apex-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From t..@apache.org
Subject [5/5] incubator-apex-malhar git commit: Tutorial for Kafka Input Operator
Date Sat, 12 Mar 2016 03:23:30 GMT
Tutorial for Kafka Input Operator


Project: http://git-wip-us.apache.org/repos/asf/incubator-apex-malhar/repo
Commit: http://git-wip-us.apache.org/repos/asf/incubator-apex-malhar/commit/8c538621
Tree: http://git-wip-us.apache.org/repos/asf/incubator-apex-malhar/tree/8c538621
Diff: http://git-wip-us.apache.org/repos/asf/incubator-apex-malhar/diff/8c538621

Branch: refs/heads/master
Commit: 8c538621f02dca0e148e2dcb5c08793ec0f8bfda
Parents: afbcfc2
Author: Chaitanya <chaitanya@datatorrent.com>
Authored: Tue Dec 8 11:34:36 2015 +0530
Committer: Thomas Weise <thomas@datatorrent.com>
Committed: Fri Mar 11 19:22:48 2016 -0800

----------------------------------------------------------------------
 docs/operators/images/kafkainput/image00.png | Bin 0 -> 36143 bytes
 docs/operators/kafkaInputOperator.md         | 282 ++++++++++++++++++++++
 2 files changed, 282 insertions(+)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/incubator-apex-malhar/blob/8c538621/docs/operators/images/kafkainput/image00.png
----------------------------------------------------------------------
diff --git a/docs/operators/images/kafkainput/image00.png b/docs/operators/images/kafkainput/image00.png
new file mode 100644
index 0000000..0fa00e8
Binary files /dev/null and b/docs/operators/images/kafkainput/image00.png differ

http://git-wip-us.apache.org/repos/asf/incubator-apex-malhar/blob/8c538621/docs/operators/kafkaInputOperator.md
----------------------------------------------------------------------
diff --git a/docs/operators/kafkaInputOperator.md b/docs/operators/kafkaInputOperator.md
new file mode 100644
index 0000000..1d2258e
--- /dev/null
+++ b/docs/operators/kafkaInputOperator.md
@@ -0,0 +1,282 @@
+KAFKA INPUT OPERATOR
+=====================
+
+### Introduction: About Kafka Input Operator
+
+This is an input operator that consumes data from Kafka messaging system for further processing
in Apex. Kafka Input Operator is an fault-tolerant and scalable Malhar Operator.
+
+### Why is it needed ?
+
+Kafka is a pull-based and distributed publish subscribe messaging system, topics are partitioned
and replicated across
+nodes. Kafka input operator is needed when you want to read data from multiple
+partitions of a Kafka topic in parallel in an Apex application.
+
+### AbstractKafkaInputOperator
+
+This is the abstract implementation that serves as base class for consuming messages from
Kafka messaging system. This class doesn’t have any ports.
+
+![AbstractKafkaInput.png](images/kafkainput/image00.png)
+
+#### Configuration Parameters
+<table>
+<col width="25%" />
+<col width="75%" />
+<tbody>
+<tr class="odd">
+<td align="left"><p>Parameter</p></td>
+<td align="left"><p>Description</p></td>
+</tr>
+<tr class="even">
+<td align="left"><p>maxTuplesPerWindow</p></td>
+<td align="left"><p>Controls the maximum number of messages emitted in each streaming
window from this operator. Minimum value is 1. Default value = MAX_VALUE </p></td>
+</tr>
+<tr class="odd">
+<td align="left"><p>idempotentStorageManager</p></td>
+<td align="left"><p>This is an instance of IdempotentStorageManager. Idempotency
ensures that the operator will process the same set of messages in a window before and after
a failure. For example, let's say the operator completed window 10 and failed somewhere between
window 11. If the operator gets restored at window 10 then it will process the same messages
again in window 10 which it did in the previous run before the failure. Idempotency is important
but comes with higher cost because at the end of each window the operator needs to persist
some state with respect to that window. Default Value = com.datatorrent.lib.io.IdempotentStorageManager.<br>NoopIdempotentStorageManager</p></td>
+</tr>
+<tr class="even">
+<td align="left"><p>strategy</p></td>
+<td align="left"><p>Operator supports two types of partitioning strategies, ONE_TO_ONE
and ONE_TO_MANY.</p>
+<p>ONE_TO_ONE: If this is enabled, the AppMaster creates one input operator instance
per Kafka topic partition. So the number of Kafka topic partitions equals the number of operator
instances.</p>
+<p>ONE_TO_MANY: The AppMaster creates K = min(initialPartitionCount, N) Kafka input
operator instances where N is the number of Kafka topic partitions. If K is less than N, the
remaining topic partitions are assigned to the K operator instances in round-robin fashion.
If K is less than initialPartitionCount, the AppMaster creates one input operator instance
per Kafka topic partition. For example, if initialPartitionCount = 5 and number of Kafka partitions(N)
= 2 then AppMaster creates 2 Kafka input operator instances.
+Default Value = ONE_TO_ONE</p></td>
+</tr>
+<tr class="odd">
+<td align="left"><p>msgRateUpperBound</p></td>
+<td align="left"><p>Maximum messages upper bound. Operator repartitions when
the *msgProcessedPS* exceeds this bound. *msgProcessedPS* is the average number of messages
processed per second by this operator.</p></td>
+</tr>
+<tr class="even">
+<td align="left"><p>byteRateUpperBound</p></td>
+<td align="left"><p>Maximum bytes upper bound. Operator repartitions when the
*bytesPS* exceeds this bound. *bytesPS* is the average number of bytes processed per second
by this operator.</p>
+<p></p></td>
+</tr>
+<tr class="odd">
+<td align="left"><p>offsetManager</p></td>
+<td align="left"><p>This is an optional parameter that is useful when the application
restarts or start at specific offsets (offsets are explained below)</p></td>
+</tr>
+<tr class="even">
+<td align="left"><p>repartitionInterval</p></td>
+<td align="left"><p>Interval specified in milliseconds. This value specifies
the minimum time required between two repartition actions. Default Value = 30 Seconds</p></td>
+</tr>
+<tr class="odd">
+<td align="left"><p>repartitionCheckInterval</p></td>
+<td align="left"><p>Interval specified in milliseconds. This value specifies
the minimum interval between two offset updates. Default Value = 5 Seconds</p></td>
+</tr>
+<tr class="even">
+<td align="left"><p>initialPartitionCount</p></td>
+<td align="left"><p>When the ONE_TO_MANY partition strategy is enabled, this
value indicates the number of Kafka input operator instances. Default Value = 1</p></td>
+</tr>
+<tr class="odd">
+<td align="left"><p>consumer</p></td>
+<td align="left"><p>This is an instance of com.datatorrent.contrib.kafka.KafkaConsumer.
Default Value = Instance of SimpleKafkaConsumer.</p></td>
+</tr>
+</tbody>
+</table>
+
+#### Abstract Methods
+
+void emitTuple(Message message): Abstract method that emits tuples
+extracted from Kafka message.
+
+### KafkaConsumer
+
+This is an abstract implementation of Kafka consumer. It sends the fetch
+requests to the leading brokers of Kafka partitions. For each request,
+it receives the set of messages and stores them into the buffer which is
+ArrayBlockingQueue. SimpleKafkaConsumer which extends
+KafkaConsumer and serves the functionality of Simple Consumer API and
+HighLevelKafkaConsumer which extends KafkaConsumer and  serves the
+functionality of High Level Consumer API.
+
+### Pre-requisites
+
+This operator referred the Kafka Consumer API of version
+0.8.1.1. So, this operator will work with any 0.8.x and 0.7.x version of Apache Kafka.
+
+#### Configuration Parameters
+
+<table>
+<col width="15%" />
+<col width="15%" />
+<col width="15%" />
+<col width="55%" />
+<tbody>
+<tr class="odd">
+<td align="left"><p>Parameter</p></td>
+<td align="left"><p>Type</p></td>
+<td align="left"><p>Default</p></td>
+<td align="left"><p>Description</p></td>
+</tr>
+<tr class="even">
+<td align="left"><p>zookeeper</p></td>
+<td align="left"><p>String</p></td>
+<td align="left"><p></p></td>
+<td align="left"><p>Specifies the zookeeper quorum of Kafka clusters that you
want to consume messages from. zookeeper  is a string in the form of hostname1:port1,hostname2:port2,hostname3:port3
 where hostname1,hostname2,hostname3 are hosts and port1,port2,port3 are ports of zookeeper
server.  If the topic name is the same across the Kafka clusters and want to consume data
from these clusters, then configure the zookeeper as follows: c1::hs1:p1,hs2:p2,hs3:p3;c2::hs4:p4,hs5:p5,c3::hs6:p6</p>
+<p>where</p>
+<p>c1,c2,c3 indicates the cluster names, hs1,hs2,hs3,hs4,hs5,hs6 are zookeeper hosts
and p1,p2,p3,p4,p5,p6 are corresponding ports. Here, cluster name is optional in case of single
cluster</p></td>
+</tr>
+<tr class="odd">
+<td align="left"><p>cacheSize</p></td>
+<td align="left"><p>int</p></td>
+<td align="left"><p>1024</p></td>
+<td align="left"><p>Maximum of buffered messages hold in memory.</p></td>
+</tr>
+<tr class="even">
+<td align="left"><p>topic</p></td>
+<td align="left"><p>String</p></td>
+<td align="left"><p>default_topic</p></td>
+<td align="left"><p>Indicates the name of the topic.</p></td>
+</tr>
+<tr class="odd">
+<td align="left"><p>initialOffset</p></td>
+<td align="left"><p>String</p></td>
+<td align="left"><p>latest</p></td>
+<td align="left"><p>Indicates the type of offset i.e, “earliest or latest”.
If initialOffset is “latest”, then the operator consumes messages from latest point of
Kafka queue. If initialOffset is “earliest”, then the operator consumes messages starting
from message queue. This can be overridden by OffsetManager.</p></td>
+</tr>
+</tbody>
+</table>
+
+#### Abstract Methods
+
+1.   void commitOffset(): Commit the offsets at checkpoint.
+2.  Map &lt;KafkaPartition, Long&gt; getCurrentOffsets(): Return the current
+    offset status.
+3.  resetPartitionsAndOffset(Set &lt;KafkaPartition&gt; partitionIds,
+    Map &lt;KafkaPartition, Long&gt; startOffset): Reset the partitions with
+    parittionIds and offsets with startOffset.
+
+#### Configuration Parameters for SimpleKafkaConsumer
+
+<table>
+<col width="25%" />
+<col width="15%" />
+<col width="15%" />
+<col width="45%" />
+<tbody>
+<tr class="odd">
+<td align="left"><p>Parameter</p></td>
+<td align="left"><p>Type</p></td>
+<td align="left"><p>Default</p></td>
+<td align="left"><p>Description</p></td>
+</tr>
+<tr class="even">
+<td align="left"><p>bufferSize</p></td>
+<td align="left"><p>int</p></td>
+<td align="left"><p>1 MB</p></td>
+<td align="left"><p>Specifies the maximum total size of messages for each fetch
request.</p></td>
+</tr>
+<tr class="odd">
+<td align="left"><p>metadataRefreshInterval</p></td>
+<td align="left"><p>int</p></td>
+<td align="left"><p>30 Seconds</p></td>
+<td align="left"><p>Interval in between refresh the metadata change(broker change)
in milliseconds. Enabling metadata refresh guarantees an automatic reconnect when a new broker
is elected as the host. A value of -1 disables this feature.</p></td>
+</tr>
+<tr class="even">
+<td align="left"><p>metadataRefreshRetryLimit</p></td>
+<td align="left"><p>int</p></td>
+<td align="left"><p>-1</p></td>
+<td align="left"><p>Specifies the maximum brokers' metadata refresh retry limit.
-1 means unlimited retry.</p></td>
+</tr>
+</tbody>
+</table>
+
+### OffsetManager
+
+This is an interface for offset management and is useful when consuming data
+from specified offsets. Updates the offsets for all the Kafka partitions
+periodically. Below is the code snippet:        
+
+```java
+public interface OffsetManager
+{
+  public Map<KafkaPartition, Long> loadInitialOffsets();
+  public void updateOffsets(Map<KafkaPartition, Long> offsetsOfPartitions);
+}
+```
+#### Abstract Methods                 
+
+Map &lt;KafkaPartition, Long&gt; loadInitialOffsets(): Specifies the initial offset
for consuming messages; called at the activation stage.
+
+updateOffsets(Map &lt;KafkaPartition, Long&gt; offsetsOfPartitions):  This
+method is called at every repartitionCheckInterval to update offsets.
+
+### Partitioning
+
+The logical instance of the KafkaInputOperator acts as the Partitioner
+as well as a StatsListener. This is because the
+AbstractKafkaInputOperator implements both the
+com.datatorrent.api.Partitioner and com.datatorrent.api.StatsListener
+interfaces and provides an implementation of definePartitions(...) and
+processStats(...) which makes it auto-scalable.
+
+#### Response processStats(BatchedOperatorStats stats)
+
+The application master invokes this method on the logical instance with
+the stats (tuplesProcessedPS, bytesPS, etc.) of each partition.
+Re-partitioning happens based on whether any new Kafka partitions added for
+the topic or bytesPS and msgPS cross their respective upper bounds.
+
+#### DefinePartitions
+
+Based on the repartitionRequired field of the Response object which is
+returned by processStats(...) method, the application master invokes
+definePartitions(...) on the logical instance which is also the
+partitioner instance. Dynamic partition can be disabled by setting the
+parameter repartitionInterval value to a negative value.
+
+### AbstractSinglePortKafkaInputOperator
+
+This class extends AbstractKafkaInputOperator and having single output
+port, will emit the messages through this port.
+
+#### Ports
+
+outputPort &lt;T&gt;: Tuples extracted from Kafka messages are emitted through
+this port.
+
+#### Abstract Methods
+
+T getTuple(Message msg) : Converts the Kafka message to tuple.
+
+### Concrete Classes
+
+1.  KafkaSinglePortStringInputOperator :
+This class extends AbstractSinglePortKafkaInputOperator and getTuple() method extracts string
from Kafka message.
+
+2.  KafkaSinglePortByteArrayInputOperator:
+This class extends AbstractSinglePortKafkaInputOperator and getTuple() method extracts byte
array from Kafka message.
+
+### Application Example
+
+This section builds an Apex application using Kafka input operator.
+Below is the code snippet:
+
+```java
+@ApplicationAnnotation(name = "KafkaApp")
+public class ExampleKafkaApplication implements StreamingApplication
+{
+@Override
+public void populateDAG(DAG dag, Configuration entries)
+{
+  KafkaSinglePortByteArrayInputOperator input =  dag.addOperator("MessageReader", new KafkaSinglePortByteArrayInputOperator());
+
+  ConsoleOutputOperator output = dag.addOperator("Output", new ConsoleOutputOperator());
+
+  dag.addStream("MessageData", input.outputPort, output.input);
+}
+}
+```
+Below is the configuration for “test” Kafka topic name and
+“localhost:2181” is the zookeeper forum:
+
+```xml
+<property>
+<name>dt.operator.MessageReader.prop.topic</name>
+<value>test</value>
+</property>
+
+<property>
+<name>dt.operator.KafkaInputOperator.prop.zookeeper</nam>
+<value>localhost:2181</value>
+</property>
+```


Mime
View raw message