integer (represented using a two-element array of
   * 64-bit words):
   */
  #define ADDINC128(w,n)	{ \
  	(w)[0] += (sha2_word64)(n); \
  	if ((w)[0] < (n)) { \
  		(w)[1]++; \
  	} \
  }
  
  /*
   * Macros for copying blocks of memory and for zeroing out ranges
   * of memory.  Using these macros makes it easy to switch from
   * using memset()/memcpy() and using bzero()/bcopy().
   *
   * Please define either SHA2_USE_MEMSET_MEMCPY or define
   * SHA2_USE_BZERO_BCOPY depending on which function set you
   * choose to use:
   */
  #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
  /* Default to memset()/memcpy() if no option is specified */
  #define	SHA2_USE_MEMSET_MEMCPY	1
  #endif
  #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
  /* Abort with an error if BOTH options are defined */
  #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
  #endif
  
  #ifdef SHA2_USE_MEMSET_MEMCPY
  #define MEMSET_BZERO(p,l)	memset((p), 0, (l))
  #define MEMCPY_BCOPY(d,s,l)	memcpy((d), (s), (l))
  #endif
  #ifdef SHA2_USE_BZERO_BCOPY
  #define MEMSET_BZERO(p,l)	bzero((p), (l))
  #define MEMCPY_BCOPY(d,s,l)	bcopy((s), (d), (l))
  #endif
  
  
  /*** THE SIX LOGICAL FUNCTIONS ****************************************/
  /*
   * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
   *
   *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
   *   S is a ROTATION) because the SHA-256/384/512 description document
   *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
   *   same "backwards" definition.
   */
  /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
  #define R(b,x) 		((x) >> (b))
  /* 32-bit Rotate-right (used in SHA-256): */
  #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
  /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
  #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
  
  /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
  #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
  #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  
  /* Four of six logical functions used in SHA-256: */
  #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
  #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
  #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
  #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
  
  /* Four of six logical functions used in SHA-384 and SHA-512: */
  #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
  #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
  #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
  #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
  
  /*** INTERNAL FUNCTION PROTOTYPES *************************************/
  /* NOTE: These should not be accessed directly from outside this
   * library -- they are intended for private internal visibility/use
   * only.
   */
  void SHA512_Last(SHA512_CTX*);
  void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
  void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
  
  
  /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
  /* Hash constant words K for SHA-256: */
  const static sha2_word32 K256[64] = {
  	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
  	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
  	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
  	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
  	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
  	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
  	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
  	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
  	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
  	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
  	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
  	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
  	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
  	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
  	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
  	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
  };
  
  /* Initial hash value H for SHA-256: */
  const static sha2_word32 sha256_initial_hash_value[8] = {
  	0x6a09e667UL,
  	0xbb67ae85UL,
  	0x3c6ef372UL,
  	0xa54ff53aUL,
  	0x510e527fUL,
  	0x9b05688cUL,
  	0x1f83d9abUL,
  	0x5be0cd19UL
  };
  
  /* Hash constant words K for SHA-384 and SHA-512: */
  const static sha2_word64 K512[80] = {
  	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
  	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
  	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
  	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
  	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
  	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
  	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
  	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
  	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
  	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
  	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
  	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
  	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
  	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
  	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
  	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
  	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
  	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
  	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
  	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
  	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
  	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
  	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
  	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
  	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
  	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
  	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
  	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
  	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
  	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
  	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
  	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
  	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
  	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
  	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
  	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
  	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
  	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
  	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
  	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
  };
  
  /* Initial hash value H for SHA-384 */
  const static sha2_word64 sha384_initial_hash_value[8] = {
  	0xcbbb9d5dc1059ed8ULL,
  	0x629a292a367cd507ULL,
  	0x9159015a3070dd17ULL,
  	0x152fecd8f70e5939ULL,
  	0x67332667ffc00b31ULL,
  	0x8eb44a8768581511ULL,
  	0xdb0c2e0d64f98fa7ULL,
  	0x47b5481dbefa4fa4ULL
  };
  
  /* Initial hash value H for SHA-512 */
  const static sha2_word64 sha512_initial_hash_value[8] = {
  	0x6a09e667f3bcc908ULL,
  	0xbb67ae8584caa73bULL,
  	0x3c6ef372fe94f82bULL,
  	0xa54ff53a5f1d36f1ULL,
  	0x510e527fade682d1ULL,
  	0x9b05688c2b3e6c1fULL,
  	0x1f83d9abfb41bd6bULL,
  	0x5be0cd19137e2179ULL
  };
  
  /*
   * Constant used by SHA256/384/512_End() functions for converting the
   * digest to a readable hexadecimal character string:
   */
  static const char *sha2_hex_digits = "0123456789abcdef";
  
  
  /*** SHA-256: *********************************************************/
  void SHA256_Init(SHA256_CTX* context) {
  	if (context == (SHA256_CTX*)0) {
  		return;
  	}
  	MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
  	MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
  	context->bitcount = 0;
  }
  
  #ifdef SHA2_UNROLL_TRANSFORM
  
  /* Unrolled SHA-256 round macros: */
  
  #if BYTE_ORDER == LITTLE_ENDIAN
  
  #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
  	REVERSE32(*data++, W256[j]); \
  	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
               K256[j] + W256[j]; \
  	(d) += T1; \
  	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  	j++
  
  
  #else /* BYTE_ORDER == LITTLE_ENDIAN */
  
  #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
  	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
  	     K256[j] + (W256[j] = *data++); \
  	(d) += T1; \
  	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  	j++
  
  #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  
  #define ROUND256(a,b,c,d,e,f,g,h)	\
  	s0 = W256[(j+1)&0x0f]; \
  	s0 = sigma0_256(s0); \
  	s1 = W256[(j+14)&0x0f]; \
  	s1 = sigma1_256(s1); \
  	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
  	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
  	(d) += T1; \
  	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  	j++
  
  void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
  	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
  	sha2_word32	T1, *W256;
  	int		j;
  
  	W256 = (sha2_word32*)context->buffer;
  
  	/* Initialize registers with the prev. intermediate value */
  	a = context->state[0];
  	b = context->state[1];
  	c = context->state[2];
  	d = context->state[3];
  	e = context->state[4];
  	f = context->state[5];
  	g = context->state[6];
  	h = context->state[7];
  
  	j = 0;
  	do {
  		/* Rounds 0 to 15 (unrolled): */
  		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
  		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
  		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
  		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
  		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
  		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
  		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
  		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
  	} while (j < 16);
  
  	/* Now for the remaining rounds to 64: */
  	do {
  		ROUND256(a,b,c,d,e,f,g,h);
  		ROUND256(h,a,b,c,d,e,f,g);
  		ROUND256(g,h,a,b,c,d,e,f);
  		ROUND256(f,g,h,a,b,c,d,e);
  		ROUND256(e,f,g,h,a,b,c,d);
  		ROUND256(d,e,f,g,h,a,b,c);
  		ROUND256(c,d,e,f,g,h,a,b);
  		ROUND256(b,c,d,e,f,g,h,a);
  	} while (j < 64);
  
  	/* Compute the current intermediate hash value */
  	context->state[0] += a;
  	context->state[1] += b;
  	context->state[2] += c;
  	context->state[3] += d;
  	context->state[4] += e;
  	context->state[5] += f;
  	context->state[6] += g;
  	context->state[7] += h;
  
  	/* Clean up */
  	a = b = c = d = e = f = g = h = T1 = 0;
  }
  
  #else /* SHA2_UNROLL_TRANSFORM */
  
  void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
  	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
  	sha2_word32	T1, T2, *W256;
  	int		j;
  
  	W256 = (sha2_word32*)context->buffer;
  
  	/* Initialize registers with the prev. intermediate value */
  	a = context->state[0];
  	b = context->state[1];
  	c = context->state[2];
  	d = context->state[3];
  	e = context->state[4];
  	f = context->state[5];
  	g = context->state[6];
  	h = context->state[7];
  
  	j = 0;
  	do {
  #if BYTE_ORDER == LITTLE_ENDIAN
  		/* Copy data while converting to host byte order */
  		REVERSE32(*data++,W256[j]);
  		/* Apply the SHA-256 compression function to update a..h */
  		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
  #else /* BYTE_ORDER == LITTLE_ENDIAN */
  		/* Apply the SHA-256 compression function to update a..h with copy */
  		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
  #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  		T2 = Sigma0_256(a) + Maj(a, b, c);
  		h = g;
  		g = f;
  		f = e;
  		e = d + T1;
  		d = c;
  		c = b;
  		b = a;
  		a = T1 + T2;
  
  		j++;
  	} while (j < 16);
  
  	do {
  		/* Part of the message block expansion: */
  		s0 = W256[(j+1)&0x0f];
  		s0 = sigma0_256(s0);
  		s1 = W256[(j+14)&0x0f];	
  		s1 = sigma1_256(s1);
  
  		/* Apply the SHA-256 compression function to update a..h */
  		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 
  		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
  		T2 = Sigma0_256(a) + Maj(a, b, c);
  		h = g;
  		g = f;
  		f = e;
  		e = d + T1;
  		d = c;
  		c = b;
  		b = a;
  		a = T1 + T2;
  
  		j++;
  	} while (j < 64);
  
  	/* Compute the current intermediate hash value */
  	context->state[0] += a;
  	context->state[1] += b;
  	context->state[2] += c;
  	context->state[3] += d;
  	context->state[4] += e;
  	context->state[5] += f;
  	context->state[6] += g;
  	context->state[7] += h;
  
  	/* Clean up */
  	a = b = c = d = e = f = g = h = T1 = T2 = 0;
  }
  
  #endif /* SHA2_UNROLL_TRANSFORM */
  
  void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
  	unsigned int	freespace, usedspace;
  
  	if (len == 0) {
  		/* Calling with no data is valid - we do nothing */
  		return;
  	}
  
  	/* Sanity check: */
  	assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
  
  	usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
  	if (usedspace > 0) {
  		/* Calculate how much free space is available in the buffer */
  		freespace = SHA256_BLOCK_LENGTH - usedspace;
  
  		if (len >= freespace) {
  			/* Fill the buffer completely and process it */
  			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
  			context->bitcount += freespace << 3;
  			len -= freespace;
  			data += freespace;
  			SHA256_Transform(context, (sha2_word32*)context->buffer);
  		} else {
  			/* The buffer is not yet full */
  			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
  			context->bitcount += len << 3;
  			/* Clean up: */
  			usedspace = freespace = 0;
  			return;
  		}
  	}
  	while (len >= SHA256_BLOCK_LENGTH) {
  		/* Process as many complete blocks as we can */
  		SHA256_Transform(context, (sha2_word32*)data);
  		context->bitcount += SHA256_BLOCK_LENGTH << 3;
  		len -= SHA256_BLOCK_LENGTH;
  		data += SHA256_BLOCK_LENGTH;
  	}
  	if (len > 0) {
  		/* There's left-overs, so save 'em */
  		MEMCPY_BCOPY(context->buffer, data, len);
  		context->bitcount += len << 3;
  	}
  	/* Clean up: */
  	usedspace = freespace = 0;
  }
  
  void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
  	sha2_word32	*d = (sha2_word32*)digest;
  	unsigned int	usedspace;
  
  	/* Sanity check: */
  	assert(context != (SHA256_CTX*)0);
  
  	/* If no digest buffer is passed, we don't bother doing this: */
  	if (digest != (sha2_byte*)0) {
  		usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
  #if BYTE_ORDER == LITTLE_ENDIAN
  		/* Convert FROM host byte order */
  		REVERSE64(context->bitcount,context->bitcount);
  #endif
  		if (usedspace > 0) {
  			/* Begin padding with a 1 bit: */
  			context->buffer[usedspace++] = 0x80;
  
  			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
  				/* Set-up for the last transform: */
  				MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
  			} else {
  				if (usedspace < SHA256_BLOCK_LENGTH) {
  					MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
  				}
  				/* Do second-to-last transform: */
  				SHA256_Transform(context, (sha2_word32*)context->buffer);
  
  				/* And set-up for the last transform: */
  				MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
  			}
  		} else {
  			/* Set-up for the last transform: */
  			MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
  
  			/* Begin padding with a 1 bit: */
  			*context->buffer = 0x80;
  		}
  		/* Set the bit count: */
  		*(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
  
  		/* Final transform: */
  		SHA256_Transform(context, (sha2_word32*)context->buffer);
  
  #if BYTE_ORDER == LITTLE_ENDIAN
  		{
  			/* Convert TO host byte order */
  			int	j;
  			for (j = 0; j < 8; j++) {
  				REVERSE32(context->state[j],context->state[j]);
  				*d++ = context->state[j];
  			}
  		}
  #else
  		MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
  #endif
  	}
  
  	/* Clean up state data: */
  	MEMSET_BZERO(context, sizeof(context));
  	usedspace = 0;
  }
  
  char *SHA256_End(SHA256_CTX* context, char buffer[]) {
  	sha2_byte	digest[SHA256_DIGEST_LENGTH], *d = digest;
  	int		i;
  
  	/* Sanity check: */
  	assert(context != (SHA256_CTX*)0);
  
  	if (buffer != (char*)0) {
  		SHA256_Final(digest, context);
  
  		for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
  			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  			*buffer++ = sha2_hex_digits[*d & 0x0f];
  			d++;
  		}
  		*buffer = (char)0;
  	} else {
  		MEMSET_BZERO(context, sizeof(context));
  	}
  	MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
  	return buffer;
  }
  
  char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
  	SHA256_CTX	context;
  
  	SHA256_Init(&context);
  	SHA256_Update(&context, data, len);
  	return SHA256_End(&context, digest);
  }
  
  
  /*** SHA-512: *********************************************************/
  void SHA512_Init(SHA512_CTX* context) {
  	if (context == (SHA512_CTX*)0) {
  		return;
  	}
  	MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
  	MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
  	context->bitcount[0] = context->bitcount[1] =  0;
  }
  
  #ifdef SHA2_UNROLL_TRANSFORM
  
  /* Unrolled SHA-512 round macros: */
  #if BYTE_ORDER == LITTLE_ENDIAN
  
  #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
  	REVERSE64(*data++, W512[j]); \
  	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
               K512[j] + W512[j]; \
  	(d) += T1, \
  	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
  	j++
  
  
  #else /* BYTE_ORDER == LITTLE_ENDIAN */
  
  #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
  	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
               K512[j] + (W512[j] = *data++); \
  	(d) += T1; \
  	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
  	j++
  
  #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  
  #define ROUND512(a,b,c,d,e,f,g,h)	\
  	s0 = W512[(j+1)&0x0f]; \
  	s0 = sigma0_512(s0); \
  	s1 = W512[(j+14)&0x0f]; \
  	s1 = sigma1_512(s1); \
  	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
               (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
  	(d) += T1; \
  	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
  	j++
  
  void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
  	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
  	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
  	int		j;
  
  	/* Initialize registers with the prev. intermediate value */
  	a = context->state[0];
  	b = context->state[1];
  	c = context->state[2];
  	d = context->state[3];
  	e = context->state[4];
  	f = context->state[5];
  	g = context->state[6];
  	h = context->state[7];
  
  	j = 0;
  	do {
  		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
  		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
  		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
  		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
  		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
  		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
  		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
  		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
  	} while (j < 16);
  
  	/* Now for the remaining rounds up to 79: */
  	do {
  		ROUND512(a,b,c,d,e,f,g,h);
  		ROUND512(h,a,b,c,d,e,f,g);
  		ROUND512(g,h,a,b,c,d,e,f);
  		ROUND512(f,g,h,a,b,c,d,e);
  		ROUND512(e,f,g,h,a,b,c,d);
  		ROUND512(d,e,f,g,h,a,b,c);
  		ROUND512(c,d,e,f,g,h,a,b);
  		ROUND512(b,c,d,e,f,g,h,a);
  	} while (j < 80);
  
  	/* Compute the current intermediate hash value */
  	context->state[0] += a;
  	context->state[1] += b;
  	context->state[2] += c;
  	context->state[3] += d;
  	context->state[4] += e;
  	context->state[5] += f;
  	context->state[6] += g;
  	context->state[7] += h;
  
  	/* Clean up */
  	a = b = c = d = e = f = g = h = T1 = 0;
  }
  
  #else /* SHA2_UNROLL_TRANSFORM */
  
  void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
  	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
  	sha2_word64	T1, T2, *W512 = (sha2_word64*)context->buffer;
  	int		j;
  
  	/* Initialize registers with the prev. intermediate value */
  	a = context->state[0];
  	b = context->state[1];
  	c = context->state[2];
  	d = context->state[3];
  	e = context->state[4];
  	f = context->state[5];
  	g = context->state[6];
  	h = context->state[7];
  
  	j = 0;
  	do {
  #if BYTE_ORDER == LITTLE_ENDIAN
  		/* Convert TO host byte order */
  		REVERSE64(*data++, W512[j]);
  		/* Apply the SHA-512 compression function to update a..h */
  		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
  #else /* BYTE_ORDER == LITTLE_ENDIAN */
  		/* Apply the SHA-512 compression function to update a..h with copy */
  		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
  #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  		T2 = Sigma0_512(a) + Maj(a, b, c);
  		h = g;
  		g = f;
  		f = e;
  		e = d + T1;
  		d = c;
  		c = b;
  		b = a;
  		a = T1 + T2;
  
  		j++;
  	} while (j < 16);
  
  	do {
  		/* Part of the message block expansion: */
  		s0 = W512[(j+1)&0x0f];
  		s0 = sigma0_512(s0);
  		s1 = W512[(j+14)&0x0f];
  		s1 =  sigma1_512(s1);
  
  		/* Apply the SHA-512 compression function to update a..h */
  		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
  		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
  		T2 = Sigma0_512(a) + Maj(a, b, c);
  		h = g;
  		g = f;
  		f = e;
  		e = d + T1;
  		d = c;
  		c = b;
  		b = a;
  		a = T1 + T2;
  
  		j++;
  	} while (j < 80);
  
  	/* Compute the current intermediate hash value */
  	context->state[0] += a;
  	context->state[1] += b;
  	context->state[2] += c;
  	context->state[3] += d;
  	context->state[4] += e;
  	context->state[5] += f;
  	context->state[6] += g;
  	context->state[7] += h;
  
  	/* Clean up */
  	a = b = c = d = e = f = g = h = T1 = T2 = 0;
  }
  
  #endif /* SHA2_UNROLL_TRANSFORM */
  
  void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
  	unsigned int	freespace, usedspace;
  
  	if (len == 0) {
  		/* Calling with no data is valid - we do nothing */
  		return;
  	}
  
  	/* Sanity check: */
  	assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
  
  	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  	if (usedspace > 0) {
  		/* Calculate how much free space is available in the buffer */
  		freespace = SHA512_BLOCK_LENGTH - usedspace;
  
  		if (len >= freespace) {
  			/* Fill the buffer completely and process it */
  			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
  			ADDINC128(context->bitcount, freespace << 3);
  			len -= freespace;
  			data += freespace;
  			SHA512_Transform(context, (sha2_word64*)context->buffer);
  		} else {
  			/* The buffer is not yet full */
  			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
  			ADDINC128(context->bitcount, len << 3);
  			/* Clean up: */
  			usedspace = freespace = 0;
  			return;
  		}
  	}
  	while (len >= SHA512_BLOCK_LENGTH) {
  		/* Process as many complete blocks as we can */
  		SHA512_Transform(context, (sha2_word64*)data);
  		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
  		len -= SHA512_BLOCK_LENGTH;
  		data += SHA512_BLOCK_LENGTH;
  	}
  	if (len > 0) {
  		/* There's left-overs, so save 'em */
  		MEMCPY_BCOPY(context->buffer, data, len);
  		ADDINC128(context->bitcount, len << 3);
  	}
  	/* Clean up: */
  	usedspace = freespace = 0;
  }
  
  void SHA512_Last(SHA512_CTX* context) {
  	unsigned int	usedspace;
  
  	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  #if BYTE_ORDER == LITTLE_ENDIAN
  	/* Convert FROM host byte order */
  	REVERSE64(context->bitcount[0],context->bitcount[0]);
  	REVERSE64(context->bitcount[1],context->bitcount[1]);
  #endif
  	if (usedspace > 0) {
  		/* Begin padding with a 1 bit: */
  		context->buffer[usedspace++] = 0x80;
  
  		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
  			/* Set-up for the last transform: */
  			MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
  		} else {
  			if (usedspace < SHA512_BLOCK_LENGTH) {
  				MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
  			}
  			/* Do second-to-last transform: */
  			SHA512_Transform(context, (sha2_word64*)context->buffer);
  
  			/* And set-up for the last transform: */
  			MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
  		}
  	} else {
  		/* Prepare for final transform: */
  		MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
  
  		/* Begin padding with a 1 bit: */
  		*context->buffer = 0x80;
  	}
  	/* Store the length of input data (in bits): */
  	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
  	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
  
  	/* Final transform: */
  	SHA512_Transform(context, (sha2_word64*)context->buffer);
  }
  
  void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
  	sha2_word64	*d = (sha2_word64*)digest;
  
  	/* Sanity check: */
  	assert(context != (SHA512_CTX*)0);
  
  	/* If no digest buffer is passed, we don't bother doing this: */
  	if (digest != (sha2_byte*)0) {
  		SHA512_Last(context);
  
  		/* Save the hash data for output: */
  #if BYTE_ORDER == LITTLE_ENDIAN
  		{
  			/* Convert TO host byte order */
  			int	j;
  			for (j = 0; j < 8; j++) {
  				REVERSE64(context->state[j],context->state[j]);
  				*d++ = context->state[j];
  			}
  		}
  #else
  		MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
  #endif
  	}
  
  	/* Zero out state data */
  	MEMSET_BZERO(context, sizeof(context));
  }
  
  char *SHA512_End(SHA512_CTX* context, char buffer[]) {
  	sha2_byte	digest[SHA512_DIGEST_LENGTH], *d = digest;
  	int		i;
  
  	/* Sanity check: */
  	assert(context != (SHA512_CTX*)0);
  
  	if (buffer != (char*)0) {
  		SHA512_Final(digest, context);
  
  		for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
  			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  			*buffer++ = sha2_hex_digits[*d & 0x0f];
  			d++;
  		}
  		*buffer = (char)0;
  	} else {
  		MEMSET_BZERO(context, sizeof(context));
  	}
  	MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
  	return buffer;
  }
  
  char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
  	SHA512_CTX	context;
  
  	SHA512_Init(&context);
  	SHA512_Update(&context, data, len);
  	return SHA512_End(&context, digest);
  }
  
  
  /*** SHA-384: *********************************************************/
  void SHA384_Init(SHA384_CTX* context) {
  	if (context == (SHA384_CTX*)0) {
  		return;
  	}
  	MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
  	MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
  	context->bitcount[0] = context->bitcount[1] = 0;
  }
  
  void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
  	SHA512_Update((SHA512_CTX*)context, data, len);
  }
  
  void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
  	sha2_word64	*d = (sha2_word64*)digest;
  
  	/* Sanity check: */
  	assert(context != (SHA384_CTX*)0);
  
  	/* If no digest buffer is passed, we don't bother doing this: */
  	if (digest != (sha2_byte*)0) {
  		SHA512_Last((SHA512_CTX*)context);
  
  		/* Save the hash data for output: */
  #if BYTE_ORDER == LITTLE_ENDIAN
  		{
  			/* Convert TO host byte order */
  			int	j;
  			for (j = 0; j < 6; j++) {
  				REVERSE64(context->state[j],context->state[j]);
  				*d++ = context->state[j];
  			}
  		}
  #else
  		MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
  #endif
  	}
  
  	/* Zero out state data */
  	MEMSET_BZERO(context, sizeof(context));
  }
  
  char *SHA384_End(SHA384_CTX* context, char buffer[]) {
  	sha2_byte	digest[SHA384_DIGEST_LENGTH], *d = digest;
  	int		i;
  
  	/* Sanity check: */
  	assert(context != (SHA384_CTX*)0);
  
  	if (buffer != (char*)0) {
  		SHA384_Final(digest, context);
  
  		for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
  			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  			*buffer++ = sha2_hex_digits[*d & 0x0f];
  			d++;
  		}
  		*buffer = (char)0;
  	} else {
  		MEMSET_BZERO(context, sizeof(context));
  	}
  	MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
  	return buffer;
  }
  
  char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
  	SHA384_CTX	context;
  
  	SHA384_Init(&context);
  	SHA384_Update(&context, data, len);
  	return SHA384_End(&context, digest);
  }
  
  
  
  
  1.1                  apr/random/unix/sha2.h
  
  Index: sha2.h
  ===================================================================
  /*
   * FILE:	sha2.h
   * AUTHOR:	Aaron D. Gifford <me@aarongifford.com>
   * 
   * Copyright (c) 2000-2001, Aaron D. Gifford
   * All rights reserved.
   *
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions
   * are met:
   * 1. Redistributions of source code must retain the above copyright
   *    notice, this list of conditions and the following disclaimer.
   * 2. Redistributions in binary form must reproduce the above copyright
   *    notice, this list of conditions and the following disclaimer in the
   *    documentation and/or other materials provided with the distribution.
   * 3. Neither the name of the copyright holder nor the names of contributors
   *    may be used to endorse or promote products derived from this software
   *    without specific prior written permission.
   * 
   * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
   * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   * SUCH DAMAGE.
   *
   * $Id: sha2.h,v 1.1 2003/11/03 13:25:00 ben Exp $
   */
  
  #ifndef __SHA2_H__
  #define __SHA2_H__
  
  #ifdef __cplusplus
  extern "C" {
  #endif
  
  
  /*
   * Import u_intXX_t size_t type definitions from system headers.  You
   * may need to change this, or define these things yourself in this
   * file.
   */
  #include <sys/types.h>
  
  #ifdef SHA2_USE_INTTYPES_H
  
  #include <inttypes.h>
  
  #endif /* SHA2_USE_INTTYPES_H */
  
  
  /*** SHA-256/384/512 Various Length Definitions ***********************/
  #define SHA256_BLOCK_LENGTH		64
  #define SHA256_DIGEST_LENGTH		32
  #define SHA256_DIGEST_STRING_LENGTH	(SHA256_DIGEST_LENGTH * 2 + 1)
  #define SHA384_BLOCK_LENGTH		128
  #define SHA384_DIGEST_LENGTH		48
  #define SHA384_DIGEST_STRING_LENGTH	(SHA384_DIGEST_LENGTH * 2 + 1)
  #define SHA512_BLOCK_LENGTH		128
  #define SHA512_DIGEST_LENGTH		64
  #define SHA512_DIGEST_STRING_LENGTH	(SHA512_DIGEST_LENGTH * 2 + 1)
  
  
  /*** SHA-256/384/512 Context Structures *******************************/
  /* NOTE: If your architecture does not define either u_intXX_t types or
   * uintXX_t (from inttypes.h), you may need to define things by hand
   * for your system:
   */
  #if 0
  typedef unsigned char u_int8_t;		/* 1-byte  (8-bits)  */
  typedef unsigned int u_int32_t;		/* 4-bytes (32-bits) */
  typedef unsigned long long u_int64_t;	/* 8-bytes (64-bits) */
  #endif
  /*
   * Most BSD systems already define u_intXX_t types, as does Linux.
   * Some systems, however, like Compaq's Tru64 Unix instead can use
   * uintXX_t types defined by very recent ANSI C standards and included
   * in the file:
   *
   *   #include <inttypes.h>
   *
   * If you choose to use <inttypes.h> then please define: 
   *
   *   #define SHA2_USE_INTTYPES_H
   *
   * Or on the command line during compile:
   *
   *   cc -DSHA2_USE_INTTYPES_H ...
   */
  #ifdef SHA2_USE_INTTYPES_H
  
  typedef struct _SHA256_CTX {
  	uint32_t	state[8];
  	uint64_t	bitcount;
  	uint8_t	buffer[SHA256_BLOCK_LENGTH];
  } SHA256_CTX;
  typedef struct _SHA512_CTX {
  	uint64_t	state[8];
  	uint64_t	bitcount[2];
  	uint8_t	buffer[SHA512_BLOCK_LENGTH];
  } SHA512_CTX;
  
  #else /* SHA2_USE_INTTYPES_H */
  
  typedef struct _SHA256_CTX {
  	u_int32_t	state[8];
  	u_int64_t	bitcount;
  	u_int8_t	buffer[SHA256_BLOCK_LENGTH];
  } SHA256_CTX;
  typedef struct _SHA512_CTX {
  	u_int64_t	state[8];
  	u_int64_t	bitcount[2];
  	u_int8_t	buffer[SHA512_BLOCK_LENGTH];
  } SHA512_CTX;
  
  #endif /* SHA2_USE_INTTYPES_H */
  
  typedef SHA512_CTX SHA384_CTX;
  
  
  /*** SHA-256/384/512 Function Prototypes ******************************/
  #ifndef NOPROTO
  #ifdef SHA2_USE_INTTYPES_H
  
  void SHA256_Init(SHA256_CTX *);
  void SHA256_Update(SHA256_CTX*, const uint8_t*, size_t);
  void SHA256_Final(uint8_t[SHA256_DIGEST_LENGTH], SHA256_CTX*);
  char* SHA256_End(SHA256_CTX*, char[SHA256_DIGEST_STRING_LENGTH]);
  char* SHA256_Data(const uint8_t*, size_t, char[SHA256_DIGEST_STRING_LENGTH]);
  
  void SHA384_Init(SHA384_CTX*);
  void SHA384_Update(SHA384_CTX*, const uint8_t*, size_t);
  void SHA384_Final(uint8_t[SHA384_DIGEST_LENGTH], SHA384_CTX*);
  char* SHA384_End(SHA384_CTX*, char[SHA384_DIGEST_STRING_LENGTH]);
  char* SHA384_Data(const uint8_t*, size_t, char[SHA384_DIGEST_STRING_LENGTH]);
  
  void SHA512_Init(SHA512_CTX*);
  void SHA512_Update(SHA512_CTX*, const uint8_t*, size_t);
  void SHA512_Final(uint8_t[SHA512_DIGEST_LENGTH], SHA512_CTX*);
  char* SHA512_End(SHA512_CTX*, char[SHA512_DIGEST_STRING_LENGTH]);
  char* SHA512_Data(const uint8_t*, size_t, char[SHA512_DIGEST_STRING_LENGTH]);
  
  #else /* SHA2_USE_INTTYPES_H */
  
  void SHA256_Init(SHA256_CTX *);
  void SHA256_Update(SHA256_CTX*, const u_int8_t*, size_t);
  void SHA256_Final(u_int8_t[SHA256_DIGEST_LENGTH], SHA256_CTX*);
  char* SHA256_End(SHA256_CTX*, char[SHA256_DIGEST_STRING_LENGTH]);
  char* SHA256_Data(const u_int8_t*, size_t, char[SHA256_DIGEST_STRING_LENGTH]);
  
  void SHA384_Init(SHA384_CTX*);
  void SHA384_Update(SHA384_CTX*, const u_int8_t*, size_t);
  void SHA384_Final(u_int8_t[SHA384_DIGEST_LENGTH], SHA384_CTX*);
  char* SHA384_End(SHA384_CTX*, char[SHA384_DIGEST_STRING_LENGTH]);
  char* SHA384_Data(const u_int8_t*, size_t, char[SHA384_DIGEST_STRING_LENGTH]);
  
  void SHA512_Init(SHA512_CTX*);
  void SHA512_Update(SHA512_CTX*, const u_int8_t*, size_t);
  void SHA512_Final(u_int8_t[SHA512_DIGEST_LENGTH], SHA512_CTX*);
  char* SHA512_End(SHA512_CTX*, char[SHA512_DIGEST_STRING_LENGTH]);
  char* SHA512_Data(const u_int8_t*, size_t, char[SHA512_DIGEST_STRING_LENGTH]);
  
  #endif /* SHA2_USE_INTTYPES_H */
  
  #else /* NOPROTO */
  
  void SHA256_Init();
  void SHA256_Update();
  void SHA256_Final();
  char* SHA256_End();
  char* SHA256_Data();
  
  void SHA384_Init();
  void SHA384_Update();
  void SHA384_Final();
  char* SHA384_End();
  char* SHA384_Data();
  
  void SHA512_Init();
  void SHA512_Update();
  void SHA512_Final();
  char* SHA512_End();
  char* SHA512_Data();
  
  #endif /* NOPROTO */
  
  #ifdef	__cplusplus
  }
  #endif /* __cplusplus */
  
  #endif /* __SHA2_H__ */
  
  
  
  
  1.1                  apr/random/unix/sha2_glue.c
  
  Index: sha2_glue.c
  ===================================================================
  #include <apr.h>
  #include <apr_random.h>
  #include <apr_pools.h>
  #include "sha2.h"
  
  static void sha256_init(apr_crypto_hash_t *h)
      {
      SHA256_Init(h->data);
      }
  
  static void sha256_add(apr_crypto_hash_t *h,const void *data,
  			  apr_size_t bytes)
      {
      SHA256_Update(h->data,data,bytes);
      }
  
  static void sha256_finish(apr_crypto_hash_t *h,unsigned char *result)
      {
      SHA256_Final(result,h->data);
      }
  
  apr_crypto_hash_t *apr_crypto_sha256_new(apr_pool_t *p)
      {
      apr_crypto_hash_t *h=apr_palloc(p,sizeof *h);
  
      h->data=apr_palloc(p,sizeof(SHA256_CTX));
      h->init=sha256_init;
      h->add=sha256_add;
      h->finish=sha256_finish;
      h->size=256/8;
  
      return h;
      }
  
  
  
  1.142     +1 -1      apr/test/Makefile.in
  
  Index: Makefile.in
  ===================================================================
  RCS file: /home/cvs/apr/test/Makefile.in,v
  retrieving revision 1.141
  retrieving revision 1.142
  diff -u -r1.141 -r1.142
  --- Makefile.in	11 Aug 2003 18:19:38 -0000	1.141
  +++ Makefile.in	3 Nov 2003 13:25:01 -0000	1.142
  @@ -115,7 +115,7 @@
   	testdso.lo testoc.lo testdup.lo testsockets.lo testproc.lo \
   	testpoll.lo testlock.lo testsockopt.lo testpipe.lo testthread.lo \
   	testhash.lo testargs.lo testnames.lo testuser.lo testpath.lo \
  -	testenv.lo testprocmutex.lo
  +	testenv.lo testprocmutex.lo testrand2.lo
   
   testall: $(TESTS) mod_test.la libmod_test.la occhild@EXEEXT@ \
   	 readchild@EXEEXT@ CuTest.lo proc_child@EXEEXT@ $(LOCAL_LIBS)
  
  
  
  1.43      +1 -0      apr/test/test_apr.h
  
  Index: test_apr.h
  ===================================================================
  RCS file: /home/cvs/apr/test/test_apr.h,v
  retrieving revision 1.42
  retrieving revision 1.43
  diff -u -r1.42 -r1.43
  --- test_apr.h	2 Jul 2003 12:12:28 -0000	1.42
  +++ test_apr.h	3 Nov 2003 13:25:01 -0000	1.43
  @@ -81,6 +81,7 @@
   CuSuite *testdir(void);
   CuSuite *testfileinfo(void);
   CuSuite *testrand(void);
  +CuSuite *testrand2(void);
   CuSuite *testdso(void);
   CuSuite *testoc(void);
   CuSuite *testdup(void);
  
  
  
  1.45      +1 -0      apr/test/testall.c
  
  Index: testall.c
  ===================================================================
  RCS file: /home/cvs/apr/test/testall.c,v
  retrieving revision 1.44
  retrieving revision 1.45
  diff -u -r1.44 -r1.45
  --- testall.c	2 Jul 2003 12:12:30 -0000	1.44
  +++ testall.c	3 Nov 2003 13:25:01 -0000	1.45
  @@ -95,6 +95,7 @@
       {"testdup", testdup},
       {"testdir", testdir},
       {"testrand", testrand},
  +    {"testrand2", testrand2},
       {"testdso", testdso},
       {"testoc", testoc},
       {"testsockets", testsockets},
  
  
  
  1.1                  apr/test/testrand2.c
  
  Index: testrand2.c
  ===================================================================
  /* ====================================================================
   * The Apache Software License, Version 1.1
   *
   * Copyright (c) 2000-2003 The Apache Software Foundation.  All rights
   * reserved.
   *
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions
   * are met:
   *
   * 1. Redistributions of source code must retain the above copyright
   *    notice, this list of conditions and the following disclaimer.
   *
   * 2. Redistributions in binary form must reproduce the above copyright
   *    notice, this list of conditions and the following disclaimer in
   *    the documentation and/or other materials provided with the
   *    distribution.
   *
   * 3. The end-user documentation included with the redistribution,
   *    if any, must include the following acknowledgment:
   *       "This product includes software developed by the
   *        Apache Software Foundation (http://www.apache.org/)."
   *    Alternately, this acknowledgment may appear in the software itself,
   *    if and wherever such third-party acknowledgments normally appear.
   *
   * 4. The names "Apache" and "Apache Software Foundation" must
   *    not be used to endorse or promote products derived from this
   *    software without prior written permission. For written
   *    permission, please contact apache@apache.org.
   *
   * 5. Products derived from this software may not be called "Apache",
   *    nor may "Apache" appear in their name, without prior written
   *    permission of the Apache Software Foundation.
   *
   * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
   * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   * DISCLAIMED.  IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
   * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
   * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   * SUCH DAMAGE.
   * ====================================================================
   *
   * This software consists of voluntary contributions made by many
   * individuals on behalf of the Apache Software Foundation.  For more
   * information on the Apache Software Foundation, please see
   * <http://www.apache.org/>.
   */
  
  #include "apr_general.h"
  #include "apr_random.h"
  #include <errno.h>
  #include <stdio.h>
  #include <stdlib.h>
  #include "test_apr.h"
  
  static void hexdump(const unsigned char *b,int n)
      {
      int i;
  
      for(i=0 ; i < n ; ++i)
  	{
  #if 0
  	if((i&0xf) == 0)
  	    printf("%04x",i);
  	printf(" %02x",b[i]);
  	if((i&0xf) == 0xf)
  	    printf("\n");
  #else
  	printf("0x%02x,",b[i]);
  	if((i&7) == 7)
  	    printf("\n");
  #endif
  	}
      printf("\n");
      }
  
  static apr_random_t *r;
  
  typedef apr_status_t rnd_fn(apr_random_t *r,void *b,apr_size_t n);
  
  static void rand_run_kat(CuTest *tc,rnd_fn *f,apr_random_t *r,
  			 const unsigned char expected[128])
      {
      unsigned char c[128];
      apr_status_t rv;
  
      rv=f(r,c,128);
      CuAssertIntEquals(tc,0,rv);
      if(rv)
  	return;
      if(memcmp(c,expected,128))
  	{
  	hexdump(c,128);
  	hexdump(expected,128);
  	CuFail(tc,"Randomness mismatch");
  	}
      }
  
  static void rand_add_zeroes(apr_random_t *r)
      {
      static unsigned char c[2048];
  
      apr_random_add_entropy(r,c,sizeof c);
      }
  
  static void rand_run_seed_short(CuTest *tc,rnd_fn *f,apr_random_t *r,
  				int count)
      {
      int i;
      apr_status_t rv;
      char c[1];
  
      for(i=0 ; i < count ; ++i)
  	rand_add_zeroes(r);
      rv=f(r,c,1);
      CuAssertIntEquals(tc,rv,APR_ENOTENOUGHENTROPY);
      }
  
  static void rand_seed_short(CuTest *tc)
      {
      r=apr_random_standard_new(p);
      rand_run_seed_short(tc,apr_random_insecure_bytes,r,32);
      }
  
  static void rand_kat(CuTest *tc)
      {
      unsigned char expected[128]=
  	{ 0x82,0x04,0xad,0xd2,0x0b,0xd5,0xac,0xda,
  	  0x3d,0x85,0x58,0x38,0x54,0x6b,0x69,0x45,
  	  0x37,0x4c,0xc7,0xd7,0x87,0xeb,0xbf,0xd9,
  	  0xb1,0xb8,0xb8,0x2d,0x9b,0x33,0x6e,0x97,
  	  0x04,0x1d,0x4c,0xb0,0xd1,0xdf,0x3d,0xac,
  	  0xd2,0xaa,0xfa,0xcd,0x96,0xb7,0xcf,0xb1,
  	  0x8e,0x3d,0xb3,0xe5,0x37,0xa9,0x95,0xb4,
  	  0xaa,0x3d,0x11,0x1a,0x08,0x20,0x21,0x9f,
  	  0xdb,0x08,0x3a,0xb9,0x57,0x9f,0xf2,0x1f,
  	  0x27,0xdc,0xb6,0xc0,0x85,0x08,0x05,0xbb,
  	  0x13,0xbe,0xb1,0xe9,0x63,0x2a,0xe2,0xa4,
  	  0x23,0x15,0x2a,0x10,0xbf,0xdf,0x09,0xb3,
  	  0xc7,0xfb,0x2d,0x87,0x48,0x19,0xfb,0xc0,
  	  0x15,0x8c,0xcb,0xc6,0xbd,0x89,0x38,0x69,
  	  0xa3,0xae,0xa3,0x21,0x58,0x50,0xe7,0xc4,
  	  0x87,0xec,0x2e,0xb1,0x2d,0x6a,0xbd,0x46 };
  
      rand_add_zeroes(r);
      rand_run_kat(tc,apr_random_insecure_bytes,r,expected);
      }    
  
  static void rand_seed_short2(CuTest *tc)
      {
      rand_run_seed_short(tc,apr_random_secure_bytes,r,320);
      }
  
  static void rand_kat2(CuTest *tc)
      {
      unsigned char expected[128]=
  	{ 0x38,0x8f,0x01,0x29,0x5a,0x5c,0x1f,0xa8,
  	  0x00,0xde,0x16,0x4c,0xe5,0xf7,0x1f,0x58,
  	  0xc0,0x67,0xe2,0x98,0x3d,0xde,0x4a,0x75,
  	  0x61,0x3f,0x23,0xd8,0x45,0x7a,0x10,0x60,
  	  0x59,0x9b,0xd6,0xaf,0xcb,0x0a,0x2e,0x34,
  	  0x9c,0x39,0x5b,0xd0,0xbc,0x9a,0xf0,0x7b,
  	  0x7f,0x40,0x8b,0x33,0xc0,0x0e,0x2a,0x56,
  	  0xfc,0xe5,0xab,0xde,0x7b,0x13,0xf5,0xec,
  	  0x15,0x68,0xb8,0x09,0xbc,0x2c,0x15,0xf0,
  	  0x7b,0xef,0x2a,0x97,0x19,0xa8,0x69,0x51,
  	  0xdf,0xb0,0x5f,0x1a,0x4e,0xdf,0x42,0x02,
  	  0x71,0x36,0xa7,0x25,0x64,0x85,0xe2,0x72,
  	  0xc7,0x87,0x4d,0x7d,0x15,0xbb,0x15,0xd1,
  	  0xb1,0x62,0x0b,0x25,0xd9,0xd3,0xd9,0x5a,
  	  0xe3,0x47,0x1e,0xae,0x67,0xb4,0x19,0x9e,
  	  0xed,0xd2,0xde,0xce,0x18,0x70,0x57,0x12 };
  
      rand_add_zeroes(r);
      rand_run_kat(tc,apr_random_secure_bytes,r,expected);
      }    
  
  static void rand_barrier(CuTest *tc)
      {
      apr_random_barrier(r);
      rand_run_seed_short(tc,apr_random_secure_bytes,r,320);
      }
  
  static void rand_kat3(CuTest *tc)
      {
      unsigned char expected[128]=
  	{ 0xe8,0xe7,0xc9,0x45,0xe2,0x2a,0x54,0xb2,
  	  0xdd,0xe0,0xf9,0xbc,0x3d,0xf9,0xce,0x3c,
  	  0x4c,0xbd,0xc9,0xe2,0x20,0x4a,0x35,0x1c,
  	  0x04,0x52,0x7f,0xb8,0x0f,0x60,0x89,0x63,
  	  0x8a,0xbe,0x0a,0x44,0xac,0x5d,0xd8,0xeb,
  	  0x24,0x7d,0xd1,0xda,0x4d,0x86,0x9b,0x94,
  	  0x26,0x56,0x4a,0x5e,0x30,0xea,0xd4,0xa9,
  	  0x9a,0xdf,0xdd,0xb6,0xb1,0x15,0xe0,0xfa,
  	  0x28,0xa4,0xd6,0x95,0xa4,0xf1,0xd8,0x6e,
  	  0xeb,0x8c,0xa4,0xac,0x34,0xfe,0x06,0x92,
  	  0xc5,0x09,0x99,0x86,0xdc,0x5a,0x3c,0x92,
  	  0xc8,0x3e,0x52,0x00,0x4d,0x01,0x43,0x6f,
  	  0x69,0xcf,0xe2,0x60,0x9c,0x23,0xb3,0xa5,
  	  0x5f,0x51,0x47,0x8c,0x07,0xde,0x60,0xc6,
  	  0x04,0xbf,0x32,0xd6,0xdc,0xb7,0x31,0x01,
  	  0x29,0x51,0x51,0xb3,0x19,0x6e,0xe4,0xf8 };
  
      rand_run_kat(tc,apr_random_insecure_bytes,r,expected);
      }    
  
  static void rand_kat4(CuTest *tc)
      {
      unsigned char expected[128]=
  	{ 0x7d,0x0e,0xc4,0x4e,0x3e,0xac,0x86,0x50,
  	  0x37,0x95,0x7a,0x98,0x23,0x26,0xa7,0xbf,
  	  0x60,0xfb,0xa3,0x70,0x90,0xc3,0x58,0xc6,
  	  0xbd,0xd9,0x5e,0xa6,0x77,0x62,0x7a,0x5c,
  	  0x96,0x83,0x7f,0x80,0x3d,0xf4,0x9c,0xcc,
  	  0x9b,0x0c,0x8c,0xe1,0x72,0xa8,0xfb,0xc9,
  	  0xc5,0x43,0x91,0xdc,0x9d,0x92,0xc2,0xce,
  	  0x1c,0x5e,0x36,0xc7,0x87,0xb1,0xb4,0xa3,
  	  0xc8,0x69,0x76,0xfc,0x35,0x75,0xcb,0x08,
  	  0x2f,0xe3,0x98,0x76,0x37,0x80,0x04,0x5c,
  	  0xb8,0xb0,0x7f,0xb2,0xda,0xe3,0xa3,0xba,
  	  0xed,0xff,0xf5,0x9d,0x3b,0x7b,0xf3,0x32,
  	  0x6c,0x50,0xa5,0x3e,0xcc,0xe1,0x84,0x9c,
  	  0x17,0x9e,0x80,0x64,0x09,0xbb,0x62,0xf1,
  	  0x95,0xf5,0x2c,0xc6,0x9f,0x6a,0xee,0x6d,
  	  0x17,0x35,0x5f,0x35,0x8d,0x55,0x0c,0x07 };
  
      rand_add_zeroes(r);
      rand_run_kat(tc,apr_random_secure_bytes,r,expected);
      }    
  
  CuSuite *testrand2(void)
      {
      CuSuite *suite = CuSuiteNew("Random2");
  
      SUITE_ADD_TEST(suite, rand_seed_short);
      SUITE_ADD_TEST(suite, rand_kat);
      SUITE_ADD_TEST(suite, rand_seed_short2);
      SUITE_ADD_TEST(suite, rand_kat2);
      SUITE_ADD_TEST(suite, rand_barrier);
      SUITE_ADD_TEST(suite, rand_kat3);
      SUITE_ADD_TEST(suite, rand_kat4);
  
      return suite;
      }
  
  
  

Mime
View raw message